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Abstract

Overextension—the phenomenon that children extend known words to describe refer-

ents outside their vocabulary—is a hallmark of lexical innovation in early childhood.

Overextension is a subject of extensive inquiry in linguistics and developmental psy-

chology, but there exists no coherent formal account of this phenomenon. We develop a

general computational framework that captures important properties of overextension

reported separately in the previous literature. We operationalize overextension as prob-

abilistic inference over a conceptual space that draws on a fusion of knowledge from

lexical semantics, deep neural networks, and psychological experiments to support both

production and comprehension. We show how this minimally parameterized framework

explains overextension in young children over a comprehensive set of noun-referent

pairs previously reported in child speech, and it also predicts the behavioral asymmetry

in children’s overextensional production and comprehension reported in lab settings.

Our work offers a computational theory for the origins of word meaning extension and

supports a single-system view of language production and comprehension.

Keywords: overextension; lexical innovation; word meaning extension; multimodality;

production-comprehension asymmetry

1. Introduction1

Young children often extend known words to referents outside their vocabulary, a2

phenomenon known as overextension [1]. For example, children might extend dog to3
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Figure 1: Illustration of overextension in child-caretaker communication. Production: The child chooses to

extend the meaning of a known word—ball in this scenario—to refer to the object balloon, word for which

has not yet entered the child’s vocabulary. Comprehension: The child, as a listener, must infer the meaning of

the caretaker’s utterance—balloon—given possible confounding referents in the environment (e.g., a ball).

refer to a squirrel, ball to refer to a balloon, or key to refer to a door. Overextension takes4

place typically between 1 and 2.5 years in child development [2] and evidences early5

capacity for lexical innovation under communicative and cognitive pressures. Work6

in linguistics and developmental psychology has made important discoveries about7

overextension [3, 2, 4, 1, 5], but to our knowledge there exists no formal coherent account8

that synthesizes these ideas to explain the wide array of behaviors in overextension, both9

in terms of children’s production and comprehension (see Figure 1 for an illustration).10

Here we present a computational framework for characterizing the origins of word11

meaning extension that connects different findings about overextension in the literature.12

Vygotsky [3] describes overextension as a crucial stage of early concept formation.13

In his classic example, a child first uttered quah to refer to a duck in a pond, then14

to bodies of water, to liquids in general, including milk in a bottle, as well as to a15
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coin with an eagle imprinted on it, and subsequently other round, coin-like objects.16

Vygotsky’s work provides an anecdotal account of overextension and resonates with17

work in philosophy and cognitive linguistics suggesting how word meanings involve rich18

but perplexing semantic relations [e.g., 6, 7]. However, this account does not specify the19

conceptual basis and mechanism that give rise to the word choices that children produce20

in overextension.21

A study by Rescorla [5] extends the early work by suggesting that children’s lexical22

production of overextension relies on rich conceptual knowledge. In her diary study of23

six children, Rescorla has identified three main types of semantic relations that connect24

conventional and overextended referents of a word, described as 1) categorical relation:25

overextension by linking objects within a taxonomy (e.g., dog referring to a squirrel);26

2) analogical relation: overextension by linking objects with shared visual or other27

perceptual properties (e.g., ball referring to an apple); and 3) predicate-based relation:28

overextension by linking objects that co-occur frequently in the environment (e.g., key29

referring to a door).30

Separate from the literature that documents children’s overextension from the per-31

spective of lexical production [e.g., 8, 2, 5], several studies have shown that children’s32

lexical comprehension also exhibits the property of overextension, and there are impor-33

tant behavioral differences in terms of overextensional production and comprehension.34

In particular, children tend to misintepret the meaning of a word by overextending to35

other (related or confounding) referents in the environment [9, 10, 11]. The extent36

that overextension behavior in comprehension mirrors that in production has been a37

subject of controversy [9, 12, 10], but one observation persists [13, 14]: children often38

overextend in production even when they correctly infer the appropriate adult word39

in comprehension, i.e., there exists a production-comprehension asymmetry such that40

comprehension tends to mature earlier than production in development. For example,41

Rescorla [5] reports a child who consistently identified the correct referent upon hearing42

the word strawberry, but would still overextend the word apple to refer to strawberries43

in production. This asymmetry reflects the general trend that comprehension leads pro-44

duction in language development [15], but it remains debated whether comprehension45

and production rely on two separate systems or a single system [16].46
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Although several hypotheses have been proposed to explain both the mechanisms47

behind overextension as well as the relationship between production and comprehension,48

existing views are mixed as to the explanation of overextension in terms of: 1) incom-49

plete conceptual system [2, 17, 18], 2) pragmatic choice under limited vocabulary [4],50

and 3) retrieval error [12, 19, 20, 11]. The first view poses children’s immature con-51

ceptual development as the root of overextension, suggesting that children overextend52

words because their developing conceptual system cannot yet distinguish concepts to53

the extent that adult words do. This explanation addresses the semantic aspect of lexical54

innovation, but not the production-comprehension asymmetries, since incomplete con-55

ceptual knowledge alone could not explain words being correctly understood but not56

produced. The other two views focus on this latter aspect by suggesting that children57

overextend words either as a communicative strategy when they lack the proper vocab-58

ulary and thus rely on an approximation to accomplish their communicative goals, or59

due to performance errors caused by the cognitive effort of retrieving unfamiliar words.60

