CSC236H1Y 20245 Last updated: August 3, 202/

Assignment 6

Unmarked Questions

Remember to comment out this section when submitting your assignment.

Here are a few simple warm-up problems. Make sure you are able to do them before proceeding to
the marked questions.

Determine regularity of the following languages

For each of the following languages, state whether or not it is regular and prove your answer. If
the language is regular, draw a finite automaton (DFA or NFA) which accepts the language using
no more than 10 states and proof that it accepts the language (during an exam, you will not have
to do this). Otherwise, prove that the language is not regular.

a. Ly = {w € {0,1}* : w contains both 01 and 00 as substrings}. For example, the strings
001,010100,000111 € Ly, while the strings 0,1111,010101 ¢ L;.

Solution. L4 is regular. We will draw a DFA which accepts Li. It is shown in Figure

Figure 1: DFA M which accepts L.

Proof. To prove that M indeed accepts L, we will come up with and prove a state invariant
for each of the six states. The predicate on a string w € {0,1}* will be

g w=1%for k>0

g w = 1F01(1* + (01)™)" for k,¢,m,n >0

. ¢ w=1%01(1¢+ (01)™)"0 for k,¢,m,n >0

Plw) = 8" (qo,w) = I (017 W
g3 w=1%0for k>0

@ w=1%00(0)¢ for k,¢ >0

g5 w constains both the string 01 and 00 as substrings

CSC236H1Y 20245 Last updated: August 3, 202/

We note that these six states are disjoint, i.e., no string can belong to two different states,
and exhaustive, i.e., every string will end up at some state.

We prove P(w) by structural induction with our standard recursive definition of ¥*. In the
base case 0*(qo, €) = qo and indeed € can be written as 1¥ with k = 0.

Suppose for some string w € ¥*, P(w) is true. We show that P(w0) and P(wl) are also true.
For w0, we need to consider each of six possible cases for 6*(qg, w0).

8*(qo,w) = qo We know that w = 1% for k& > 0 (IH). On a zero, §, will take the transition to g3 so
6*(qo,w0) = g3. Note that the invariant for g3 is strings of the form 1%0 for k& > 0.

6*(qo,w) = q1 We know that w = 101 (16 + (Ol)m)n for k,¢,m,n > 0 (IH). On a zero, J, will take the
transition to g2 so §*(go, w0) = go. Note that the invariant for ¢o is exactly strings of
the form 1¥01(1¢ 4 (01)™)"0 for k, £, m,n > 0.

§*(qo,w) = g2 We know that w = 1%01 (15 + (Ol)m)nO for k,¢,m,n > 0 (IH). On a zero, 4, will take
the transition to g5 so §*(qp, w0) = g5. Note that the invariant for g5 is exactly strings
containing both 01 and 00 as substrings and by adding a zero we guarantee that w0 now
contains 00 as a substring (it already had a 01 substring).

6*(qo,w) = g3 We know that w = 1%0 for & > 0 (IH). On a zero, 4, will take the transition to ¢4 so
6*(qo, w0) = q4. Note that the invariant for g4 is exactly strings of the form 1¥00(0)¢ for
k,¢ > 0. Here, we could take £ = 0.

§*(qo,w) = g4 We know that w = 1¥00(0)¢ for k,£ > 0 (IH). On a zero, §, will take the transition to
qa 80 0*(qo,w0) = q4. Note that the invariant for g4 is still satisfied as we now have
1%00(0)“+! for k, £ > 0.

0*(qo, w) = g5 We know that w is a string with both 01 and 00 as substrings (IH). It follows that w0
also satisfies this state invariant as well.

We will also need do the same for w1, but it is a bit tedious so we won’t write it out explicitly.
By Structural induction, P(w) is true for all w € ¥* and our DFA indeed accepts L. O

b. Ly = {0™ : nis a perfect square}. For example, the strings €,0,0000 are in Lo, but the
strings 00, 000, 00000 are not.

Solution. Lo is not regular, suppose for a contradiction that Lo is regular and let M be
a DFA which accepts Ls. Suppose that the M has pumping length p. Consider string
w = 0PTD? Since w € Lo, by the Pumping Lemma, we know that w = xyz where |zy| < p,
ly] > 1, and zy*2 € Ly. We claim that this is a contradiction since xy?z ¢ L. Since
w consists of only zeros, y = 0% for some constant a < p. Note that zy?z = 20%?z. We
know that |20%?z| > (p + 1)? since the right hand side is the length of w. Note however
12027z = (p+1)®2+a < (p+1)2+2(p+1)+1= (p+2)2 Since there are no perfect squares
greater than (p + 1)? and less than (p + 2)2, 2022 ¢ Ls.

Marked Questions

Q1. [10 Points] Construct DFA (mazimum 3 pages)

Consider the marble rolling toy shown in Figure A marble is dropped at A or B. There are
flippers at positions z1, 2, and x3 (indicated by the thick black lines) which fall either to the left

CSC236H1Y 20245 Last updated: August 3, 202/

or to the right. Whenever a marble encounters a flipper, it causes the flipper to reverse; the next
marble will take the opposite branch.

