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Abstract

A set system is a collection of sets on an underlying universe of elements. It can be modeled by a

{0, 1} incidence matrix. The rows of the matrix represent sets, while the columns represent elements.

The discrepancy of a set system is the least balanced that we can make the most unbalanced set in

the set system by coloring elements of the universe ±1. Since its inception, extensions and limitations

have necessitated the introduction of many variants of discrepancy. In this thesis we consider linear

and hereditary discrepancy, first introduced by Lovász, Spencer, and Vesztergombi [LSV86], in detail.

Linear discrepancy captures a common problem in applied mathematics: round a real-valued vector

w with entries in the interval [0, 1] to a binary vector x. For a given matrix A, we want Ax to be as

close to Aw as possible under a fixed metric, often ℓ∞. In LP rounding, for example, the real-valued

solution of a LP approximates the solution of NP-hard optimization problem. The worst-case error

over all choices of w incurred by the best possible rounding is the linear discrepancy of A. We study

of the computational complexity of linear discrepancy by proving hardness results and presenting

new algorithms to evaluate the linear discrepancy of a special family of matrices.

Hereditary discrepancy is a generalization of discrepancy that maximizes the unbalance over all

submatrices of the incidence matrix. It has applications to data structures, differential privacy, and

spectral graph theory. A general way to prove lower bounds on the hereditary discrepancy of a

matrix is via its determinant lower bound. Building upon the works of Matousek [Mat13] and Jiang

and Reis [JR22], we show that for a matrix of dimension m × n, the bound of O
(√

logm log n
)
on

the ratio of its hereditary discrepancy to its determinant lower bound is tight for nearly all ranges

of m.

Finally, we consider a graph partitioning problem studied in many fields with many different names.

Given a graph G, the goal is to partition the vertices of G into two or more equally sized parts so that

every vertex has more neighbours in its own part than the others. We show constructive results from

the social choice perspective using discrepancy theory. From a graph theory perspective, existential

results for Erdös-Rényi random graphs generalized to digraphs.
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Chapter 1

Introduction

A set system, denoted (X,S), consists of an underlying universe X of size n and a family S of size

m containing subsets S ⊆ X. For simplicity, let the sets of S be S1, ..., Sm and the elements of

X be [n] := {1, ..., n}. A coloring χ assigns ±1 to every element of X. The value of χ restricted

to S ⊆ X is χ(S) =
∑
x∈S χ(x). If χ(S) is small, then χ is “balanced” on S, i.e., there are an

approximately equal number of elements in S colored +1 and −1. Conversely, if χ(S) is large,

then χ is “unbalanced” on S, i.e., a large proportion of elements in S are assigned the same color.

The combinatorial discrepancy of S is a measure of minimum achievable balance over all possible

colorings χ. For a fixed χ, the discrepancy of S on χ is defined as disc(S, χ) = maxS∈S |χ(S)|. The
discrepancy of (X,S) is

disc(S) = min
χ:X→{−1,+1}

max
S∈S
|χ(S)|.

Discrepancy and its variants are well-studied topics in combinatorics and computer science [BS96;

Cha01; Mat09]. We highlight two variants, namely linear and hereditary discrepancy, and their

applications here and will define them formally in Section 1.2.

Many questions in mathematics and computer science are captured by the following rounding prob-

lem: for m× n matrix A and w ∈ [0, 1]n, find an boolean vector x ∈ {0, 1}n so that Ax is as close

as possible to Aw in a specified metric. For example, the following integer linear program,

min c⊤x

such that Ax ≥ b

x ∈ {0, 1}n,

models many NP-hard optimizations problems. By relaxing x to real-valued variables w ∈ [0, 1]n,

then rounding w to an integer feasible solution x where Ax ≥ b, we obtain a solution whose

objective value c⊤x is not much greater than c⊤w. As an intermediate step, it is often helpful

to guarantee that x is approximately optimal, i.e., showing that the coordinates of b − Ax are

bounded above. In particular, we can ensure the existence of x which achieves bounds that are a

function of the linear discrepancy of A. This approach was used in the works of Rothvoss [Rot13]

and Hoberg and Rothvoss [HR17] to develop additive approximate algorithms for bin-packing, has

1



CHAPTER 1. INTRODUCTION 2

applications to scheduling [BKN14] by the works of Bansal, Krishnaswamy, and Nagaragan, and

designing point sets well distributed with respect to arbitrary Borel measures [ABN18; Nik17]. A

better understanding of linear discrepancy has allowed tighter integrality gaps for special families of

linear programming relaxations [BDM23] and may allow for tighter results more generally for these

important optimization problems.

Discrepancy also has many connections to problems in other fields. It was shown to be intimately

connected to range searching in group models where results from discrepancy have been used to

obtain better query time and update time tradeoffs for various range search problems [Lar14]. Such

connections, when applied to a more robust version of discrepancy known as hereditary discrepancy

and have been used to construct differentially private algorithms [MN12]. Further, the approaches

developed to compute discrepancy have been used to construct better spectral sparsifiers [JRT24].

This thesis contains results from four papers. Chapter 2 covers material from On the Gap Between

Hereditary Discrepancy and Determinant Lower Bound [LN24] which is a joint work with Alek-

sandar Nikolov published in SIDMA 2024. Chapter 3 covers material from On the Computational

Complexity of Linear Discrepancy [LN20] which is another joint work with Aleksandar Nikolov pub-

lished in ESA 2020. Chapter 4 covers part of Partitioning Friends Fairly [LMNS23] which is a joint

work with Evi Micha, Aleksandar Nikolov, and Nisarg Shah published in AAAI 2023. The full paper

considers two notions of fairness: envy-freeness and the existence of a core, but only the portion

pertaining to envy-freeness — a concept we will define and motivate in Section 1.3.1 — is relevant

here. Chapter 5 covers material from Balanced Friendly Partitions of Random Digraphs, another

joint work with Aleksandar Nikolov, which is currently in submission.

1.1 Notation

We summarize the commonly used mathematical notation found throughout this thesis.

Variables. For n ∈ N, let [n] = {1, ..., n}. For a set S, let |S| be the number of elements in S. For

any α ∈ R, let ⌈α⌋ be α rounded to a closest integer. For two sets S1 and S2, let S1 ⊔ S2 be the

disjoint union of the two sets.

Lower-case letters (e.g. u) represents scalars while lower-case bold letters (e.g. u) denote vectors.

The subscript of an element denotes its position in the vector (e.g. ui is the ith element in vector

u). Upper-case letters (e.g. A) represents sets while upper-case bold letter (e.g. A) denote matrices.

Rows or columns of matrices are denoted by their lower-case bold counterparts (e.g. ai for the ith

column) depending on the context. Entries are sub-scripted scalars (e.g. ai,j). Universal constants

will typically be represented by the letter c and are unrelated in different theorems even though they

may be represented by the same symbol.

Relations. We adopt the short-hand notation a ≲ b to denote a ≤ c · b for some constant c

independent of a and b. Similarly a ≳ b denotes a ≥ c · b. If a ≲ b and a ≳ b, then a ≍ b. When an

inequality has a subscript, i.e. a ≲u b, then the constant in the inequality depends on u.

In addition to standard asymptotic notation, we use Õ, e.g., f(n) = Õ (g(n)), to represent f(n) =

O
(
g(n) logk g(n)

)
for some constant k.
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Discrepancy. Let A ∈ {0, 1}m×n be the incidence matrix of the set system (X,S) where |S| = m

with S = {S1, ..., Sm} and X = [n] unless stated otherwise. Row i of A is the indicator vector of

set Si ∈ S and column j of A is the indicator vector for the element j ∈ X. We will often consider

colorings χ : X → D for some domain D. Observe that χ can be interpreted as a vector in DX and

we will often use these interpretations interchangeably. When indexing, χi corresponds to the color

of χ on i ∈ X and χ(S) =
∑
i∈S χ(i) for set S ∈ S.

Linear Algebra. For vector v, ∥v∥p is the ℓp-norm of v. If v ∈ Rn, then Diag(v) is the n × n
matrix with the entries of v along the diagonal. 1 is the all ones vector of the appropriate dimension.

In is the n × n identity matrix and Jn is the n × n all ones matrix. Whenever A is multiplied or

divided by a scalar, every entry of A is multiplied or divided by the same scalar. For two square

matrices A and B of the same dimension, A ≻ B means A −B ≻ 0 or that the matrix A −B is

positive definite (PD). Similarly, A ⪰ B means A − B ⪰ 0 or that the matrix A − B is positive

semi-definite (PSD).

Probability. ϕ and Φ are the probability density and cumulative density functions of the standard

Gaussian respectively. Φ−1 denotes the quantile function1 for the standard Gaussian. Capitalized

letters X, Y , and Z typically denote random variables and, in particular, Z — and any of its

subscripted versions — denotes a standard Gaussian random variable unless otherwise specified.

For a body D in Rn, let γn(D) be its standard Gaussian measure, i.e.

γn(D) =

∫
D

exp
(
−x⊤x

2

)
(2π)

k/2
dλn(x)

where λn is the n-dimensional Lebesgue measure.

1.2 Discrepancy

We define and motivate the definition of two variants of discrepancy: hereditary and linear discrep-

ancy. First, though the set system definition of combinatorial discrepance above is intuitive, it can

be cumbersome to use. Instead, let A ∈ {0, 1}m×n be the incidence matrix of the set system (X,S)
and redefine disc(S) in terms of A. Each row of A represents a set in S, while each column of A

represents an element in X. The entry in row i, column j of A is equal to one if and only if j ∈ Si.
Thus, the discrepancy of (X,S) is equivalent to

disc(A) = min
χ∈{−1,+1}n

∥Aχ∥∞.

We can further define variants of discrepancy based on other norms. Just as disc(A) was defined in

terms of L∞, for L1, we can define

disc1(A) := min
x∈{±1}n

∥Ax∥1
m

1The quantile function of a random variable X with CDF FX is equal to F−1
X (p) = min{x : FX(x) = p}.
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and generally for Lp, we can define

discp(A) := min
x∈{±1}n

(∥Ax∥pp
m

)1/p

.

Note that discp(A) ≤ discq(A) when p ≤ q.

Sometimes disc(A) can be small “by accident”. For any matrix B ∈ Rm×n, we can defineA ∈ Rm×2n

as A = [B,B] (i.e., the concatenation of two copies of B side by side). Regardless of the discrepancy

of B, disc(A) = 0 since there exists x ∈ {−1, 1}n such that ∥Ax∥∞ = 0, namely

x⊺ = [−1, ...,−1︸ ︷︷ ︸
n

, 1, ..., 1︸ ︷︷ ︸
n

].

Instead of an inherent property of the matrix — A contains B, so we would hope that disc(A) and

disc(B) are related and that disc(A) ≥ disc(B) —, we find that discrepancy is too brittle and unable

to capture the underlying structure present in the matrix.

That is not to say similar matrices necessarily have approximately the same discrepancy. Consider

this next example where the universe X is composed of two disjoint sets A⊔B where |A| = |B| = n

for n a multiple of four. Let (X,S) and (T , X) be two different set-systems on the same universe

X. S is the set-system consisting of all sets of size n/2 with n/4 elements from A and n/4 from

B. T is the set-system consisting of the set A. Observe that disc(S) = 0; the coloring χ where

χ(a) 7→ 1 for a ∈ A and χ(b) 7→ −1 for b ∈ B achieves zero discrepancy. Similarly, disc(T ) = 0:

assign half the elements of A to 1 and the other to −1. Consider the set-system (S ∪ T , X). Note

that disc(S ∪ T ) = n/2. For any coloring χ : X → {±1}, let χ−1(1) and χ−1(−1) be the set of

vertices colored 1 and −1, respectively, by χ. Without loss of generality, suppose that the majority

of the elements in B are colored 1, i.e., |χ−1(1) ∩ B| ≥ |χ−1(−1) ∩ B|. If there are n/4 or fewer

elements colored 1 in A (i.e., |χ−1(1) ∩ A| ≤ n/4), then
∣∣∑

a∈A χ(a)
∣∣ ≥ n/2. Conversely, if there

are n/4 or more elements colored 1 in A (i.e., |χ−1(1) ∩ A| ≥ n/4), then for any subset A′ ⊂ A

such that |A′| = n/4 and A′ ∈ χ−1(1) as well as B′ ⊂ B such that |B′| = n/4 and B′ ∈ χ−1(1),

χ(A′ ∩ B′) = n/2. Even though the two set systems separately have zero discrepancy, their union

interacts in such a way as to increase the discrepancy substantially.