However, these theories do not propose a formal model to explain the conceptual leaps61

that children make when they do overextend words in production or comprehension.62

We present a formal approach to child overextension that is aimed at explaining63

the various findings about this phenomenon under a coherent view. We propose a64

general computational framework that models child overextension both in terms of65

production and comprehension, and we evaluate this framework rigorously against66

empirical findings reported previously from naturalistic and lab settings.67

We focus on modeling the overextension of nouns which represent a broad class68

of concepts in the lexicon. We contribute a new dataset of 236 noun pairs (i.e., noun-69

referent) collected from the literature which we have made publicly available (see70

Supplementary Material). We show that our computational framework not only explains71

children’s overextended word choices over different semantic modalities, but with72

no further modification it also replicates the empirical findings about production and73

comprehension from independent psychological experiments. Our framework shows74

that overextension in both production and comprehension can be explained by inferential75

processes on common conceptual knowledge, thus providing support for the single-76

system view of language production and comprehension.77
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Although we focus our experiments and discussion on presenting a unified model78

that explains overextension in production and comprehension, it is worth highlighting79

that our work can also be seen as a more general framework of reference from which80

overextension follows. We elaborate on this view in our second set of experiments,81

which shows that our model can predict both correct and overextended production82

and comprehension following empirical findings, and in Supplementary Material, in83

which we show how a longitudinal simulation of our model can suggest developmental84

trajectories from early overextension to adult concept formation and reference.85

2. Relations to existing computational work86

Our work extends the broad literature on computational modeling of word learning87

and language acquisition.88

A prominent line of research emphasizes modelling cross-situational word learning,89

which posits that children infer the conventional meanings of words by leveraging the90

statistical regularities in natural utterances across different situations [21, 22, 23, 24].91

Cross-situational word learning has been tackled by several methodological approaches,92

including symbolic [21], associative [25, 26, 27], and Bayesian [28, 29, 30] models;93

independent research has also proposed connectionist accounts of word learning algo-94

rithms [31, 32, 33, 34, 35]. Differing from this rich area of research, our work instead95

focuses on the innovative aspects of the lexicon on the path toward the acquisition of96

proper or conventional language.97

Our framework draws on a multimodal semantic representational space that is98

inspired partly by recent work on visually grounded word learning [36, 37, 38]. This99

line of research uses visual features in the environment to model word learning as a100

process grounded in visual perception. Our work employs similar techniques to account101

for overextension patterns based on visual analogy but also goes beyond by incorporating102

semantic relations of other types, including taxonomic and predicate relations.103

Although computational approaches to child lexical innovation are still in their104

infancy, some recent research has explored particular aspects of this problem. For105

example, Alishahi and Stevenson [39, 40] developed a probabilistic model of early106
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argument structure acquisition that simulates a transient period of overgeneralized verb107

argument structure (e.g., Mary fall toy). Related work has studied the relationship108

between cross-linguistic variation in lexicalization and child overextension of spatial109

prepositions and color terms [41, 42]. This line of research has suggested that both110

word frequency and implicit cognitive biases inferred from cross-linguistic tendencies111

play a role in predicting children’s overextension patterns in these individual semantic112

domains. Our approach here offers a general way of constructing semantic relations113

that approximates children’s conceptual structure in overextension, and we show how114

these relations can be integrated to reproduce overextension behavior across (as opposed115

to within) domains. We also show that our models predict the differences between116

production and comprehension observed in child overextension without additional117

parameter tuning.118

3. Computational formulation of theory119

We first present three theoretical hypotheses we explore in our computational ap-120

proach to overextension. We then formulate overextension as probabilistic inference121

during communication in which a child, in production, wishes to refer to a novel ob-122

ject given vocabulary and cognitive constraints, and, in the opposite comprehension123

scenario, needs to infer the intended meaning of an utterance given available referents124

in the environment (see Figure 1). We describe our framework in terms of two main125

components: 1) a generic probabilistic process of overextension for production and126

comprehension, and 2) the construction of a multimodal semantic space that supports127

probabilistic inference.128

3.1. Theoretical hypotheses129

We posit three hypotheses under our framework:130

1. Multimodality: a combination of multiple types of semantic relations should131

better predict children’s overt strategies of word choices in overextension than132

features treated in isolation;133
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2. Effort-saving production (or frequency effect): words that occur more frequently134

in children’s linguistic environment are favored over less common words in135

overextended production;136

3. Production-comprehension asymmetry: by reflecting task differences between137

production and comprehension, a single framework should predict the empirical138

observations on child behavior in production and comprehension including the139

reported asymmetry.140

Each of these hypotheses is grounded in the previous findings about overextension:141

the first hypothesis integrates the idea that a developing conceptual system forms the142

basis of children’s overextension [2, 17, 18, 3] with the observations of Rescorla [5] on143

the multimodal nature of the semantic relations underlying individual word choices; the144

second hypothesis represents the view of cognitive difficulty in retrieving unfamiliar or145

recently-learned words as a cause of overextended word choices in production [12, 19,146