A B

zs3

C D

Figure 2: Default configuration of the marble rolling toy. Marbles are dropped in one of A or B
and come out at one of C or D.

Model the toy as a DFA M = (Q, X, 0, s, F)) with alphabet ¥ = {A, B}. Inputs to the DFA are
sequences of As and Bs indicating where the marbles will be dropped. M should accept a string of
As and Bs if the last marble dropped exits the toy through D. Accept the empty string.

An example of the state of the machine after dropping marbles consecutively at A, A, and then B
is shown in Figure

a. Draw your DFA below. You should not need more than sixzteen states.

Solution.

(a) Drop first marble at A. (b) Drop second marble at A. (c) Drop third marble at B.

Figure 3: Result of dropping three marbles at A, then A, then B. This corresponds to the three
strings A, AA, and AAB. Your DFA should reject A and AA but accept AAB.

CSC236H1Y 20245 Last updated: August 3, 202/

b. Formally prove that your DFA is correct. In your inductive case, you only need to consider
the addition of A to the end of a string w such that P(w) is true for your predicate P.

Proof. O

CSC236H1Y 20245 Last updated: August 3, 202/

Q2. [10 Points] Regex Implies NFA (mazimum 2 pages not counting the diagrams for Regex
to NFA solutions)

In the following question we will complete the proof of the equivalence of regular expressions
(Regex), deterministic finite automaton (DFA), and non-deterministic finite automaton (NFA). In
class, we showed that DFAs have the same expressive power as NFAs. In this problem, we will first
turn a DFA M into a regex R such that the language accepted by M, denoted L(M), is equivalent
to the language represented by R, denoted L(R), i.e., we want to find a regular expression R which
is equivalent to M. Then we will show that a regex R can be transformed into a NFA N such that
L(R) = L(N), i.e., we want to find an NFA N which is equivalent to R.

DFA—Regex We will walk through the state removal method. The goal is to remove states until there
are only two remaining, the start state and a single accepting state with a single transition
between them. We do this by replacing single character transitions with regular expressions.

(a) Let R be a regex and suppose the DFA M is as shown in Figure 4l Find a regex which

is equivalent to M.
e .

Figure 4: DFA M.

Solution.

(b) Suppose instead that M has many more states and let a part of M be shown on the left
of Figure [l We want to eliminate state g;+1 so that M looks like the right of Figure
afterwards. Find a regex to put on the transition ¢; — g;42 using Ry, Ro, and Rj3 so

Ry

2

Ry ' R3 !

Figure 5: Part of DFA M. Find the regex which fits in 7.

that we can eliminate ¢;41.
Solution.

(c) Consider a part of M shown on left of Figure [We want to collate all transitions
between states g; and g;11 so that M looks like the right of Figure |§| afterwards. Each
R; is a regex. Find a regex to put on the single transition ¢; — ¢;11 using Ry, ..., and
R;. so that we can eliminate all other transitions.

Solution.

(d) Using the previous parts, prove the predicate P(n) := every DFA with n states has an
equivalent regex. Inducting on the number of states. For n, fix some DFA M with n
states and show that there exists a regex which is equivalent to M.

Hint: You may want to add a dummy start state and a dummy accept state with e-
transitions to the start state and from the accepting states respectively.

CSC236H1Y 20245 Last updated: August 3, 202/

Figure 6: Part of DFA M. Find the regex which fits in ?.

Proof. O

Regex—NFA Recall that regexs are defined recursively on the set of characters 3. For each part of the
recursive definition of regexs, we construct an equivalent NFA. A diagram is enough; you do
not have to prove the correctness of the NFA.

(a)

Draw an N F A which is equivalent to the regular expression ().

Solution.

Draw an NF' A which is equivalent to the regular expression e.

Solution.

For a fixed a € X, draw an NF' A which is equivalent to the regular expression a.
Solution.

Suppose we have two regular expressions Ry and Ry with corresponding DFAs M7 and
M>. Use M1 and Ms to construct an NFA which is equivalent to Ry + Ro.

Solution.

Suppose we have two regular expressions R; and Ry with corresponding DFAs M; and
Ms. Use M1 and Ms to construct an NFA which is equivalent to Ry Rs.

Solution.

Suppose we have a regular expression R with corresponding DFA M. Use M to construct
an NFA which is equivalent to R*.

Solution.

Additional Questions

Remember to comment out this section when submitting your assignment.

If you would like more exercises consider trying the following problems from your primary and
supplementary textbooks. We will not be providing solutions to these questions though you are
free to find the solution online and discuss them with your peers.

1. David Liu’s notes Chapter 5: Exercises 8, 9

2. Hopcroft, Motwani, Ullman Chapter 2.3: Exercises 1, 2, 3, Chapter 4.1: Exercises 2, 3,
Chapter 4.2: Exercises 2, 3, 6