From these examples, we see that discrepancy can change dramatically with seemingly trivial changes

to the set system (e.g., duplicating elements or adding an additional set). Thus, it is useful to define

a more robust variant of discrepancy. The hereditary discrepancy, initially introduced by Lovász,

Spencer, and Vesztergombi [LSV86], is one such variant. For a matrix A, it is the maximum

discrepancy over all sub-matrices, i.e.,

herdisc(A) = max
B

disc(B), (1.1)

where B ranges over submatrices of A. Since adding rows can never decrease the discrepancy of a

matrix, it suffices to consider only sub-matrices B whose columns are a subset of the columns of A.

Discrepancy can also be interpreted as a rounding problem. Applying the linear transformation

x 7→ 1−x
2 , we have that disc(A) = 2minχ∈{0,1}n∥A (w − χ)∥∞ where w = 1

21. This is the smallest

possible error when rounding a zero-one combination of the columns of A to the vector Aw in
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ℓ∞-norm. If, instead of rounding to a fixed w, we let w be an arbitrary vector in [0, 1]n, then we

have defined the linear discrepancy of A with respect to w, i.e.,

lindisc(A,w) = min
x∈{0,1}n

∥A (w − x)∥∞.

More generally, the linear discrepancy of A is the worst-case linear discrepancy over all w ∈ [0, 1]n.

lindisc(A) = max
w∈[0,1]n

lindisc(A,w). (1.2)

There is an illuminating geometric interpretation of discrepancy, hereditary discrepancy, and linear

discrepancy. In order to compare these three functions, we must ensure that they have the same

domain. Thus, we will use the definition of linear discrepancy where w ∈ [−1, 1]n and x ∈ {−1, 1}n,
i.e., before applying the map x 7→ 1−x

2 . Denote by a⊤i the ith row of A. For discrepancy, we want

to find the smallest r such that |⟨ai, χ⟩| ≤ r for all i ∈ [m]. To see this, note that |⟨ai, χ⟩| ≤ r

represents a pair of linear constraints −r ≤ ⟨ai, χ⟩ ≤ r. Over all rows, we obtain the linear system

−r1 ≤ Aχ ≤ r1. Let PA = {x ∈ [−1, 1]n : ∥Ax∥∞ ≤ 1} be the fundamental parallelepiped of

A. The colorings χ are exactly the corners of the [−1, 1]n hypercube. If a constant r satisfies

−r1 ≤ Aχ ≤ r1, then we have a certificate of a coloring that achieves disc(A, χ) ≤ r. Thus, disc(A)

is the smallest value of r such that r · PA centered at the origin contains some corner of the [−1, 1]n

hypercube. Equivalently, disc(A) is the smallest scaling r of 2n copies of r ·PA placed at the corners

of [−1, 1]n which contains the origin. Using the same geometric view, hereditary discrepancy is the

smallest scaling s so that copies of s ·PA placed at the corners of [−1, 1]n containing a face of [−1, 1]n

cover the center of the same face, e.g., since the hypercube [−1, 1]n is the full-dimensional face, we

must be able to cover the origin with a copy of PA scaled by s and centered at a corner of [−1, 1]n.
Similarly, linear discrepancy is the smallest scaling t so that the 2n copies of t · PA placed at the

corners of [−1, 1]n cover every point of [−1, 1]n. See Figure 1.1.

Figure 1.1: The scaling of the fundamental parallelopiped represents discrepancy (left), hereditary
discrepancy (center), and linear discrepancy (right).

Note that the relationship between hereditary and linear discrepancy is nuanced. Even though

hereditary discrepancy only requires covering the centers of all the faces of [−1, 1]n, while linear
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discrepancy requires covering every point of [−1, 1]n, the parallelepipdeds of hereditary discrepancy

must be centered at the corners surrounding the face. Further, if we consider the one-row matrix

A = [1, 2, ..., 2n−1], we have herdisc(A) = 2n−1 while lindisc(A) = 1 (with domain {−1, 1}n) so, at
least in this case, lindisc(A) ≤ herdisc(A).

A fundamental result of Lovász, Spencer, and Vesztergombi shows that linear discrepancy can gen-

erally be bounded above by twice the hereditary discrepancy.

Theorem 1. [LSV86, Corollary 1]. lindisc(A) ≤ 2 · herdisc(A).

The determinant is another inherent property of a matrix A. Let the determinant lower bound of

A be defined as

detlb(A) := max
k∈min(m,n)

max
B
|det(B)|1/k

where B is a k × k submatrix of A. The work of Lovász, Spencer, and Vestergombi also highlights

a connection between the hereditary discrepancy of a matrix A and its determinant lower bound.

Theorem 2. [LSV86, Lemma 2]. For any matrix A ∈ Rm×n,

herdisc(A) ≥ 1

2
max

k∈[min(m,n)]
max
B
|det(B)|1/k

where B ranges over all k × k submatrices of A.

To get a rough upper-bound for the discrepancy of a matrix A, consider the random coloring. By

the Chernoff bound, the probability that the discrepancy of any row exceeds c
√
n logm for some

constant c occurs with probability at mostm−c. Taking a union bound over allm rows, with positive

probability, the coloring achieves discrepancy at most O(
√
n logm). Conversely, suppose that A is

a random incidence matrix. Then, the probability that any row achieves discrepancy Ω(
√
n) is a

constant. Using the probabilistic method, we have that

disc(A) = Ω
(√
n
)
. (1.3)

Thus, the gap between the upper and lower bounds is
√
logm.

1.2.1 Discrepancy Minimization

Non-constructive Results

Spencer [Spe85], in his celebrated 1985 work2, showed that the upper bound on the discrepancy of

A can be improved to O
(√

n log 2m
n

)
. When m = n, his paper achieves disc(A) ≤ 6

√
n, giving it a

striking name: Six Standard Deviations Suffice. In combination with the discrepancy lower bound

for the random matrix in Equation (1.3), this result is tight.

The following is a short summary of Spencer’s approach. See Matoušek’s textbook [Mat09] or

Spencer’s exposition [Spe94] for more details. In order to obtain the O
(√

n log 2m
n

)
bound on

disc(A), Spencer’s proof uses Beck’s partial coloring method. The goal is to construct a coloring

2Similar results were shown in a geometric setting by Gluskin [Glu89].
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vector u incrementally. Begin with u = 0. At every iteration, maintain the condition that the entries

of u are in {−1, 0,+1} and that the product of A and u achieves low discrepancy. For variables

i ∈ [n], i is floating or fixed depending on whether ui = 0 or ui ∈ {−1,+1} respectively. If u has a

floating variable, then it is a partial coloring. When all variables are fixed, u is a full coloring. At

each step we update u so that at least half of the floating variables become fixed. This process of

constructing a full coloring from a series of partial colorings is called the partial coloring method.

There is a related notion of the fractional coloring method which allows coordinates of u to take

values in [−1, 1] throughout the coloring process.

The key idea of Spencer’s proof is to show the existence of two full colorings which assign many

coordinates the different color and have similar discrepancies on all sets in the set-system. Then,

it suffices to only color those elements which were assigned the same color by the two full colorings

to obtain a partial coloring. In order to show the existence of these full colorings, Spencer used

the Pigeon-Hole Principle. Despite the existence of a coloring χ that achieves disc(A, χ) ≤ 6
√
n,

Spencer’s result is non-constructive due to the central role of the Pigeon Hole Principle in the proof.

Hence, Spencer posed as an open problem: Does there exist a polynomial time algorithm which finds

a coloring achieving O(
√
n) discrepancy? After more than two decades, Bansal was able to answer

in the affirmative [Ban10].

Constructive Results

In 2010, Bansal [Ban10] resolved Spencer’s conjecture by showing that it was possible to construct a

coloring which achieves the discrepancy bounds of Spencer’s theorem using the solution of an SDP.

Subsequent to Bansal’s work, others have sought to simplify the proof, making it truly constructive

and more general [LM15; Rot17].

The original proof of Bansal is a randomized poly-time algorithm which finds a coloring of A

achieving discrepancy O (
√
n log(2m/n)). Note that this is slightly weaker than Spencer’s full result

by a factor of O
(√

log(2m/n)
)
, but when m = n, he recovers Spencer’s bound of O (

√
n). Roughly,

his algorithm constructs a feasible SDP using constraints on the sets of the set-system given by the

current fractional coloring. He takes the solution of the SDP and updates the fractional coloring.

Inspired by Bansal’s work, Lovett and Meka [LM15] came up with a constructive algorithm using

random walks instead of SDPs. Unlike Bansal who used Spencer’s result, this work was “tru-

ely constructive” as it did not rely on prior existential results. Their result also eliminates the

O
(√

log(2m/n)
)
factor gap between the general non-constructive result of Spencer and the con-

structive result of Bansal. In particular, their main theorem states: there exists a randomized

algorithm which computes in time Õ
(
(n+m)3

)
, a coloring for A which achieves discrepancy at

most O
(√

n log(2m/n)
)
with constant probability. The key to this main theorem is the following

partial coloring theorem.

Theorem 3. (Lovett-Meka partial coloring [LM15, Theorem 4].) Let a1, ...,am ∈ Rn and u0 ∈
[−1, 1]n be the initial starting position. Further let ∆1, ...,∆m ≥ 0 be thresholds such that

m∑
j=1

exp
(
−∆2

j/16
)
≤ n/16.
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For any small error parameter ϵ > 0, there exists an efficient randomized algorithm which, with

constant probability, say 1/10, finds a point u ∈ [−1, 1]n satisfying

1. Discrepancy Constraint: for all j ∈ [m],

|⟨u− u0,aj⟩| ≤ ∆j∥aj∥2.

2. Variable Constraint: |ui| ≥ 1− ϵ for at least n/2 indices i ∈ [n].

Their algorithm produces a full coloring u by repeatedly applying Theorem 3.

Rothvoß [Rot17] also has a constructive discrepancy result which, instead of finding a random

rounding based on the solutions of an SDP as in Bansal or random walks in the space orthogonal to

the tight discrepancy and integrality constraints as in Lovett-Meka, projects the fractional coloring

vector in a random direction. This result is shown in Theorem 4.

Theorem 4. (Rothvoß Partial Coloring [Rot17, Theorem 3.1]). Let P ⊂ Rn be a symmetric convex

set with Gaussian measure at least e−n/500 and suppose that we have a polynomial time separation

oracle for P . Then there exists a randomized polynomial time algorithm which finds a point u ∈
P ∩ [−1, 1]n with ui ∈ {−1, 1} for at least n/9000 many coordinates.

Again, the algorithm produces a fractional coloring u by repeatedly applying Theorem 4.