20, 11]; and the third hypothesis materializes the proposal of Thomson & Chapman [11]147

that task differences may be the key to combining early conceptual organization and148

retrieval difficulty into a general model of overextension. In this respect, our model149

does not make new discoveries. However, an important distinction between our work150

and the previous studies is that we provide a single account of overextension that151

coherently explains these empirical findings reported previously in separation, whereas152

the existing literature has not proposed or evaluated a general formal theory that specifies153

how the different findings may be explained coherently. We test the validity of each154

of our hypotheses through computational experiments with a large meta dataset of155

child overextension in production as reported in an array of previous studies, as well156

as independent behavioral data of production and comprehension collected from lab157

experiments.158

3.2. Probabilistic framework159

Production. Consider a child with limited vocabulary V who wishes to refer to160

some concept c in the environment (e.g., a balloon), where the adult word for c may not161

be in the child’s existing vocabulary. Given a candidate word w ∈V for production (e.g.,162
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ball), we specify the following probabilistic model of word choice in overextension:163

pprod(w|c) =
p(c|w)p(w)

∑w′∈V p(c|w′)p(w′)
(1)

The likelihood term p(c|w) measures the appropriateness of referring to (or cate-164

gorizing) concept c with word w, and is defined as a density function (specified later)165

that depends on the semantic similarity between c and cw, or the concept that word w166

signifies conventionally, e.g., ball for “ball”:167

p(c|w) = fsim(c|cw) (2)

The prior p(w) encodes the notion of cognitive effort, that is, some words are easier168

to retrieve than others. Following previous work showing the effect of word frequency169

on overextension [42], we define p(w) as a frequency-based word prior:170

p(w) =
F(w)

∑w′∈V F(w′)
(3)

where F(w) is the total frequency of word w in a representative corpus of children’s171

linguistic environment. In this account, frequent words are more likely to be chosen for172

overextension, and we test this assumption rigorously against the lexical choices that173

children were reported to make in overextension.174

Comprehension. In the case of comprehension, the child hears word w and esti-175

mates probabilistically that it refers to some concept c in the referential environment.176

The comprehension model recovers the similarity-based measure used above in its177

probabilistic formulation:178

pcomp(c|w) =
p(w|c)p(c)

∑c′∈E p(w|c′)p(c′)
(4)

The likelihood term p(w|c) measures the appropriateness of word w to refer to179

concept c, and is defined by the multimodal similarity function: p(w|c) = fsim(cw|c).180

The prior p(c) is set to the uniform distribution over the set of possible referents E in181

the child’s environment, reflecting the assumption that referents in the environment are182

equally likely to be chosen as the target referent a priori. This choice also reflects the183
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Figure 2: Types of semantic relations in multimodal semantic space.

hypothesis that cognitive effort plays a larger role in overextension in production than in184

comprehension [12, 19, 20, 11]. However, we show in the Supplementary Material that185

under a frequency-based prior (as in the case of the production model), our models also186

capture important components of the production-comprehension asymmetry reported in187

the literature, and hence elucidating the contribution of both the prior and likelihood188

components in our models.189

Multimodal semantic space. We define a multimodal semantic space that captures190

the three types of relational features described by Rescorla [5]: categorical relation,191

visual analogy,1 and predicate-based relation. We construct these relational features192

using a fusion of resources drawn from lexical semantics, deep learning networks, and193

psychological experiments, as illustrated in Figure 2 and specified as the following.194

1) Categorical relation. We define the categorical relation between two referents via195

a standard distance measure dc in natural language processing by Wu and Palmer [43],196

based on taxonomic similarity. Concretely, for two concepts c1 and c2 under a taxonomy197

1While Rescorla defined analogy to include broader perceptual features, such as auditory, we restrict this

investigation to visual features in the interest of data availability for a large-scale study.

9



T (i.e., a hierarchy), the distance is:198

dc(c1,c2) = 1− 2NLCS

N1 +N2
(5)

NLCS denotes the depth of the least common subsumer of c1 and c2 in the taxonomy,199

and N1 and N2 denote the depths of the two concepts. This distance measure is bounded200

between 0 and 1, and is larger for concepts that are more distantly related (i.e., share201

fewer common ancestors) in the taxonomy. Under this measure, concepts from the same202

semantic domain (such as dog and squirrel) should yield a lower distance than those203

from across domains (such as ball and balloon). To derive the categorical features, we204

took the taxonomy from WordNet [44] and annotated words by their corresponding205

synsets in the database. We used the NLT K package [45] to calculate similarities206

between referents for this feature.207

2) Visual analogical relation. We define the visual analogical relation by cosine208

distance between vector representations of referents in visual embedding space. In209

particular, we extracted the visual embeddings from convolutional neural networks—210

