Week 4: Graph Theory and
Structural Induction

CSC 236:Introduction to the Theory of Computation
Summer 2024

Instructor: Lily

Announcement

* Peerreview (5 points)
* [1 point] Complete all your assigned reviews

* [1 point] For each review accuracy of marking (for now: if you give mark a,
and the TA gives mark t
* |la —t| < 1: full marks
* la—t| € (1,2]: -0.75
* la—t|l€(2,3]: =05
* la —t| € (3,4]: —0.25
* |la —t| > 4: no marks

* A2 Q1 (a) now unmarked, A2 Q1 (d) question modified, A2 Q2 (a)-
(c) hints modified, Q2 (d) removed.

Trees

* Root
* Binary tree
* Height

Recursively Defined Sets
e N
* Sequence of balanced brackets

* Binary trees

Structural Induction

Prove: every non-empty binary tree has one more node than edge.

Recursively define set S € N X N,

« (0,0)es

* If (a,b) € S,thenboth(a+1,b+1)€ Sand(a+3,b) €S
Define S' = {(x,y) e NX N: (x = y) A (3|x — y)}. Provethat S = §'.

Now You Try!

1.

Give a recursive definition over the alphabet{+, —, (,)} U N of
well-formed expressions involving addition and subtraction on
the natural numbers.

A ternarytree can have at most three children. Prove using
structural induction, that for everyn = 1, every non-empty
ternary tree of height n has at most (3" — 1) /2 nodes.

Q1. Give a recursive definition over the alphabet {+, —, (,)} U N of well-formed
expressions involving addition and subtraction on the natural numbers.

Q2. Aternary tree can have at most three children. Prove using structural
induction, that for everyn = 1, every non-empty ternary tree of height n has at
most (3" — 1)/2 nodes.

Minimum Spanning Tree (MST)

* Weighted graph: ¢ = (V, E) and
weight functionw: E - R

* Spanning tree: subgraph T =
(V',E"YwhereV' € VandE’ C
E which is a tree

* Weight of subgraph T

w(T) = Y eprw(e)

* MST: for connected weighted
graph G, spanning tree T with
minimum weight

10

Prim’s Algorithm

def mst prim(V, E, w)-> list[edges]:

Pre: G = (V,E) connected
Post: output MST

T = []
visited = {a}
while visited != V:
(u,v) = min weight edge

T = T.append((u,v))
visited.add (v)

<~ o O s Ww DN

return T

Program Correctness (lterative)

* Preconditions: properties of the input
* Postconditions: properties of the output

Program Correctness. Let f be a function with a set of

preconditions and post conditions. Then f is correct (with respect
to the pre- and postconditions) if for every input I to f, if I satisfies
the preconditions, then f () terminates and all the postconditions

hold after termination.

12

Correctness of Prim’s Algorithm

def mst prim(V, E, w)-> list[edges]:
Pre: G = (V,E) connect
Post: output MST

T = []
visited = {a}
while visited != V:

(u,v) = min weight edge
T = T.append((u,v))
visited.add (v)

<~ o O s Ww DN

return T

13

Asymptotic Analysis

def mst prim(V, E, w)-> list[edges]:

<~ o O s Ww DN

Pre: G = (V,E) connect
Post: output MST

T = []
visited = {a}
while visited != V:

(u,v) = min weight edge
T = T.append((u,v))
visited.add (v)

return T

14

15

Recap

* Graph terminology: trees

e Structural induction
e Recursive definition

* Introduction to proof-of-correctness
* More thorough asymptotic analysis recap

Next time... many more examples of proofs-of-correctness

16

	Slide 1
	Slide 2: Announcement
	Slide 3: Trees
	Slide 4: Recursively Defined Sets
	Slide 5: Structural Induction
	Slide 6
	Slide 7: Now You Try!
	Slide 8
	Slide 9
	Slide 10: Minimum Spanning Tree (MST)
	Slide 11: Prim’s Algorithm
	Slide 12: Program Correctness (Iterative)
	Slide 13: Correctness of Prim’s Algorithm
	Slide 14: Asymptotic Analysis
	Slide 15
	Slide 16: Recap