Further, one can ask: what is the expected discrepancy of a random matrix? Hoberg and Rothvoß

and others [FS20; HR19; TMR20] consider matrices A ∈ {0, 1}m×n drawn from a Bernoulli ensemble

where each entry is Bernoulli with probability p ≥ log n/m with high probability. When n =

Ω(m2 logm) they show that disc(A) = O(1). Later work by Altschuler and Niles-Weed[AN21], and

independently MacRury et al. [MMPP23], improved this result and showed that for a Bernoulli

ensemble with parameter p := p(n), there exists a universal constant C > 0 such that if n ≥
Cm logm, then disc(A) ≤ 1 with high probability. In addition, Altschuler and Niles-Weed [AN21]

showed that for a Poisson ensemble with parameter λ for every entry, when n ≥ m, disc(A) =

O
(
2−n/m

√
nλ+ 1

)
with high probability. When m/np → 0, every row of A has many non-zero

entries in expectation so the techniques are similar to those from prior works: second moment and

local limit theorems. When m/np ̸→ 0, the rows of A may have very few non-zero entries and such

techniques, whose error is on the order of O(1/w) where w is the number of non-zero entries, are

too coarse, so the authors require more sophisticated probabilistic tools.

1.2.2 Determinant Lower Bound and Hereditary Discrepancy

From the result of Lovász, Spencer, and Vestergombi Theorem 2, recall that herdisc(A) ≥ 1
2detlb(A)

for matrices A ∈ {0, 1}m×n. Matoušek [Mat13] provided an upper-bound for hereditary discrepancy

in-terms of the determinant lower-bound.

Theorem 5 (Matoušek [Mat13], Theorem 2). For any matrix A ∈ {0, 1}m×n,

herdisc(A) ≤ O
(
detlb(A) log(mn)

√
log n

)
. (1.4)
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His proof required another variant of discrepancy, vector discrepancy, denoted vecdisc(A). This

quantity is similar to discrepancy with elements of the universe “colored” by vectors rather than by

±1. It is the smallest λ ≥ 0 for which there exists unit vectors v1, ...,vn satisfing the SDP:

∥Vai∥2 ≤ λ for each set j ∈ [m].

where V is the matrix with columns v1, ...,vn and each aj is the jth row of A. Vector discrepancy

is a lower bound on discrepancy since a coloring χ : X → {±1} can be interpreted as a set of

vectors where all vectors are parallel to each other. The hereditary vector discrepancy of A, denoted

hervecdisc, is the maximum vector discrepancy of any subset of the columns of A.

We have that vecdisc(A) ≤ disc(A) ≤ herdisc(A) and

hervecdisc(A) ≤ herdisc(A) ≤ hervecdisc(A) logmn

where the second inequality follows from a theorem of [Ban10]. Matoušek [Mat13] showed that

vecdisc(A) ≤ detlb(A)
√

log n ≤ herdisc(A)
√

log n.

To obtain the inequality of Equation 1.4, combine Bansal’s theorem (second inequality from the

second chain) with the first inequality by replacing A with a sub-matrix B with largest vector

discrepancy among all sub-matrices. To show the inequality of Bansal’s paper, apply SDP duality

to the definition of vector discrepancy and consider a subset of roughly equal positive coordinates

in the solution of the dual.

In a sense, this definition generalizes total unimodularity as TUM matrices are exactly the set of

hereditary discrepancy one matrices with entries in {−1, 0, 1}. From Theorem 1 of Lovász, Spencer,

and Vesztergombi [LSV86], the determinant lower bound of A satisfies 2 · herdisc(A) ≥ detlb(A) so

for TUMs, both quantities are equal to one.

Matoušek’s bound was not believed to be tight as the largest known value of herdisc(A)
detlb(A) is on the

order of log n. Both the three permutations family of Newman, Neiman, and Nikolov [NNN12] (see

also [Fra21]) and the construction of Pálvölgyi [Pál10] that we described above achieve this gap.

Jiang and Reis [JR22] used a similar approach but instead of using hereditary vector discrepancy like

Matoušek [Mat13], used hereditary partial vector discrepancy, denoted herpvdisc(A) for a matrix

A ∈ Rm×n. herpvdisc(A) is defined to be the smallest λ ≥ 0 satisfying: For every subset S ⊆ [n],

there exist unit vectors v1, ...,vn ∈ Rn satisfying the following SDP constraints:

∥
∑
j∈S

ai,jvj∥22 ≤ λ2 ∀i ∈ [m]

∑
j∈[n]

∥vj∥22 ≥
|S|
2

∥vj∥22 ≤ 1 ∀j ∈ S,

∥vj∥22 = 0 ∀j ∈ [n]\S.



CHAPTER 1. INTRODUCTION 10

They were able to show that

herdisc(A) ≤ O
(√

log(m) log(n) · herpvdisc(A)
)

herpvdisc(A) ≤ O (detlb(A))

which together achieves herdisc(A)
detlb(A) ≤ O

(√
log(m) log(n)

)
.

1.2.3 Main Results

Our thesis contributes results relating to both hereditary and linear discrepancy.

Determinant Lower Bound and Hereditary Discrepancy

Jiang and Reis [JR22] showed that herdisc(A)
detLB(A) ≤ O

(√
log(m) log(n)

)
. This bound is tight when

m = O(nc) for constant c by a set system of Pálvölgyi (see Section 2.1.2), but we wanted to know if

the factor of
√
logm is necessary when m≫ n. We will show in Chapter 2 that it is, by considering

a particular matrix A = PN ⊗Ak where PN is the 2N × N power matrix whose rows are all the

k-ary binary strings and Ak is the Haar Basis defined in Section 2.1.3. Proving Theorem 6 requires

the use of discrepancy amplification and a lemma from Matoušek’s original result [Mat13].

Theorem 6 (Hereditary Discrepancy and Detlb Lower Bound). For any real number ε ∈ (0, 1), any

integers n ≥ 2 and m ∈
[
n, 2n

1−ε
]
, there exists a matrix A ∈ {0, 1}m×n such that

herdisc(A)

detlb(A)
≳
√

logm log n. (1.5)

Note that the lower bound in Theorem 6 only holds for m ≤ 2n
1−ε

where ε is an arbitrarily small

but fixed constant. This leaves open whether such a lower bound holds all the way to m = 2n.

The next theorem gives a new upper bound on herdisc(A) in terms of detlb(A), which implies that

Theorem 6 cannot be extended to m = 2ω(n/ logn).

Theorem 7 (Hereditary Discrepancy and Detlb Upper Bound). For all positive integers m and n,

and all matrices A ∈ Rm×n, we have

herdisc(A)

detlb(A)
≲
√
n.

This upper bound is based on the relationship between the volume lower bound on discrepancy

studied in [DNTT18], and the determinant lower bound. In particular, the volume lower bound is

bounded by a constant multiple of
√
n · detlb(A) and, using a result of [DNTT18], it is possible to

characterize the hereditary discrepancy of partial colorings in terms of the volume lower bound.
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Linear Discrepancy

Let us begin with a simple observation: When A is a single row matrix, deciding lindisc(A, t1) = 0

is equivalent to the NP-hard Subset Sum problem with target sum t
∑n
j=1A1,j . This does not show

that computing lindisc(A) is NP-hard, but suggests that linear discrepancy is closely related to hard

problems. In this work we show a hardness result for linear discrepancy in Theorem 8 but suspect

that the problem is actually Π2-Hard. Later, Manurangsi [Man21] showed that linear discrepancy

is indeed Π2-Hard to approximate up to 9
8 − ϵ for ϵ > 0.

Theorem 8 (Linear Discrepancy Hardness). Given an m × n matrix A with rational entries, and

a rational number t, deciding whether lindisc(A) ≤ t, is NP-hard and is contained in the class Π2.

We present algorithms for computing linear discrepancy exactly when the matrix A has a constant

number of rows. Beginning with a matrix consisting of a single row, we have,

Theorem 9 (Linear Discrepancy for One Row Matrix). For any matrix A ∈ R1×n, lindisc(A) can

be computed in time O(n log n).

Contrast Theorem 9 with the observation at the start of this section where computing lindisc(A,w)

for a fixed w is hard even for a single-row matrix A. This suggests that even though the structure

of ∥Aw∥∞ maybe hard to predict, the structure of the fundamental parallelepiped is more regular

— at least in low dimensions.

We also give a rounding algorithm, showing that, for single row matrices, any w ∈ Qn can be

efficiently rounded to a {0, 1}n vector with error bounded above by the linear discrepancy of the

one-row matrix.

Theorem 10 (Linear Discrepancy for One Row Matrix Approximation). For any matrix A ∈ Q1×n

and any w ∈ ([0, 1] ∩ Q)n, we can find an x ∈ {0, 1}n such that ∥A(w − x)∥∞ ≤ lindisc(A) in time

O(n log n).

We can extend Theorem 9 to the case of matrices with a bounded number of rows as shown in The-

orem 11, with the additional assumption that the entries of A are bounded. We leave open the

task of removing this assumption. As before, a corresponding approximation algorithm appears

in Theorem 12.

Theorem 11 (Linear Discrepancy for Matrices with Constantly Many Rows). For any matrix

A ∈ Zd×n where d is some fixed constant and maxi,j |Ai,j | ≤ δ, lindisc(A) can be computed in time

O
(
d(nδ)d

2+d
)
.

Theorem 12 (Approximate Linear Discrepancy for Matrices). For any matrix A ∈ Qm×n, the

linear discrepancy of A can be approximated in polynomial time within a factor of 2n+1.

1.3 Graph Partition

A college dean needs to assign students to one of two equal-size dorms. Each student has a list of

preferred dormmates. Every person on their preferred list assigned to the same dorm contributes
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+1 to the student’s satisfaction and −1 if they are assigned to the other dorm. In particular, a

student is satisfied if they are in a dorm with at least half of the people on their preferred list.

The standard Dean’s Problem seeks to find a partition where every student is satisfied, but many

other variants are possible. The real-valued variant sees students assigning real values to the other

students allowing for more precise representation of the relationships. The symmetric preferences

variant requires preference lists to be symmetric, i.e., if student i is in student j’s list then student

j must be in student i’s list as well. The k-dorms variant finds the dean assigning students to k

equal-size dorms while maintaining one of several generalized definitions of satisfaction which we

will describe in detail in Chapter 5.

We can express the Dean’s Problem using directed graphs G = (V,E) where the vertices represent

the students and the edges represent preferences, i.e., edge (u, v) ∈ E if and only if student v is the

preference list of student u. If whenever a student u is in the preference list of a student v, then v

must also be in preference lists of u we can model the Dean’s Problem using an undirected graph.

Let dS(v), for any S ⊆ V , be the number of neighbours of v in S and d(v) := dG(v) be the number

of neighbours of v in the full graph. A partition (P1, P2) of the V into two non-trivial3 parts is a

γ-friendly partition if for every vertex v ∈ P1, dP1(v) ≥ dP2(v) + γ and for every vertex u ∈ P2,

dP2(u) ≥ dP1(u) + γ. We call a k-partition π = (P1, ..., Pk) balanced if ||Pi| − |Pj || ≤ 1 for all

i, j ∈ [k], i.e., the size of any two parts differs by at most one. In particular, we call a balanced 2-

partition a balanced bisection. Using this terminology, the Dean’s Problem seeks to find a 0-friendly

bisection. We call these satisfactory bisections.

The notion of a desirable partition of the students into groups is captured by two closely related

terms: envy-free partitions and friendly partitions.

1.3.1 Envy-Free Partitions

Envy-free partitions is a well-studied notion in the Social Choice literature. In the standard case, we

distribute a set of indivisible items R among a set of agents A. For each agent ai, let vi : P(R)→ R

be the utility function which determines the value ai places on each subset of items. The goal is to

find a partition π : R → A of items into bundles assigned to each agent satisfying certain properties.

We say that π is envy-free up to one (EF-1)4 if for every agent ai with bundle bi, after removing

the most valuable item from the bundle of some agent aj to obtain bundle b′j , vi(bi) ≥ vi(b
′
j). For

weakly additive utilities5 the round-robin protocol6 finds an EF-1 partition in linear time.