VGG-19 [46], a state-of-the-art convolutional image classifier pre-trained on the Im-211

ageNet database [47]—following procedures from work on visually-grounded word212

learning [36]. Under this measure, concepts that share visual features (such as ball and213

balloon, both of which are round objects) should yield a relatively low distance even214

if they are remotely related in the taxonomy. To obtain a robust visual representation215

for each concept c, we sampled a collection of images I1, . . . , Ik up to a maximum of216

256 images from ImageNet. With each image I j processed by the neural network, we217

extracted the corresponding visual feature vector from the first fully connected layer218

after all convolutions: vc
j. We then averaged the sampled k feature vectors to obtain an219

expected vector vc for the visual vector representation of c.220

3) Predicate-based relation. We define the predicate-based relation by leveraging221

the psychological measure of word association. Word associations reflect many kinds of222

semantic relationships, and importantly some of these relationships are predicate-based223

that are not captured by either the “categorical” or the “visual” component of the model,224

e.g., in the case of key and door. We assumed that two referents that co-occur together225
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frequently should also be highly associable, and we followed the procedures in [48] by226

taking the “random walk” approach to derive vector representations of referents in a227

word association probability matrix. This procedure generates word vectors based on the228

positive point-wise mutual information from word association probabilities propagated229

over multiple leaps in the associative network. As a result, concepts that share a common230

neighborhood of associates are more likely to end up closer together in the vector space.231

De Deyne et al. [48] showed that this measure yields superior correlations with human232

semantic similarity judgments in comparison to other measures of association. We used233

word association data from the English portion of the Small World of Words project [48].234

The data is stored as a matrix of cue-target association probabilities for a total of 12,292235

cue words. We used the implementation provided by the authors2 to compute vector236

representations from the association probability matrix. We used cosine distance to237

compute predicate-based distances between pairs of referent vectors.238

To complete our formulation of the multimodal semantic space, we integrate the239

three types of semantic relations specified above into a density function based on240

conceptual similarity that measures the likelihood of concepts being associated by241

overextension in the probabilistic framework.242

We take the Gaussian-Euclidean form of the generalized context model (GCM) or243

exemplar model of categorization [49], which defines the similarity between two con-244

cepts c1 and c2 as a decaying function of the distance separating them in psychological245

space. First, the model computes the distance between the concepts as the Euclidean246

norm over the distance components in each psychological dimension:247

d(c1,c2) =
[
dc(c1,c2)

2 +dv(c1,c2)
2 +dp(c1,c2)

2]1/2
(6)

Under this formulation, the psychological dimensions correspond to the three types248

of multimodal relations: categorical distance dc, visual analogical distance dv, and249

predicate-based distance dp. Then, a Gaussian kernel computes concept similarity as a250

2https://github.com/SimonDeDeyne/SWOWEN-2018
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decaying function of psychological distance:251

sim(c1,c2) = exp
(
−d(c1,c2)

2

h

)
(7)

This similarity measure is modulated by a single kernel width parameter h, which252

controls the sensitivity of the model to the distance function. The magnitude of h253

determines how slowly the similarity measure decreases with respect to distance in254

the multimodal relations. We empirically estimate the value of h from data in the255

experiments and provide a simulation of the model based on a range of values for the256

sensitivity parameter in Supplementary Material.257

To formulate a parsimonious model, we use a single kernel width parameter to258

modulate all three unmodified distance measures (instead of three separate parameters).259

While further refinements such as normalization strategies may be valuable to explore,260

we found this simple formulation to be sufficient for our empirical evaluations and261

theoretical inquiries. Furthermore, we show in Supplementary Material that allowing262

independent kernel width parameters to act on each psychological dimension does not263

change the conclusions from our experiments.264

In practice, this similarity measure readily yields the density function required by265

the production and comprehension models; formally, it must be normalized to form a266

proper density function:267

fsim(c1|c2) =
sim(c1,c2)

Zh
(8)

where Zh depends only on h,3 and thus need not be explicitly computed in the models.268

To ensure that the three types of relational features provide complementary informa-269

tion, we calculated their inter-correlations based on the 236 concept pairs that we used270

for our analyses. Although correlations were significant (p < .001), coefficients were271

low or moderate (Spearman’s ρ; category vs visual: 0.238; category vs predicate: 0.445;272

visual vs predicate: 0.421), suggesting that each feature contributes to information273

encoded in the multimodal semantic space. We further verify the contribution of each274

3Concretely, Zh =
∫

exp
(
− x2

h

)
dx
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individual feature in a predictive task on overextension (see Section 6).275

One potential limitation of our construction of multimodal space is that some of the276

data sources, namely taxonomy and word association, come from adult-based knowledge277

