Week 4: Graph Theory and Structural Induction

CSC 236:Introduction to the Theory of Computation

Summer 2024

Instructor: Lily

Announcement

- Peer review (5 points)
 - [1 point] Complete all your assigned reviews
 - [1 point] For each review accuracy of marking (for now: if you give mark a, and the TA gives mark t
 - $|a-t| \le 1$: full marks
 - $|a-t| \in (1,2]: -0.75$
 - $|a-t| \in (2,3]: -0.5$
 - $|a-t| \in (3,4]$: -0.25
 - |a-t| > 4: no marks
- A2 Q1 (a) now unmarked, A2 Q1 (d) question modified, A2 Q2 (a) (c) hints modified, Q2 (d) removed.

Trees

- Root
- Binary tree
- Height

Recursively Defined Sets

• 1

Sequence of balanced brackets

Binary trees

Structural Induction

Prove: every non-empty binary tree has one more node than edge.

Recursively define set $S \subseteq \mathbb{N} \times \mathbb{N}$.

- (0,0) ∈ *S*
- If $(a,b) \in S$, then both $(a+1,b+1) \in S$ and $(a+3,b) \in S$ Define $S' = \{(x,y) \in \mathbb{N} \times \mathbb{N} : (x \ge y) \land (3|x-y)\}$. Prove that S = S'.

Now You Try!

1. Give a recursive definition over the alphabet $\{+, -, (,)\} \cup \mathbb{N}$ of well-formed expressions involving addition and subtraction on the natural numbers.

2. A ternary tree can have at most three children. Prove using structural induction, that for every $n \ge 1$, every non-empty ternary tree of height n has at most $(3^n - 1)/2$ nodes.

Q1. Give a recursive definition over the alphabet $\{+, -, (,)\} \cup \mathbb{N}$ of well-formed expressions involving addition and subtraction on the natural numbers.

Q2. A ternary tree can have at most three children. Prove using structural induction, that for every $n \ge 1$, every non-empty ternary tree of height n has at most $(3^n - 1)/2$ nodes.

Minimum Spanning Tree (MST)

- Weighted graph: G = (V, E) and weight function $w: E \to \mathbb{R}$
- Spanning tree: subgraph T = (V', E') where $V' \subseteq V$ and $E' \subseteq E$ which is a tree
- Weight of subgraph T:

$$w(T) = \sum_{e \in E'} w(e)$$

• MST: for connected weighted graph G, spanning tree T with minimum weight

Prim's Algorithm

```
def mst prim(V, E, w) -> list[edges]:
  # Pre: G = (V, E) connected
  # Post: output MST
  T = []
  visited = {a}
  while visited != V:
    (u,v) = \min weight edge
     T = T.append((u,v))
    visited.add(v)
   return T
```


Program Correctness (Iterative)

- Preconditions: properties of the input
- Postconditions: properties of the output

Program Correctness. Let f be a function with a set of preconditions and post conditions. Then f is correct (with respect to the pre- and postconditions) if for every input I to f, if I satisfies the preconditions, then f(I) terminates and all the postconditions hold after termination.

Correctness of Prim's Algorithm

```
def mst_prim(V, E, w) -> list[edges]:
  \# Pre: G = (V, E) connect
  # Post: output MST
1 T = []
2 \text{ visited} = \{a\}
  while visited != V:
   (u, v) = min weight edge
     T = T.append((u,v))
    visited.add(v)
   return T
```

Asymptotic Analysis

```
def mst prim(V, E, w) -> list[edges]:
  # Pre: G = (V, E) connect
  # Post: output MST
1 T = []
2 \text{ visited} = \{a\}
  while visited != V:
   (u, v) = min weight edge
     T = T.append((u,v))
    visited.add(v)
   return T
```

Recap

- Graph terminology: trees
- Structural induction
 - Recursive definition
- Introduction to proof-of-correctness
- More thorough asymptotic analysis recap

Next time... many more examples of proofs-of-correctness