We consider a variant of the problem where A and R are the same set, i.e., agents define utility

functions over other agents. In the Social Choice literature the setting where agents have preferences

over all subsets of other agents, is known as hedonic games. When pairs of agents feel the same way

about one another, i.e. vi(aj) = vj(ai), the games are symmetric. When agent utilities are boolean,

then the games are boolean.

A k-partition X = (X0, . . . , Xk−1) is a collection of subsets of V where all the subsets are disjoint

3A partition is non-trivial if no part is empty.
4There is a related notion of EF-x which removes the least valuable item of the other agent’s bundle.
5A utility function is weakly additive if, for four bundles A, B, C, D with A∩C = ∅ and B∩D = ∅, A is preferable

to B and C is preferable to D then A ⊔ C is preferable to B ⊔D.
6In the round-robin protocol agents take turns picking their most prefered item.
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(i.e., Xj ∩Xj′ = ∅ for all distinct j, j′ ∈ [k]), non-empty (i.e., Xj ̸= ∅ for all j ∈ [k]), and cover all of

V (i.e., ∪j∈[k]Xj = V ). Each Xj is a part of X. We denote by X(i) the part to which agent i belongs.

Assume that n ≥ k, so a k-partition exists. A k-partition is balanced if ⌊n/k⌋ ≤ |Xj | ≤ ⌈n/k⌉ for
all j ∈ [k], and is imbalanced otherwise.

In this work, we focus on envy-free balanced k-partitions in boolean symmetric hedonic games

formally defined in Definition 13. Note that the utility of agent i for S ⊆ V is denoted by ui(S) and

we assume that utilities are additive, i.e., ui(S) =
∑
i′∈S ui(i

′) = |S ∩N(i)|.

Definition 13. For r ≥ 0, a k-partition X is envy-free up to r, denoted EF-r, if, for every pair

of agents i, i′ ∈ V , ui(X(i)) ≥ ui(X(i′) ∪ {i} \ {i′}) − r. When r = 0, we simply refer to this as

envy-freeness (EF).

Much like the Dean’s Problem, we can model the envy-free balanced partition problem with graphs

in the natural way: V = [n] is a set of agents who are members of a social network. The network

is represented by an undirected graph G = (V,E), where agents are nodes and an edge (i, i′) ∈ E
indicates friendship between agents i and i′. This induces a utility function for agent i, denoted

ui : V → {0, 1}, where ui(i′) = 1 if (i, i′) ∈ E and 0 otherwise. Let NG(i) denote the set of neighbors

of agent i in G, i.e., NG(i) = {i′ ∈ V : (i, i′) ∈ E}. dG(i) = |NG(i)| is the degree of agent i and we

omit G to write d(i) when the graph is clear from context.

Suppose that the adjacency matrix A of the graph G = (V,E), has discrepancy disc(A). Then there

exists a partition (A,B) of the vertices such that for every vertex ai ∈ A,∣∣∣∣∣∣
∑
aj∈A

ui(aj)−
∑
ak∈B

ui(ak)

∣∣∣∣∣∣ ≤ disc(A)

and similarly for every vertex in B. This means that the partition is envy-free up to disc(A) i.e.

no vertex has too many friends in the other part and no vertex has too many non-friends in the

other part either. Since only the first property is necessary for envy-free partitions, we can define a

variant of discrepancy to better model this problem.

Looking back at the definition of discrepancy, we note that in this setting every vertex corresponds

to both a set in the set-system and an element in the universe of A. Thus, for set Si corresponding

to element i, we can maximize χi · χ(S) instead of the absolute value of χ(S). Let this variant of

discrepancy be called one-sided discrepancy

sdisc(S, X) := min
χ:X→{−1,1}

max
Si∈S

χi · χ(Si).

In terms of the adjacency matrix A ∈ Rm×n,

sdisc(A) = min
t
∃χ ∈ {−1, 1}n : χi · ⟨ai, χ⟩ ≤ t for all i ∈ [m]

where a⊤1 , ...,a
⊤
m are the rows of A.
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1.3.2 Friendly Partitions

Friendly partitions are similar to envy-free partitions and have been studied in various fields under

various names. A non-exhaustive list includes: satisfactory [BTV10] or internal [BL16] partitions

in graph theory, assortative partitions [FKNSS22; BAKZ22] or offensive alliances [FFGHHKLS22]

in statistical physics, and local max-cut [CGVYZ20] in optimization among many others.

Indeed, local min-cut is a useful way to think about friendly partitions. If there exists a min-cut

where both parts contain at least two vertices, then this partition would already be 0-friendly;

Every vertex must have as many neighbors in its own part as the other or else moving the vertex

will decrease the number of edges crossing the cut. The difficulty lies with those graphs whose

min-cut has a part containing only one node.

In the simplest case, a γ-friendly partition (P1, P2) of the vertices into two non-empty parts satisfies

the following condition: for every vertex v ∈ P1, there is a lower bound on the number of neighbours

of v in P1. In particular, dP1
(v) ≥ dP2

(v) + γ. A similar requirement exists for all vertices u ∈ P2,

namely dP2
(u) ≥ dP1

(u) + γ. If (P1, P2) satisfies these inequalities for all vertices in the graph when

γ = 0, then the partition is satisfactory.

It is known that every graph has a (−2)-friendly partition by a non-constructive result of Stieb-

itz [Sti96]. The actual statement of Stiebitz’ result is more general. For any two functions a, b :

V → Z, an (a, b)-partition is a partition (A,B) such that dA(v) ≥ a(v) and dB(v) ≥ b(v). Stiebitz

showed that if d(v) ≥ a(v) + b(v) + 1 for every v ∈ V , then there exists an (a, b)-partition. By

plugging in ⌊d(v)/2⌋ − 1 for both a(v) and b(v), d(v) ≥ a(v) + b(v) + 1 is true for every v ∈ V , so

an (a, b)-partition exists and we can recover the existence of a (−2)-friendly partition.

Since then, Stiebitz’ result was made constructive by Bazgan, Tuza, and Vanderpooten [BTV07],

and extended constructively by Ban and Linial [BL16] to weighted graphs. For a weighted graph G,

dS(v) is defined to be
∑

(v,u)∈E,u∈S wv,u where wv,u is the weight of edge (v, u).

We cannot control the size of the parts in the partition resulting from the above constructive algo-

rithms. However, in many applications, including the Dean’s Problem described at the beginning,

we want the parts to be balanced. We encountered the following deceptively simple conjecture in a

prior work of Bollobás and Scott [BS02]:

Conjecture 14. Every graph has a (−2)-friendly bisection.

We leave the conjecture open and instead consider a variant of the problem pertaining to Erdös-

Rényi random graph G ∼ Gn,1/2. This follows a recent line of work by Ferber et al. [FKNSS22]

who showed constructively that, with high probability, G ∼ G(n, 1/2) has a bisection where all but

o(n) vertices are 0-friendly, answering a problem of Füredi [Gre, Problem 91]. Even more recently, a

result of Minzer, Sah, and Sawhney [MSS23] showed non-constructively that, with high probability,

even an Ω(
√
n)-friendly bisection exists, and determined the exact constant coefficient of the leading

term.

In parallel, Dandi, Gamarnik, and Zdeborová [DGZ23], extending techniques of Gamarnik and

Li [GL18], showed a similar result for random sparse graphs, where up to o(n) vertices are allowed

to buck the Ω(
√
n)-friendliness requirement. In a prior related work, Behrens et al. [BAKZ22]

showed the γ-friendliness of random d-regular graphs for a range of γ values using non-rigorous, but
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standard, tools from statistical physics. Similar questions about locally energy minimizing states of

Hamiltonians have been studied in statistical physics [ADLO19].

The above works focus on undirected graphs. In this work, we consider the γ-friendly bisection

and balanced k-partitions problem for random directed graphs (digraphs) drawn from the directed

Erdös-Rényi random graph model. Formally, our random graph model is described in Definition 15.

Definition 15 (Erdös-Rényi Digraph Model). GB(n) is a distribution on random digraphs with n

vertices. To construct G ∼ GB(n), take the complete graph on n vertices and for each of the n(n−1)

directed edges, add the edge to G independently with probability Bern(1/2). Note that G does not

have self loops.

The friendliness problem on random digraphs has received much less attention than random graphs.

Only a recent result of Anastos et al. [ACKK23], which we state later in Theorem 20, considered

anything similar.

In addition to γ-friendly bisection results, we are also the first to consider γ-friendly balanced k-

partitions for k ≥ 3 in random digraphs. Note that Bazgan, Tuza, and Vanderpooten [BTV06,

Section 5] describe three different ways of generalizing γ-friendly 2-partitions to k-parts.

Definition 16 (γ-Friendly k-Partitions). Given a graph G = (V,E) and a partition π = (P1, . . . , Pk)

of V into non-empty parts, we say that π is an

� average γ-friendly k-partition if, for every v ∈ Pi, dPi(v) ≥ 1
k−1

∑
j ̸=i dPj (v) + γ;

� max γ-friendly k-partition if, for every v ∈ Pi, dPi(v) ≥ maxj ̸=i dPj (v) + γ.

� sum γ-friendly k-partition if, for every v ∈ Pi, dPi
(v) ≥

∑
j ̸=i dPj

(v) + γ.

If k = 2, these three definitions are equivalent, so we say that v ∈ Pi is a γ-friendly vertex if

dPi
(v) ≥ dPj

(v) + γ for j ̸= i.

Unfortunately deciding if there is an average, maximum, or sum γ-friendly k-partition is NP -

complete [BTV06]. Fortunately, if we do not require the partitions to be balanced, as a consequence

of Stiebitz, we have that average satisfactory k-partition up to two can be computed in polynomial

time, i.e., there exists a k-partition where every vertex has ⌊d(v)/k⌋ − 1 neighbours in its own part.

The hardness of the other two problems up to k is yet unknown.

In the k-part case we mostly consider average γ-friendliness, and sometimes omit “average” if there

is no danger of confusion. We show that, with high probability, a graph G ∼ GB(n) has a Ω(
√
n)-

friendly balanced k-partition when k ≥ 3 which we discuss in more detail in the next section.

Again we want to know if there exists a γ-friendly balanced k-partition under each setting for directed

graphs. Under certain numerical assumption, and again using the second moment method, we will

show that average balanced friendly k-partitions exist for γ = Ω(
√
|V |) with high probability.



CHAPTER 1. INTRODUCTION 16

1.3.3 Main Results

Envy-Free Balanced Parititions

Since finding an EF-1 partition has been resolved constructively by Steibitz, Bazgan, Tuza, and

Vanderpooten, we want to use discrepancy to finding the best possible envy-free bisection in a

graph, i.e., an algorithm which finds a EF-γ partition for the largest value of γ. Here, for graph

G = (V,E), in addition to requiring that the partition (A,B) of V be envy-free up to k, we also

require that the partition has parts which are approximately of equal size i.e. ||A| − |B|| ≤ 1.

To this end, we were able to show Theorem 17 using a result from multicolor discrepancy the-

ory [HS14, Theorem 61].

Theorem 17 (Constructive Envy-Free Partitions). For any k ≥ 2, a k-partition that is EF-

O(
√

n
k ln k) is guaranteed to exist and can be computed in polynomial time.

Further, we present an algorithm which computes the EF-1 partition for trees which can be general-

ized to arbitrarily many parts as well as an algorithm which runs in polynomial time and distinguishes

if a tree is EF-0 or EF-1 when dividing the vertices into two equal parts.

Theorem 18 (Compute EF-1 Balanced k-partition in Trees). For all k ≥ 2 and every tree, we can

find a balanced EF-1 k-partition in polynomial time.