(taxonomy) or from experiments performed with adult participants (word association);278

child-specific sources of similar data are scarce for the purposes of our large-scale279

experiments. While we acknowledge that features obtained from these data might not280

perfectly correspond to children’s mental representations, we expect these extensively281

tested data sources to provide useful signal to our experiments, which we confirm by282

corroborating developmental psychologists’ hypotheses in a formal setting. Future work283

can explore the representational and predictive effects of using child-specific semantic284

features if they become available at scale, either by collecting such data or by attempting285

to degrade the adult-level features in a systematic way.286

4. Meta data of child overextension287

One important evaluation of our framework involves testing our model against288

a comprehensive array of word-referent pairs comprising children’s overextensional289

production as reported in the child language literature. We collected this meta dataset290

by performing a meta survey of 8 representative studies from the literature and collected291

a total of 323 examples of overextension noun-referent pairs. We selected studies292

containing the most examples of overextended noun-referent pairs as recorded in one of293

the following conditions: diary records, videotaped play sessions, or picture naming294

activities. Most (51%) overextension entries for our analyses came from Rescorla’s diary295

studies [50, 51, 5], and the remaining sources complemented this extensive resource.296

Each entry in our dataset consisted of an overextended noun and the novel referent297

that noun has been extended to. We kept word-referent pairs of nouns that overlapped298

with the available data from the three feature resources we described, resulting in a total299

of 236 word-referent pairs from 8 different sources. Table 1 shows some examples from300

this meta dataset and their sources from the literature, and we have made the entire meta301

dataset available to the community.302

While the data we used for analysis may not constitute an exhaustive range of303
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Table 1: Examples of overextension data, one for each source included in this study.

Uttered word → Referent Source empirical study

ball → onion [11]

car → truck [12]

apple → orange juice [50]

ball → marble [8]

fly → toad [2]

cow → horse [52]

apple → egg [51]

truck → bus [5]

child overextension, we followed a thorough procedure in data collection by recording304

every word-referent pair in which both constituents could be denoted by one noun.305

Furthermore, we collected a diverse set of overextensional cases from multiple sources306

surveyed from the literature as opposed to an individual study. Future empirical efforts307

to collect larger and systematic records of children’s overextension could provide a308

valuable addition to our work, and we believe that the models we propose here can be309

applied to those records.310

5. Materials and methods311

5.1. Data and code availability312

Data and code for replication, including a demonstration, are deposited at:313

https://github.com/r4ferrei/computational-theory-overextension.314

5.2. Vocabulary from early childhood315

To approximate children’s vocabulary in early childhood, we collected nouns re-316

ported to be produced by children of up to 30 months of age from the American English317

subset of the Wordbank database [53]. This database is based on the MacArthur-Bates318

Communicative Development Inventories [54] and aggregates average age of acquisi-319

tion for over 680 English words. Because overextension has been typically reported to320
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occur between 1 and 2.5 years [2] (that covers the range in Wordbank), we constructed321

a vocabulary V using all the nouns from Wordbank for which the required semantic322

features could be obtained. The resulting vocabulary includes 317 out of the 322 nouns323

from the database (see Supplementary Material, Table S4 for a complete list).324

5.3. Word frequencies in child-caretaker speech325

To capture the distribution of nouns in young children’s linguistic environment,326

we collected a large set of child-caretaker speech transcripts from the CHILDES327

database [55]. Specifically, we worked with all transcripts from studies performed328

in naturalistic child-caretaker situations for children between 1 and 2.5 years (the typical329

overextension period), resulting in 1,713 transcripts with over 200K noun tokens in330

total.4331

We measured the relative frequency of each noun by dividing its total number of332

token occurrences across all transcripts by the total number of noun tokens. Then,333

to alleviate the effect of minor spelling differences or variability in child versions of334

adult words (e.g., mama/mommy/mom), we counted the frequency of each entry in the335

overextension dataset as the total frequency of the lemma variations of its synset in the336

WordNet database.337

5.4. Model optimization and evaluation methods338

In Section 6.1, we evaluated our probabilistic models against the meta set of overex-339

tension word-referent pairs, O = {(wi,ci)}, with respect to all words in the child vo-340

cabulary V . We assessed the model by finding the maximum a posteriori probability341

(MAP) of all the overextension pairs under the single sensitivity parameter h, which we342

optimized to the MAP objective function via standard stochastic gradient descent:343

max
h

∏
i

pprod(wi|ci;h) = max
h

∏
i

p(ci|wi;h)p(wi)

∑w∈V p(ci|w;h)p(w)
(9)

We maintained this value of h for all other experiments in this paper.344

4Specifically, we collected transcripts from the studies in [56, 57, 58, 4, 59, 60, 61, 62, 63, 64, 65, 66, 67, 55,

68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78].
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For our likelihood-based evaluations, we used the Bayesian Information Criterion345

(BIC), a standard measure for probabilistic models that considers both degree of fit to346

data and model complexity. The score is defined as BIC = log(n)k−2log(L̂), where n347

is the number of data points, L̂ is the maximized likelihood of the model, and k is the348

number of free parameters (here, k = 0 for the prior-only baselines and k = 1 for all349

other models, which are parameterized by the kernel width h).350

6. Results351

We evaluate the proposed computational framework following two steps: 1) we test352

model accuracy in predicting children’s overextended word choices, as reported from353

the literature; and 2) we use the same model from step 1) with no parameter tuning354

to assess its explanatory power on explaining behavior differences in production and355

comprehension under an independent set of lab experiments, also as reported from the356

literature.357

6.1. Explaining word choices in overextension358

To assess how well the model captures children’s word choices in overextension, we359

first evaluated the production model against the meta set of overextension word-referent360

pairs, O = {(wi,ci)}, with respect to all words in the child vocabulary. For each pair, the361

model chooses the target word based on the given overextended sense ci by assigning a362

probability distribution over words w in the vocabulary.363

To assess the contribution of the three features, we considered all possible restrictions364

of the multimodal space, and thus tested the production model under single features365

and all possible combinations of feature pairs, along with the full multimodal model366

consisting of categorical, visual analogical, and predicate-based relations. We also367

compared these models under the frequency-based prior p(w) versus those under a368

uniform prior, as well as a baseline model that chooses words only based on the prior369

distribution.370

We evaluated all models under two metrics: Bayesian Information Criterion (BIC)371

and performance curves similar to receiver operating characteristics. The BIC is a372
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standard measure for probabilistic models that considers both degree of fit to data373

(i.e., likelihood) and model complexity (i.e., number of free parameters). All of our374

models that incorporate semantic features contain a single parameter, the kernel width375

h, and baseline models do not contain any free parameters. Under the second criterion,376

we assessed model performance curves that measure predictive accuracy at different377

numbers of allowed model predictions m. Concretely, for each level of m, we measured378

the predictive accuracy of the model from its choice of top m words in the vocabulary,379

which is equivalent to the proportion of overextension pairs (wi,ci) for which the model380

ranks the correct production wi among its top m predictions for referent ci. Since the381

dataset for this experiment focuses on overextended word-referent pairs, we similarly382

limited the word choices available to the model in each prediction by removing the383

appropriate word from the set of candidates for that concept.384

Table 2 summarizes the BIC scores of the family of production models. We make385

three observations. First, models that incorporate features performed better than the386

baseline (i.e., lower in BIC scores), suggesting that children overextend words by387

making explicit use of the semantic relations we considered. This confirms the first388

theoretical hypothesis that we presented. Second, models with the frequency-based389

prior performed dominantly better than those with the uniform prior, suggesting that390

word usage frequency or cognitive effort and semantic relations jointly affect children’s391

word choices in overextension. This confirms our second hypothesis. Third, models392

with featural integration performed better than those with isolated features (i.e., all393

features < feature pairs < single features in BIC score), suggesting that children rely394

on multiple kinds of semantic relations in overextensional word choices. This provides395

further evidence for our first hypothesis.396

Figure 3 further confirms these findings in performance curves that show average397

predictive performance under a range of m possible word choices: all features > feature398

pairs > single features > baseline in the area under curves. Although Figure 3 shows399

a large range of possible word choices to clearly contrast the performance trends of400

each family of models, note that predictive performance is reasonable even within a401

smaller, more plausible number of possible word choices: the full multimodal model402

correctly predicts 55% of the overextension data in its top 5 word choices (compared to403
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Table 2: Bayesian Information Criterion (BIC) scores for production models with respect to overextension

dataset (N = 236). A lower BIC score indicates a better model.

Model
BIC score

frequency prior uniform prior

baseline 2471 2717

categorical (cat.) 1863 2093

visual (vis.) 1817 2041

predicate (pred.) 1853 2072

vis. + pred. 1732 1947

cat. + vis. 1682 1904

cat. + pred. 1646 1871

all features 1592 1812

12% accuracy of the frequency baseline model).404

It could be argued that, when very few word choices are allowed (e.g., under 5), the405

model accuracy is still relatively low in absolute terms, and limitations of our current406

model and data sources could help explain this result—for example, differences between407

children’s knowledge and the adult knowledge comprising our conceptual space, and408

discrepancies between idealized model inference and the actual inferential processes409

performed by children in word selection could both be factors limiting the performance410

of our models. However, we also emphasize that the overextension dataset cannot be411

taken as an exhaustive account of all possible overextensions that children produce. For412

instance, the following model predictions are counted as incorrect because the dataset413

does not contain such word-referent pairs: tuna for fish, tiger for jaguar, and orange for414

peach. These examples show that many incorrect predictions are still closely related to415

the target referents and capture the kind of semantic relationship displayed by typical416

cases of overextension. Supplementary Material, Table S3 provides more sample model417

outputs for both correct and incorrect predictions.418

We further evaluated the ability of the three features in our multimodal space to419
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Figure 3: Performance curves for production models showing cross-validated model accuracies in reconstruct-

ing word choices (N = 236). Aggregated results (single features and feature pairs) show mean accuracy over

individual models; see Supplementary Material, Figure S2 for a fine-grained comparison of all models.

capture the diversity of semantic relations present in children’s overextension in a logistic420

regression analysis that achieved 84% accuracy in distinguishing the true overextension421

word pairs in our dataset from randomized control pairs (see more details of this analysis422

in Supplementary Material). Figure 4 shows the estimated contribution of each semantic423

relation toward characterizing the overextension dataset, along with some examples424

best explained by each multimodal feature that illustrate how the model captures the425

different types of semantic relations on which children rely in overextension.426

19



35%
43%

22%

dog → squirrel
cow → zebra

flower → tree
airplane → submarine

apple → egg
hat → bowl
ball → orange
clock → telephone

apple → orange juice
key → door
tea → teapot

spoon → fork

categorical

visual

predicate

Figure 4: Percentage shares and overextension examples explained by the three types of features in the

collected meta dataset (N = 236).