Theorem 19 (Distinguishing EF-0 and EF-1 in Trees). For k = 2 and every tree, we can distinguish

whether it has an EF-1 partition or not in polynomial time.

Friendly Blanced Partitions in Random Graphs

Our first result pertains to the existence of a γ-friendly bisection in random digraphs. It is similar

to a result of Anastos et al. [ACKK23, Theorem 1.7] stated below in Theorem 20. In Anastos et

al. the distribution D(n, p) is defined on binomial random directed graphs with n vertices and each

of whose n(n− 1) possible directed edges are present independently with probability p. Comparing

this with the distribution shown in Definition 15, we restrict p to be 1/2, but our results apply for

any constant p after a slight modification to the proofs which we will describe after the overview of

the proof procedure.

Theorem 20 (Theorem 1.7, Anastos et al.). Let pn such that npn (1− pn) → ∞. Then with high

probability D ∼ D(n, pn) has an o(1)-almost-majority bisection.

Note that an o(1)-almost-majority bisection is a balanced 2-partition where all but o(n) nodes of an

n-vertex graph have at least half of their neighbours in the opposite part, i.e., for partition (P1, P2) all

v ∈ P1 satisfies dP2(v) ≥ dP1(v) and u ∈ P2 satisfies dP1(u) ≥ dP2(u). These external, majority,dis-

assortative partitions, or local max-cuts also appear frequently in the literature [ABPW17; BDP20;

CGVYZ20].

For a graph G and its complement graph G, we note that if G contains a γ-friendly bisection, then

G contains a (γ − 1)-unfriendly bisection — corresponding to the majority bisections mentioned
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above. Let (A,B) be a majority bisection of V (G). It follows that, in G, for every vertex a ∈ A,
dA(v) ≤ dB(v) and similarly for the vertices of B. Since the parts are balanced, the number of

vertices in the two parts can differ by at most one. If dA(v) is the number of neighbours of v in G,

dA(v) = |A| − dA(v) ≥ |A| − dB(v) ≥ |B| − 1− dB(v) = dB(v)− 1.

Thus the result of Anastos et al. implies that for G ∼ D(n, pn) where |V (G)| = n, with high

probability, there exists a bisection where n(1− o(1)) nodes are −1-friendly. Compare this with our

result stated in Theorem 21. Unlike Theorem 1.7 of Anastos et al., Theorem 21 does not exclude o(n)

vertices from the (−1)-friendly requirement and is able to ensure that all vertices are (−1)-friendly.
Unfortunately, as a trade-off, our result only holds with uniformly positive probability rather than

with high probability though we believe the latter is possible with stronger tools.

Theorem 21 (γ-Friendly Bisections in Erdös-Rényi Random Digraphs). Let G ∼ GB(2n) as in Def-

inition 15. Then, for all constant integers γ ≤ −1, G has a γ-friendly bisection with uniform positive

probability. Further, with high probability, G does not have a balanced γ-friendly for integer γ ≥ 0 .

Similarly to Anastos et al., we use the second moment method, but require more delicate estimates

of the second moment in order to avoid excluding vertices. In particular, we needed to formulate

and prove a new variant of the Laplace approximation lemma. It is fairly typical that the second

moment method does not yield high probability results by itself (see e.g. [APZ19]), and strengthening

Theorem 21 to a high probability result is an interesting open problem.

Contrast Theorem 21 with Theorem 1.3 of Minzer, Sah, and Sawhney [MSS23] stated below.

Theorem 22 (Theorem 1.3, Minzer, Sah, and Sawhney). Fix ϵ > 0 and let G ∼ G(n, 1/2).

Given Assumption 23, with high probability, G has a (γcrit/
√
2 − ϵ)

√
n-friendly equipartition. Fur-

thermore, with high probability G does not have a (γcrit + ϵ)
√
n-friendly equipartition.

Assumption 23 (Assumption 1.5, Minzer, Sah, and Sawhney). For γ ∈ R, define

F1(α) := log 2− α2 + log
(
PZ∼N (0,1)

[
z ≥ (γ + α)

√
2
])
,

f(β, α) := P

[√
β

2
Z1 +

√
1− β
2

Z2 ≥ γ + α ∧
√
β

2
Z1 −

√
1− β
2

Z2 ≥ γ + α

]
,

F2(β, α1, α2) := 2 log 2− 2β log β − 2(1− β) log(1− β)− 2α2
1 − 2α2

2

+ 2β log f(β, α1) + 2(1− β) log f(1− β, α2).

Fix ϵ = 10−25 and γ ∈ [γcrit − ϵ, γcrit + ϵ]. Then we have

sup
β∈[0,0.001],α1,α2∈R

F2(β, α1, α2) = 2 sup
α∈R

F1(α)

and

sup
β∈[0.001,0.999],α1,α2∈R

F2(β, α1, α2) = 4 sup
α∈R

F1(α).

In the above notation G(n, 1/2) is the Erdös-Rényi graph with probability 1/2. Minzer, Sah, and

Sawhney showed that, with high probability a graph drawn from G(n, 1/2) has a Ω(
√
n)-friendly
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bisection. This suggests that random digraphs and random graphs have fundamental structural dif-

ferences which are particularly relevant when considering friendly bisections. In the undirected case,

the dependence among the vertices induced by the edges is enough to ensure that most graphs have

a friendly bisection where, for every vertex, many more of its neighbours are in its part as opposed

to the other one. In undirected graphs, the edges going out of different vertices are independent,

and, as a result, the best achievable friendliness is negative with high probability.

Our other contribution pertains to the three generalizations of γ-friendly bisection stated in Defi-

nition 16. For the average γ-friendly balanced k-partition problem, our result requires a numerical

assumption about the concavity of the probability of two partitions being simultaneously friendly for

the same random digraph. This probability arises naturally in the second moment calculation. See

Assumption 24. Upon first reading, it is not necessary to understand the precise statement of the

assumption. The key is to note that the constants β and γ and the functions in Equation (1.6) and

thus in Equation (1.7) only depend on k, the number of parts in the balanced partition, and not on

n, where kn is the number of vertices in the graph. In Section 5.2, we will show that Equation (1.6)

is an upper bound on the probability of two partitions with given overlap being friendly, and apply

the Laplace method on ln g(A). Assumption 24 is needed to make sure that the application of the

Laplace method is justified.

It is worth noting that such assumptions are quite common in the literature. Many of the prior

works that we build upon have similar assumptions. Sometimes these can be verified numerically,

see, e.g., Anastos et al. [ACKK23, Lemma 8.6], Minzer, Sah, Sawhney [MSS23, Assumption 1.5],

and Dandi, Gamarnik, and Zdeborová [DGZ23]. More generally, making this type of assumptions,

without or without numerical evidence, is common in applications of the second moment method,

see, e.g., [APZ19, Hypothesis 3], [PX21a, Assumption 1], [DS19, Condition 1.2]. This is because the

probabilities which appear in the second moment function are often complicated functions of the

overlaps between two variable assignments (or partitions, in our case) and it is difficult to verify their

concavity rigorously. Nevertheless, the functions in question are low dimensional, and the concavity

can be observed: see Figure 5.4 which depicts gn. Since gn can be observed to be concave, ln gn is

concave as well.

Assumption 24. For any integer k > 2 and constant δ > 0, define the function f : [0, 1] → [0, 1]

defined over the variable a as

f(a) := P [σ1Z1 + σ2Z2 ≥ (ck − δ) ∧ σ1Z1 − σ2Z2 ≥ (ck − δ)] , (1.6)

where Z1 and Z2 are standard Gaussians, ck := Φ−1
(
1− 1

k

)
, σ1 :=

√
(1+a)k−2
2(k−1) , and σ2 :=

√
(1−a)k
2(k−1) .

Further, define the function g

g (A) =
∏
i,j∈[k]

(
f(ai,j)

ai,j

)ai,j
(1.7)

defined on the k × k doubly stochastic matrix A with entry in row i and column j denoted ai,j.

The function ln g(A) has a unique maximum over the set of doubly stochastic matrices at A∗ := 1
kJ.

In order to provide some intuition for why Assumption 24 is true, we show that ln g has a local

maximum at J/k in Claim 81. Further, it is worth noting that such assumptions are often made
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in the literature, for example in the work on the capacity of the Ising perceptron [DS19; APZ19;

PX21b].

For γ-friendly balanced k-partitions we are able to show the following theorems.

Theorem 25 (Average γ-Friendly k-Partition). For any constant integer k > 2, let G ∼ GB(kn),
ck := Φ−1 (1− 1/k) where Φ is the CDF of the standard normal distribution, and σ =

√
nk

4(k−1) . If

Assumption 24 holds, then for any δ > 0, with high probability G has an average σ(ck − δ)-friendly
balanced k-partition.

Conversely, with high probability, G will not have an average σ · ck-friendly balanced k-partition.

Theorem 26 (Maximum γ-Friendly k-Partition). For constant k > 2, let G ∼ GB(kn). Then, if

γ ≥ 0, with high probability G does not have any max γ-friendly balanced k-partitions.

Theorem 27 (Sum γ-Friendly k-Partition). For constant k > 2, let G ∼ GB(kn). Then, even with

γ ≲k −n, with high probability G does not have any sum γ-friendly balanced k-partitions.

Note that Theorem 25 shows that, for any k > 2, a random digraph has, with high probability,

a balanced k-partition that is average γ-friendly for γ on the order of
√
n. Thus we observe a

transition at k = 2 for random digraphs: positive friendliness is impossible for k = 2, but quite

large positive friendliness is possible as soon as k = 3. The intuitive reason for this behaviour

is that there are many more balanced 3-partitions than balanced bisections. On the other hand,

Theorems 26 and 27 show that no positive friendliness is possible with respect to the more stringent

max and sum definitions. We prove our positive result in Theorem 25 using the second moment

method, while the three negative results follow from the first moment. There are several lemmas

associated with these theorems, but we will only state those in Chapter 5.



Chapter 2

Hereditary Discrepancy

This chapter covers a joint work with Aleksandar Nikolov [LN24].

2.1 Special Set Systems

Throughout the history of combinatorial discrepancy, several set systems played important roles

in proving or disproving certain conjectures and exhibiting tight bounds. We begin the chapter by

highlighting some of these set systems, their associated bounds and conjectures, and other properties

that they exhibit. In particular, we cover: the k-permutation matrix, the Hoffman set system, the

closely related Pálvölgi set system, and the Haar Basis matrix. In Section 2.1.1 we explain the

use of the k-permutation matrix in disproving a conjecture of Beck. In Section 2.1.2 we show how

the Hoffman and Pálvölgi set systems were used to answer a question of Sós. In this discussion, we

present a new interpretation of Pálvölgi’s set system so that proving a tight bound on its discrepancy

becomes nearly as simple as for the Hoffman set system. Finally, in Section 2.1.3, we state and

prove many properties of the Haar basis. These are used in our lower bound result, Theorem 6, and

discussed in detail in Section 2.2. We were not the first to use the Haar basis for discrepancy. That

honor goes to Kunisky [Kun23].

2.1.1 Discrepancy of k-Permutations

A k-permutation matrix is an incidence matrix with dimension kn × n. For each of k different

permutations σ1, ..., σk on [n], we define one row for each i ∈ [n] with non-zero entries σj(1), ..., σj(i)

where j ∈ [k]. We often denote such matrices by A(σ1, ..., σk). There is a simple proof1 that the

discrepancy of any two permutation matrix is at most 1. Beck conjectured that for all constant k,

1The proof is as follows. We construct a graph on the elements [n] in the universe. We assume that n is even —
add a dummy variable if this is not the case. Without loss of generality we can assume σ1 is the identity permutation.
For each permutation, each pair of adjacent indices form an edge e.g. for σ1, we get edges (1, 2), (3, 4), (5, 6), .... Note
that the degree of each node in the graph is two as it receives an incident edge from σ1 and another from σ2. Further
there are no odd cycles: the edges alternate between σ1 and σ2. It follows that we can decompose the graph into even
cycles. If we color the nodes on the cycles with alternating colors, then, regardless of the prefix of either permutation,
we can maintain a discrepancy of at most one.