6.2. Explaining production-comprehension behavioral differences427

To assess whether the same modeling framework also accounts for the overextension428

behaviors in production and comprehension, we performed a set of replication analyses429

based on the independent empirical study conducted by McDonough [79]. That study430

analyzed children’s performance in production and comprehension with respect to a set431

of nouns and corresponding visual stimuli in four domains: animals, food, vehicles, and432

clothes. The 30 nouns were split into two groups by age of acquisition (16 early and433

14 late nouns) to test the hypothesis that items typically learned early in development434

would suffer overextension less frequently than those learned later in development.435

In the production task, children were shown the stimuli in sequence and asked to436

name them. In the comprehension task, in each trial, experimenters showed a triplet of437

stimuli, uttered a target word, and asked the child to find the stimulus corresponding to438

the target word. The comprehension task included trials in two conditions: high contrast,439

in which the two distractors belonged to a different domain than the target stimulus, and440
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low contrast, in which one of the distractors belonged to the same domain as the target441

stimulus (see Figure 5). Table 3 shows the stimuli triplets and conditions.442

High
contrast

Low
contrast

Prompt: dog

Prompt: car

Figure 5: Two conditions in comprehension experiment devised by McDonough [79].

We replicated these experiments with our computational framework. For the pro-443

duction experiment, we presented the production model based on Equation 1 with each444

stimulus referent c, and measured the probability of correct (target word) production,445

pprod(w|c), versus all other words in the child vocabulary. For the comprehension446

experiment, we presented the model based on Equation 4 with each target word w, and447

computed the probability of the target referent versus the two distractors in the triplet,448

pcomp(c|w) (with E = the triplet of stimuli in Equation 4).449

The empirical data on the left panel of Figure 6 demonstrates the behavioral asym-450

metry between production and comprehension. The drop in performance from com-451

prehension to production is particularly striking for late nouns, but even among early452

nouns, children performed better in the high-contrast condition of the comprehension453

task than in the production task.454

The right panel of Figure 6 shows the results from our model reproduction in terms of455

the predicted proportion of correct responses per task (production, and comprehension in456
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Table 3: Experimental stimuli from McDonough [79]. Each row shows one triplet as presented in the

comprehension experiment, and columns organize them into high and low contrast selections, as well as early

and late items. The bottom section shows triplets omitted from this experiment due to lack of feature data for

the stimuli marked by asterisks.

Early noun Early noun Late noun

(High contrast) (Low contrast) (Low contrast)

pig train bus

cow pants shorts

orange bicycle motorcycle

dog car truck

apple shirt vest

cat dress sweater

egg airplane rocket

shirt pig hippo

bicycle cow moose

boat carrot celery

pants orange beet

dress dog fox

car apple strawberry

train cat raccoon

carrot shoe *sandal

airplane cake *pie
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low and high contrast conditions) and per noun group (early and late nouns). We observe457

that these results replicate the trends from empirical data: in the comprehension task, low458

contrast trials elicited higher rates of overextension than high contrast trials, and there459

was no difference between early and late items in comprehension (e.g., pig overextended460

to hippo and hippo overextended to pig at similar rates). Welch’s t-tests confirmed461

these results: over the 14 triplets of stimuli, the proportion of correct comprehension462

in the high contrast, early noun condition (M = 1.0) was significantly higher than in463

the low contrast, early noun condition (M = 0.92): t(13) = 3.05, p < 0.01; and there464

was no significant difference in the proportion of correct comprehension between the465

low contrast, early noun condition (M = 0.92) and the low contrast, late noun condition466

(M = 0.92): t(25) = 0.01, p = 0.995. Although the model predicts lower rates of467

overextension than empirical results, it is worth highlighting that we did not re-tune the468

parameter h in any way from the previous experiment, and thus the qualitative match469

shows that the model is able to predict patterns of overextension in comprehension470

without any exposure to such data beforehand. In the production task, correct labels471

were produced for early items (n = 16, M = 0.68) more often than for late items472

(n = 14, M = 0.30), and the difference between the two groups was significant (Welch’s473

t(23) = 6.08, p < 0.001).474

To ensure that our results were not tainted by the overlap between overextension475

data from the previous experiment and the stimuli from the computational replication476

described here, we repeated this experiment with a model parameter h that was tuned477

only on overextension pairs in which neither the produced word nor the referent appear478

in the data from Table 3. This procedure removed 111 out of the 236 overextension pairs479

from the training data. We observed no relevant changes to our experiment results: all480

significance values reported above were maintained, as were the relative performance481

values shown in Figure 6.482

Comparing the results in the two tasks, we make two observations. First, the483

semantic space and probabilistic formulation enable the model to make predictions that484

recapitulate empirical findings in both production and comprehension, suggesting that485

the framework captures relevant features of young children’s linguistic abilities. Second,486

the model predicted the asymmetry between production and comprehension without487
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Figure 6: Results of comprehension and production experiments from empirical data of McDonough [79]

and from model reproduction. Each bar shows the proportion of correct responses (referent selection in

comprehension, and word utterance in production). Comprehension bars show performance over 14 triplets of

stimuli, and production bars show performance over 16 early nouns and 14 late nouns. Error bars represent

bootstrap 95% confidence intervals.

any modification, showing that a single system can explain the common phenomenon in488

developmental psychology: that children often overextend words even when they seem489

to correctly understand the appropriate adult words in comprehension. Our modeling490

framework reveals that incorporating the task demands of production and comprehension491

into a probabilistic process grounded in the same representational knowledge is sufficient492

to capture this asymmetry. Together this set of results confirms the third hypothesis that493

we proposed.494

We highlight that, whereas our first experiment focused on predicting overextended495

word choices only, our second experiment allowed the model to predict both correct and496

overextended behaviour in both word choice (production) and referent selection (com-497

prehension), as evidenced by our comparisons of the rates of overextension observed in498

empirical data and predicted by our model. This observation indicates that our model499

not only explains overextension in production and comprehension, but also serves as a500

more general framework of reference from which both overextension and appropriate501

word usage might follow. We demonstrate this possibility in a longitudinal simulation502

of our model in Supplementary Material.503
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7. Discussion and conclusion504

We have presented a formal computational account of children’s overextension. We505

formulated the problem of overextension in production and comprehension under a506

probabilistic framework and showed that a shared set of multimodal semantic relations507

between production and comprehension (combining categorical, visual analogical, and508

predicate-based features) and a minimally-parameterized model can explain substantial509

variation in children’s overextended word choices from the developmental literature.510

Furthermore, we showed how the same framework leveraging cognitive effort in word511

retrieval, specified as a frequency-based prior, enhances model predictability of word512

choices in production while helping to explain the asymmetry between production513

and comprehension. Our computational analyses have confirmed the three theoretical514

hypotheses that we presented initially, and we have provided support for an integrated515

view of production and comprehension [16], such that production and comprehension516

in overextension both rely on a single system that supports probabilistic inference over517

a shared set of representations in a single conceptual space.518

Our computational approach also offers a synthesis of the previous psychological519

findings about overextension. By expressing children’s conceptual knowledge via520

multimodal semantic relations; their lexical choices via a probabilistic process that can521

overextend in-vocabulary words to out-of-vocabulary referents under communicative522

need; and cognitive effort in word retrieval as a probabilistic process in which the523

correct word competes for retrieval with other words in the vocabulary, our framework524

integrates these ideas into a general account of overextension that explains a broad range525

of data ranging from naturalistic settings to lab experiments.526

Our work adds to an extensive body of computational studies that model word527

learning in children. While previous research has made substantial progress in modeling528

the acquisition of conventional language use [25, 28, 27, 80, 81, 82], there is relatively529

little work on modelling how children innovatively use words to bypass their linguistic530

limitations for naming out-of-vocabulary referents. Our framework helps to elucidate531

the computational processes of early word meaning extension and extends related work532

on modeling overextension within individual domains [39, 40, 41, 42] to modeling533
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meaning extension across domains.534

It is important to acknowledge that overextension is a general phenomenon that535

applies to word classes beyond nouns [2]. Psychologists have observed that children536

also systematically overextend a variety of other classes of words, for example: antonym537

pairs related to quantity [less/more 83] and time [before/after 84]; dimensional terms538

such as big for more specialized properties including tall and high [85]; verbs such as539

ask and tell [86]; kinship terms such as brother and sister [87]; spatial terms, with one540

general purpose term standing in for a variety of spatial relations [1], among others. A541

challenge remains as how to formalize semantic knowledge more generally that would542

be applicable to overextension in these other word classes.543

A comprehensive formal account of lexical acquisition should also specify a mecha-544

nism to capture the phenomenon of vocabulary growth over time. One way to model545

this process would be to integrate word learning and overextension strategies into a co-546

herent model. Future work should explore this possibility of combining the mechanisms547

of overextension and word learning to account for child behavior under naturalistic548

environment.549

We have offered a computational account of child overextension that incorporates550

theories from developmental psychology and supports probabilistic construction and551

inference of innovative word usages that resemble those described in classical work [3].552

Our framework along with the meta dataset that we have collected will pave the way553

for a formal and scalable characterization of children’s lexical innovation. Our work554

sheds light on the computational basis of word meaning extension as a manifestation of555

human lexical creativity in early childhood.556
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