20
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the discrepancy of a k-permutation matrix is also O(1), but Newman and Nikolov showed that the

discrepancy of a 3-permutation matrix is actually Ω(log n) [NNN12].

Their original proof used induction to show that a particular set of three permutations σ1, σ2, σ3

on [n] achieved disc (A(σ1, σ2, σ3)) = Ω(log n) via induction. The proof was later simplified by

Franks [Fra21] who showed that the high discrepancy sets of permutations were subsets of the

symmetric group on three elements and had a rigid hierarchical structure.

For upper-bounds, Bohus [Boh90] showed that every k-permutation has discrepancy O(k log n)

by defining constraints on blocks of m variables to have zero discrepancy. Then he found a se-

quence of O(log2k/m n) fractional colorings such that every set eventually has discrepancy at most

O(m log2k/m n). It suffices to take m = Θ(k) to get the upper-bound. Later, Spencer [SST01] was

able to improve the bound to O(
√
k log n).

2.1.2 Hoffman’s and Pálvölgi’s Set System

Hoffman’s set system is contructed from the nodes of a perfect k-ary tree of depth k, denoted Tk.

Let elements of the universe consist of the vertices V of Tk. There are two different families of sets

P and C. For every root-to-leaf path in Tk, P ∈ P consists of the vertices on that path. For every

internal node u in Tk, C ∈ C consists of the nodes which are the children of u. Our analysis of the

discrepancy of Hoffman’s set system follows the exposition of Matoušek [Mat09, Proposition 4.11].

We show that either there exists a monochromatic sibling set C ∈ C or a monochromatic root-to-leaf

path P ∈ P. If some C ∈ C is monochromatic, then we are done, so assume that none are. Suppose

the root is colored +1. Since the set of all children of the root is not monochromatic, there exists a

child of the root which is also colored +1. Take the edge from the root to this child. Repeat this

process starting from the child until we have reached a leaf. This is possible since every sibling set

C ∈ C has a node colored +1 and another colored −1.

Sós [LSV86] asked: for two set systems S1 and S2 on the same universe, is it possible to bound

disc(S1 ∪ S2) by some function of disc(S1) and disc(S2)? With Hoffman’s set system, it becomes

apparent that the answer is no. Both P and C have discrepancy ≤ 1: For P, it suffices to color a

node based on the parity of its height (i.e., even and odd parity gets colors +1 and −1 respectively)

and for C it suffices to index the nodes of Tk based on a BFS traversal and color the nodes based on

the parity of the index (i.e., even and odd parity indices gets colors +1 and −1 respectively). The

discrepancy of their union, however, is disc(P ∪C) = k. Note that Tk has kk nodes. The discrepancy

of Hoffman’s set system with respect to the number of nodes n is disc(P ∪ C) = Ω (log n/ log log n).

Pálvölgyi’s’s set system also resolves Sós’ question in the negative but does so with two sets F and

T each of whose discrepancies are ≤ 1 and whose union achieves disc(F ∪ T ) = Ω (log n) when

the underlying universe has size n. The set system, as it originally appears [Pál10], is geometric in

nature. From the exposition of Matoušek [Mat13] which aims to simplify the construction in order

to compute its discrepancy: The construction is inductive, and requires parameters k and ℓ. For

every k, ℓ ≥ 1, and ground set V of n =
(
k+ℓ
k

)
− 1 elements, there exists set system F1 = F1(V, k, ℓ),

F2 = F2(V, k, ℓ) on V such that F1 consists of k-tuples, F2 consists of ℓ-tuples and there exists a

monochromatic +1 coloring of a set in F1 or a monochromatic −1 coloring of a set in F2. We omit

the inductive definition here as it is quite involved.
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Instead, we show that Pálvölgyi’s set system is simply a “more compact” variant of Hoffman’s set

system by exploring the structure of its underlying sets. Instead of encoding all sets in the set system

as root-to-leaf paths or sibling sets as was the case in Hoffman’s Example, the sets of Pálvölgyi’s’

set system are encoded as root-to-leaf paths and sibling-like sets (including piblings2, great piblings,

and so on). We define two set systems F(k, ℓ) and T (k, ℓ) on the universe V which are the nodes

in a tree Tk,ℓ of level k and degree ℓ at the root node. T (k, ℓ) contains the root-to-leaf paths in Tk,ℓ

and F(k, ℓ) the pibling sets of Tk,ℓ.

Tk,ℓ is define recursively. The root node has ℓ children. For each internal node with c non-leaf

children, its children have degrees c, c − 1, ..., 1. Note that there are
(
k+ℓ−1
ℓ

)
nodes in Tk,ℓ since

1 +
∑ℓ
i=1

(
k−2+i
i

)
=
(
k+ℓ−1
ℓ

)
by the Hockey-stick Identity; The LHS term is the sum of the subtrees

rooted at each one of the children of the root with +1 representing the root. We label the nodes

of Tk,ℓ in a postfix manner. See Figure 2.1. Define a pibling set in Tk,ℓ as follows. Begin with any

sibling set S of an internal node p, i.e., all children of a common parent p. Walk back up the tree

from p until we hit the root. Add to S any siblings of p and its ancestors with label smaller than

those of the nodes originally in S. Observe that each pibling set consists of exactly ℓ nodes; a child

of the root has degree ℓ− c+ 1 exactly when it is the cth child with c− 1 siblings occurring before

it. F(k, ℓ) is the set of all pibling sets of Tk,ℓ.
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Figure 2.1: Example of a labelled T3,3. Note that two different pibling sets are colored: {4, 5, 6} in
solid gray and {10, 16, 18} in lined orange.

Proposition 28. (Pálvölgyi’s Set System) Let P(k, ℓ) = F(k, ℓ)∪T (k, ℓ) where F and T are the set

system described above. Then P(k, ℓ) has a monochromatic F(k, ℓ) set or a monochromatic T (k, ℓ),
i.e., monochromatic pibling set or a monochromatic root-to-leaf path in Tk,ℓ.

Proof. We consider red-blue colorings of Tk,ℓ. Suppose there does not exist a monochromatic pibling

set, i.e., none of sets in F(k, ℓ) are monochromatic. We will find a monochromatic root-to-leaf path

in T (k, ℓ), i.e., some set in T (k, ℓ) which is monochromatic. In particular, we claim that for every

node, if the node has maximum degree then it will have two children c1 and c2 such that there is a

monochromatic c1-to-leaf path and a monochromatic c2-to-leaf path of different colors. Further, for

all other nodes u, either

1. both red and blue appear as the colors of u’s piblings with smaller index (to the left), or

2Piblings are siblings of parents. Great piblings are siblings of grandparents and so on.
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2. if u’s piblings with smaller index are monochromatic, say red, either u is also red or there

exists a monochromatic blue u-to-leaf path.

Since there does not exist a monochromatic pibling set and the root has maximum degree, there must

exists a red monchromatic path from one child of the root down to a leaf and a blue monochromatic

path from another child of the root down to a leaf. Thus, regardless of the root’s color, there will be

a monochromatic root-to-leaf path. We prove the claim using induction on the node labels in Tk,ℓ.

In the base case with the node labeled one, and generally for a leaf, any single node constitutes a

monochromatic path. Consider any internal node labeled i in Tk,ℓ. Since we assign labels in postfix

order (i.e., label all the nodes in my subtree before labeling myself) we can apply the induction

hypothesis to all decendants of i as well as all piblings with smaller label — these appear to the

left of i. Either i has maximum degree or it does not. When it does not, consider the children of i

along with its piblings of smaller index. These form a pibling set. If two piblings of i have different

colors then we are done. Otherwise all of the piblings of i with smaller label have the same color,

say red. Then there must exist a child of i colored blue as no pibling set can be monochromatic (the

children of i and i’s piblings with smaller label form a pibling set). Let c be the child of i satisfying

this property with smallest index (left-most node). Since all of c’s siblings to the left are colored

red, by the induction hypothesis, there must be a monochromatic blue path from c to a root. Node

i is blue or red. If i is blue, then there exists a monochromatic blue i-to-leaf path though c. If i is

red, then it has the same color as all its piblings to the left.

When the internal i has maximum degree, let its children be c1, ..., ck. Without loss of generality,

suppose that c1 is colored red and let c2 be the first child of i colored blue; Since no pibling set

is monochromatic, such an cj must exist. There is a monochromatic red c1-to-leaf path. By the

inductive hypothesis, we know that there is also a monochromatic blue c2-to-leaf path: c2 does not

have maximum degree and all its siblings of smaller index have the same color.

Corollary 29. Let P(k, k) be Pálvölgyi’s Set System on a universe V of size n, then disc(P(k, k)) ≥
k where n =

(
2k+1
k

)
or k = Θ(log n).

2.1.3 Haar Basis

The 2k × 2k discrete Haar basis matrix, Ak, has {−1, 0,+1} entries and is defined recursively with

A0 = [1] and

Ak =

[
Ak−1 I2k−1

Ak−1 −I2k−1

]
, (2.1)

where I2k−1 is the 2k−1× 2k−1 identity matrix. This matrix arises from the following tree structure:

Construct a depth k perfect binary tree, and let r be an additional node. We make the root of the

perfect binary tree the left child of r, and let r be the root of our tree. Every non-leaf node represents

a column in the matrix while every root-to-leaf path corresponds to a row in the matrix. Whenever

the path proceeds down the left child from some node i, entry i of the corresponding row will have

value +1. If instead the path proceeds down the right child of i, entry i of the corresponding row

will have value −1. Thus every row will have k non-zero entries. It is also not hard to show that, for
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any ±1 coloring of the columns, there is a row whose nonzero entries are equal to the corresponding

column colors, and, therefore, disc(Ak) = k. Kunisky [Kun23] describes this in detail.

In addition, we define the {0, 1}2k×2k matrices A+
k and A−

k to be the indicator matrices of the

positive and negatives elements of Ak respectively. Here an indicator matrix will have one in some

entry if and only the corresponding entry of Ak is non-zero and positive, in the case of A+
k , or

negative, in the case of A−
k . Note that Ak = A+

k −A−
k . Finally define,

A±
k :=

(
A+
k

A−
k

)
. (2.2)

Lemma 30. detlb(Ak) ≤ 2.

Proof. We show that any i × i square submatrix B of Ak satisfies |det(B)| ≤ 2i. First, define

Mk(i) := maxB |det(B)| where the maximum is taken over all i × i submatrices B of Ak. We

compute Mk(i) recursively by considering the forms that all i× i submatrices of Ak can take:

1. B only contain elements from the first 2k−1 columns of Ak,

2. B only contain elements from the second 2k−1 columns of Ak, or

3. B contain elements from both the first and second 2k−1 columns of Ak.

We use the recursive formula (2.1) to analyze these cases. In the first case the resulting submatrix is

either entirely contained in Ak−1 up to rearranging rows, or contains a duplicated row. The magni-

tude of the determinant of these submatrices can be bounded above by Mk−1(i) and 0, respectively.

In the second case we note that the submatrix is a totally unimodular matrix 3 have hereditary

discrepancy at most one [Sch98]. Further, a result of Ghouila-Houri [Gho62] (TUM). To see this,

recall that the second 2k−1 columns of Ak consist of an identity matrix and its negation stacked on

top of one another. Any square submatrix is entirely contained in the identity matrix or contains

duplicated (and negated) rows. Thus the absolute value of the determinant of this kind of submatrix

is at most one. It remains to consider the third case. Let B be a submatrix of Ak with some j

columns coming from the second 2k−1 columns of Ak for 1 ≤ j < i. For any such column there

is either one or two non-zero entries, equal to 1 or −1. If there is only one non-zero entry, then

this reduces to computing Mk(i − 1) since we can perform a co-factor expansion on this column.

If there are two non-zero entries, then we can permute the rows so that they are adjacent. This

only changes the sign of the resulting determinant. Notice that the two rows are identical except for

the sign of the non-zero entries. When performing a co-factor expansion on these two entries, the

(i− 1)× (i− 1) submatrix that results when removing either row and the column is identical. Thus

|det(B)| is at most twice the absolute value of the determinant of this (i− 1)× (i− 1) submatrix.

After removing all the columns and associated rows of B from the second half of Ak in this way, we

see that |det(B)| ≤ 2jMk−1(i− j). Since, in the base case, M0(1) = 1, the claim follows.

Using a similar argument as above, we can show that the matricesA+
k andA−

k are totally unimodular

matrices (TUM). Note that, using (2.1), A+
k and A−

k can be recursively defined as A+
0 = [1],

3A matrix A is TUM if every square submatrix of A has determinant in {−1, 0, 1}. A linear systems of the form
Ax ≥ b for TUM A, integral b, and 0 ≤ x has an integral polyhedron as its feasible region.
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A−
0 = [0], and

A+
k =

[
A+
k−1 I2k−1

A+
k−1 0

]
A−
k =

[
A−
k−1 0

A−
k−1 I2k−1

]
, (2.3)

where 0 is the all zeros matrix of appropriate dimension, and I2k−1 is the 2k−1 by 2k−1 identity

matrix.

Corollary 31. A+
k and A−

k are TUM matrices where A+
k and A−

k are indicators of the positive

and negatives entries of Ak, respectively.

Proof. We only consider A+
k as the proof that A−

k is a TUM matrix is similar. The proof proceeds

by induction on k. Consider some i × i submatrix B of A+
k . If B is entirely contained in first half

of the columns of A+
k , then we are done by the inductive hypothesis; if B is entirely contained in

the second half of the columns of A+
k , then B is a submatrix of the identity matrix or has a row

of 0’s, and the absolute value of its determinant is at most 1. Thus it suffices to consider the case

where B has some columns from the first half of A+
k and some columns from the second half of A+

k .

Since any column from the second half has only one non-zero entry, equal to 1, performing co-factor

expansions on the columns in the second half shows that the absolute value of the determinant will

only be as large as the absolute value of the determinant of some smaller square sub-matrix in A+
k−1.

Note that in the base case, |det(A+
0 )| = 1.

Lemma 32. disc1(Ak) =
k+1
2k

(
k

⌊(k+1)/2⌋
) ∼= √k.

Proof. The proof for k = 0 is trivial, so we focus on the case k ≥ 1. Let Ãk denote the 2k× (2k− 1)

matrix equal to Ak with the first column, all of whose entries are 1, removed. Note that this is

equivalent to removing the root node r and keeping only the perfect binary tree of depth k in the

tree structure of the Haar basis, as described at the beginning of the section. We have the following

key claim.

Claim 33. For any x ∈ {±1}2k−1 there exists a permutation which maps the entries of Ãkx to

those of Ãk1.

Proof. Our proof is by induction on k. When k = 1,we have a root node with two children corre-

sponding to the matrix

Ã1 =

[
1

−1

]
.

When x = [1], Ã1x = Ã11 and the identity permutation suffices; when x = [−1], Ã1x = −Ã11 and

it suffices to swap the two entries.

Consider some height k perfect binary tree corresponding to Ãk. Let u be the root of the tree with

left and right children u+ and u− respectively. Since every root-to-leaf path must go through u+ or

u−, this forms a partition of the rows of Ãk. In particular, we can rearrange Ãk as

Ãk =

[
1 Ãk−1 0

−1 0 Ãk−1

]
.
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Consider the Ãk−1 submatrices which appear in Ãk. The Ãk−1 submatrix in the first 2k−1 rows

has rows which correspond to root-to-leaf paths with leaves in the subtree rooted at u+. Its columns

correspond to nodes in the same subtree. The Ãk−1 submatrix in the second 2k−1 rows is defined

similarly on the subtree rooted at u−. Write the vector x as [xu,x+,x−]
⊤ where xu is the color of the

node u and x+ and x− are the colors of the nodes in the subtrees rooted at u+ and u−, respectively.

Consider the value of xu. If xu = 1, then by the inductive hypothesis, there exists a permutation

which takes the entries of Ãk−1x+ to the entries of Ãk−11 and another permutation which takes

the entries of Ãk−1x− to the entries of Ãk−11. These two permutations can be combined to form a

permutation which maps the entries of Ãkx to the entries of Ãk1. Otherwise xu = −1. Again, there

exists a permutation π1 which takes Ãk−1x+ to Ãk−11 and another permutation π2 which takes

Ãk−1x− to Ãk−11. We can construct a permutation which maps the elements of Ãkx to those of

Ãk1 by by first applying π1 to the first 2k−1 entries of Ãkx, and π2 to the remaining 2k−1 entries,

and then swapping the first 2k−1 entries with the second 2k−1 entries.

Note that, for any x ∈ {±1}2k , disc1(Ak,x) = disc1(Ak,−x). Then, we have

disc1(Ak,x) =
1

2
(disc1(Ak,x) + disc1(Ak,−x))

By Claim 33, and, since all entries of the first column of Ak are equal to 1,

disc1(Ak,x) =
1

2k

2k∑
i=1

|ã⊤i 1+ 1|+ |ã⊤i 1− 1|
2

=
1

2k+1

2k∑
i=1

|ã⊤i 1+ 1|+ 1

2k+1

2k∑
i=1

|ã⊤i 1− 1|,

where ã⊤i is the i-th row of Ãk. Recall that each row of Ãk has exactly k non-zero entries, and every

sign pattern for these k entries appears exactly once, as each row in Ãk corresponds to a root-to-leaf

path in a depth k perfect binary tree, and the sign pattern corresponds to the sequence of left and

right turns made by the path. In particular, there are exactly
(
k
ℓ

)
rows ãi for which ã⊤i 1 equals

k − 2ℓ, since such rows have k − ℓ non-zero entries equal to +1, and ℓ non-zero entries equal to −1.
Substituting above, we have

1

2k+1

2k∑
i=1

|ã⊤i 1+ 1|+ 1

2k+1

2k∑
i=1

|ã⊤i 1− 1|

=
1

2k+1

k∑
ℓ=0

(
k

ℓ

)
|k + 1− 2ℓ|+ 1

2k+1

k∑
ℓ=0

(
k

ℓ

)
|k − 1− 2ℓ|

=
1

2k+1

k∑
ℓ=0

(
k

ℓ

)
|k + 1− 2ℓ|+ 1

2k+1

k+1∑
ℓ=1

(
k

ℓ− 1

)
|k + 1− 2ℓ|

=
1

2k+1

k+1∑
ℓ=0

((
k

ℓ

)
+

(
k

ℓ− 1

))
|k + 1− 2ℓ|

=
1

2k+1

k+1∑
ℓ=0

(
k + 1

ℓ

)
|k + 1− 2ℓ|.
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The second equality above follows by a change of variables in the second sum, the third equality

uses the convention
(
k
k+1

)
=
(
k
−1

)
= 0, and the last equality follows form Pascal’s identity.

Now, by Lemma 34 below, we have that

k+1∑
ℓ=0

(
k + 1

ℓ

)
|k + 1− 2ℓ| = 2(k + 1)

(
k

⌊(k + 1)/2⌋

)
,

which implies that disc1(Ãk) ∼=
√
k since

(
k

⌊(k+1)/2⌋
) ∼= 2k/

√
k by Stirling’s approximation.

There is a probabilistic interpretation for the above proof: For a uniformly random row a⊤ of Ãk and

a fixed coloring x ∈ {±1}2k−1, a⊤x is distributed like X1 + · · ·+Xk where the Xis are independent

Rademacher random variables (i.e. random variables uniform in {−1,+1}). Recall that uniformly

choosing a row of Ãk corresponds to uniformly choosing a root-to-leaf path in the depth k perfect

binary tree. Further, the non-leaf nodes of the tree correspond to the columns of Ãk. Thus we know

that exactly k entries of the row will be non-zero. Let the indices of these entries be U1, ..., Uk, and

note that a⊤x = xU1aU1 + · · · + xUk
aUk

. The key observation is that, conditional on the values

of U1, . . . , Uℓ, aUℓ
is equally likely to be −1 or +1, since a uniformly random path in the binary

tree going through U1, . . . , Uℓ is equally likely to visit the left or the right child of Uℓ. We can then

show that xU1aU1 + · · ·+ xUk
aUk

has the same distribution as a sum of k independent Rademacher

random variables by induction on k. In the base case, aU1 is uniform in {−1,+1}, and so is xU1aU1 .

Suppose xU1aU1 + · · · + xUk−1
aUk−1

is distributed as the sum of k − 1 independent Rademacher

random variables. Conditional on the choice of U1, . . . , Uk, aUk
, and, therefore, xUk

aUk
are equally

likely to be −1 or +1. Taking expectation over the choice of U1, . . . , Uk finishes the proof.

The next lemma is a well-known calculation. We include a proof due to Lavrov, for completeness.

Lemma 34 ([Lav18]).
∑k
ℓ=0

(
k
ℓ

)
|k − 2ℓ| = 2k ·

(
k−1
⌊k/2⌋

)
.

Proof. Recall the identity
(
k
ℓ

)
ℓ =

(
k−1
ℓ−1

)
k. We write

k∑
ℓ=0

(
k

ℓ

)
|k − 2ℓ| =

∑
ℓ<k/2

(
k

ℓ

)
(k − 2ℓ)−

∑
ℓ>k/2

(
k

ℓ

)
(k − 2ℓ)

= k

 ∑
ℓ<k/2

(
k

ℓ

)
−
∑
ℓ>k/2

(
k

ℓ

)− 2

 ∑
ℓ<k/2

(
k

ℓ

)
ℓ−

∑
ℓ>k/2

(
k

ℓ

)
ℓ


= 2k

 ∑
ℓ>k/2

(
k − 1

ℓ− 1

)
−
∑
ℓ<k/2

(
k − 1

ℓ− 1

)
= 2k

(
k − 1

⌊k/2⌋

)
.

Here, the first equality follows since
(
k
ℓ

)
(k − 2(k/2)) = 0 when k is even. The last equality follows

by consider the parity of k; when k is even, we obtain a
(
k−1
k/2

)
term after cancellation, and when k

is odd, we obtain a
(
k−1
⌊k/2⌋

)
term after cancellation.

Note that when we divide the identity by 2k, we obtain the expectation of a sum of k independent
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Rademacher random variables. The asymptotic version of this identity follows from Khintchine’s

inequality.

We see that Ak — with its decomposition into A+
k and A−

k — is another counter-example of Sós’

question that we saw in Section 2.1.2. While it matches the Ω(log n) discrepancy lower bound of

the Pálvölgyi and Newman-Neiman-Nikolov constructions, it is simpler to analyze.

Claim 35. With A±
k as described above Corollary 31,

disc
(
A±
k

)
≳ k.

Proof. Recall that disc(Ak) = k. We claim that disc(A±
k ) ≥

1
2disc(Ak), and this proves the claim.

Indeed, take any coloring x. Let a⊤ be the row of Ak achieving |a⊤x| = disc(Ak,x) and let a⊤+

and a⊤− be the corresponding rows in the copy of A+ and A− in A± respectively. Since disc(Ak) ≤
|a⊤x| = |a⊤+x− a⊤−x|, by the triangle inequality we have that either |a⊤+x| ≥ disc(Ak)/2 or |a⊤−x| ≥
disc(Ak)/2.

Finally, note another property of Ak.

Claim 36. |det(Ak)| = 22
k−1.

Proof. Ak have orthogonal columns so |det(Ak)| is equal to the product of the ℓ2-norms of columns.

Since the ith column has magnitude 22
i−1

, |det(Ak)| = 22
k−1+2k−2+···+20 = 22

k−1.

2.2 Hereditary Discrepancy

In this section we prove Theorem 6 and Theorem 7 restated below.

Theorem 5 (Matoušek [Mat13], Theorem 2). For any matrix A ∈ {0, 1}m×n,

herdisc(A) ≤ O
(
detlb(A) log(mn)

√
log n

)
. (1.4)

Theorem 6 (Hereditary Discrepancy and Detlb Lower Bound). For any real number ε ∈ (0, 1), any

integers n ≥ 2 and m ∈
[
n, 2n

1−ε
]
, there exists a matrix A ∈ {0, 1}m×n such that

herdisc(A)

detlb(A)
≳
√

logm log n. (1.5)

Theorem 7 (Hereditary Discrepancy and Detlb Upper Bound). For all positive integers m and n,

and all matrices A ∈ Rm×n, we have

herdisc(A)

detlb(A)
≲
√
n.

Recall the result of Matoušek [Mat13] mentioned in the introduction and restated here in Theorem 5.
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The crux of Matoušek’s result were a pair of inequalities:

herdisc(A) ≲ log(2mn) · hervecdisc(A) (2.4)

hervecdisc(A) ≲
√

log 2n · detlb(A) (2.5)

Recently, Jiang and Reis [JR22] were able to improve Matoušek’s result by showing that herdisc(A)
detlb(A) ≲

√
log 2m log 2n. Their work left open whether the

√
logm term can be replaced by

√
log n for large

m. In the present work, we show this is not possible for almost the entire range of m, i.e., the factor
√
logm is necessary for all m in the range n ≤ m ≤ 2n

1−ϵ

for any constant ϵ > 0. Note that when

m > 2n, the matrix contains duplicated rows whose removal will not change the value of herdisc(A)

nor detlb(A). Thus, our lower bound covers nearly all values for m.

The proof of Theorem 6 crucially relies upon the 2k × 2k Haar wavelet basis, denoted Ak, which we

discussed in Section 2.1.3. For the lower bound of Theorem 7, we provide the proof in Section 2.2.3.

We also give a simpler proof for the special case of A ∈ {0, 1}m×n in Section 2.2.4, using the theory

of VC dimension.

For the Haar Basis, we show that Ak is tight for Equation (2.5) in Section 2.2.2.

Theorem 37. With n = 2k for an integer k ≥ 1, hervecdisc(Ak) ≳
√
log n · detlb(Ak).

It is yet unknown whether Equation (2.4) is tight as Jiang and Reis improved upon Matoušek’s

bound by circumventing the inequality altogether. The resolution of this problem via an efficient

algorithm would imply new and old constructive bounds, for example, the constructive version of

Banaszczyk’s upper bound for the Beck-Fiala problem [Ban98; BDG16], and a constructive version

of Nikolov’s upper bound for Tuśnady’s problem [Nik17].

Our use of the matrix Ak is inspired by work of Kunisky [Kun23], who first used this matrix in the

context of proving discrepancy lower bounds.

2.2.1 Proof Structure

In order to prove Theorem 6 we will find a family of matrices which satisfy equation (1.5). Our

candidates will have the form PN ⊗A where PN is the 2N ×N incidence matrix of the power set,

and A is some p× p matrix with a gap between detlb(A) and disc1(A). In particular, we let A be

the Haar basis matrix used in the work of Kunisky [Kun23], and prove some properties of A in-order

to obtain the present result.

We bound detlb(PN ⊗ A) from above by showing that detlb(PN ⊗ A) ≲
√
N · detlb(A) using

standard linear algebra and Lemma 4 from [Mat13]. See Lemma 38. For our choice of A, we

will show that detlb(A) ≲ 1. We also bound disc(PN ⊗ A) ≳ N · disc1(A) using a discrepancy

amplification argument. See Lemma 39. By finding a tight lower bound on disc1(A), we obtain the

lower bound disc(PN ⊗A) ≳ N ·
√
log p. Taken together, these bounds gives us a gap on the order

of
√
N ·
√
log p between detlb(PN ⊗A) and disc(PN ⊗A).

Lemma 38. For the power matrix PN , and any real matrix A,

detlb (PN ⊗A) ≤
√
eN · detlb(A).
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Proof. Let u1, ...,uN be the columns of PN and A ∈ Rp×p. Divide the columns of PN ⊗A into N

contiguous blocks of size (2Np)×p each representing uℓ⊗A. Note that uℓ⊗A consists of 2N blocks

of A or 0 stacked on top of one another. We claim that detlb(uℓ⊗A) ≤ detlb(A). Consider an s×s
sub-matrix B of uℓ⊗A with the rows indexed by I and columns indexed by J . Note that if any row

of B is zero, then det(B) = 0 so in order for the determinant to be non-zero, the rows of B must be

parts of rows of A with columns indexed by J . If there are multiple copies of the same row of A, then

again det(B) = 0. Thus B must come from distinct rows of A with columns indexed by J . It follows

that B is actually a sub-matrix of A up to rearrangement of the rows, so |det(B)|1/s ≤ detlb(A).

Since this is true for all choices of the submatrix B, we have detlb (uℓ ⊗A) ≤ detlb(A).

Recall from [Mat13] Lemma 4, that for real matrices B1, ...,Bt each with the same number of

columns and D := maxi=1,2,...t detlb(Bi), any matrix B whose rows are copies of the rows of the

matrices Bi satisfies detlb(B) ≤ D
√
et. By applying Lemma 4 to (PN ⊗A)

⊤
with Bi = (ui ⊗A)

⊤
,

and we have that

detlb(PN ⊗A) ≤
√
eN · max

ℓ∈[N ]
detlb(uℓ ⊗A) ≤

√
eN · detlb(A).

Lemma 39. (Discrepancy Amplification). For the power matrix PN and any real matrix A,

disc(PN ⊗A) ≥ N · disc1(A)

2
.

Proof. Let A ∈ Rp×q and t := disc1(A). Consider some vector x ∈ {±1}qN composed of vectors

x(1), ...,x(N) stacked on top of each other containing p entries each. We compute ∥(PN ⊗A)x∥∞.

Note that

∥(PN ⊗A)x∥∞ = max
S⊆[N ]

∥∥∥∥∥∑
i∈S

Ax(i)

∥∥∥∥∥
∞

= max
S⊆[N ]

max
j∈[p]

∣∣∣∣∣∑
i∈S

(
Ax(i)

)
j

∣∣∣∣∣ .
From the assumption, we have 1

p∥Ax(i)∥1 ≥ t for every i ∈ [N ]. Taking an average over all choices

of i,

t ≤ 1

pN

N∑
i=1

p∑
j=1

∣∣∣∣(Ax(i)
)
j

∣∣∣∣ = 1

pN

p∑
j=1

N∑
i=1

∣∣∣∣(Ax(i)
)
j

∣∣∣∣ =⇒
N∑
i=1

∣∣∣∣(Ax(i)
)
j

∣∣∣∣ ≥ Nt
for some j ∈ [p]. With S+ = {i : (Ax(i))j > 0} and S− = {i : (Ax(i))j < 0},

Nt ≤
N∑
i=1

∣∣∣∣(Ax(i)
)
j

∣∣∣∣ = ∑
i∈S+

(
Ax(i)

)
j
−
∑
i∈S−

(
Ax(i)

)
j

=

∣∣∣∣∣∑
i∈S+

(
Ax(i)

)
j

∣∣∣∣∣+
∣∣∣∣∣∑
i∈S−

(
Ax(i)

)
j

∣∣∣∣∣
=⇒ max

{∣∣∣∣∣∑
i∈S+

(
Ax(i)

)
j

∣∣∣∣∣ ,
∣∣∣∣∣∑
i∈S−

(
Ax(i)

)
j

∣∣∣∣∣
}
≥ Nt

2
.
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Lemmas 38 and 39 together imply that

herdisc(PN ⊗A)

detlb(PN ⊗A)
≥
√
N

2
√
e
· disc1(A)

detlb(A)
.

Note that, if A ∈ Rp×q, then PN ⊗A is an (2Np)× (Nq) matrix, so
√
N is roughly

√
logm for small

enough p, where m := 2Np is the number of rows of PN ⊗A. To prove Theorem 6, we need to find

a matrix A that exhibits a large gap between disc1(A) and detlb(A). In the next section, we show

that a matrix whose columns are the discrete Haar basis vectors has this property. We bound the

hereditary discrepancy to determinant lower bound ratio for both PN ⊗Ak and PN ⊗A±
k .

Theorem 40. For the power matrix PN , the discrete Haar basis Ak, and the stacked indicator

matrix A±
k as defined in equation (2.2),

herdisc (PN ⊗Ak)

detlb (PN ⊗Ak)
≳
√
N · k, (2.6)

herdisc
(
PN ⊗A±

k

)
detlb

(
PN ⊗A±

k

) ≳
√
N · k. (2.7)

Proof. First we apply the proof structure described in the previous section to Ak. In particular,

we show that detlb(Ak) = O(1) in Lemma 30 and that disc1(Ak) ≳
√
k in Lemma 32. Applying

Lemma 38 to the first result and Lemma 39 to the second, we have that detlb (PN ⊗Ak) ≲
√
N

and disc (PN ⊗Ak) ≳ N ·
√
k. It follows that

herdisc (PN ⊗Ak)

detlb (PN ⊗Ak)
≥ disc (PN ⊗Ak)

detlb (PN ⊗Ak)
≳
√
N · k.

The process for A±
k is similar. To show an upper bound on detlb(A±

k ), use Corollary 31 where A+
k

and A−
k are shown to be TUM. Since the determinant of any square submatrix of either matrix

is at most one in absolute value, we can apply Lemma 4 of [Mat13] to A+
k and A−

k to obtain

detlb(A±
k ) = O(1). To obtain the lower bound on disc1(A

±
k ), we will recall that disc1(Ak) ≳

√
k

from Lemma 32. Note that, for any x ∈ {−1,+1}2k , by the triangle inequality

1

2k
∥Akx∥1 =

1

2k
∥(A+

k −A−
k )x∥1 ≤ 2

(
1

2k+1
∥A+

k x∥1 +
1

2k+1
∥A−

k x∥1
)
.

Therefore, disc1(A
±
k ) ≳

√
k as well. Apply Lemma 38 and Lemma 39 to detlb(A±

k ) = O(1) and

disc1(A
±1
k ) ≳

√
k respectively to obtain equation (2.7).

2.2.2 Proof

Next we prove Theorem 37, showing that Ak serves as a tight example of Equation (2.5) in [Mat13].

Proof of Theorem 37. To see this, it suffices to show that vecdisc (Ak)
2
= Ω(k). Let v0,v1, ...,vq

be the vector colors assigned to the 2k columns of Ak. Recall that Ak corresponds to a tree with

root node r, where r has no right child, and the left child is the root of a perfect binary tree of

depth k. The root to leaf paths of this tree represent rows in Ak. For any path r, t1, ..., ti from r to
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a node ti, let vti = vr +
∑i−1
j=1 atjvtj where atj is 1 if tj+1 is the left child of tj , and −1 otherwise.

We will show that there exists a root-to-leaf tk path t1, ..., tk such that ∥vtk∥
2
2 ≥ k. In particular

we show that at every internal node t, with children t+ and t−, must have ∥vt+∥2 ≥ 1 + ∥vt∥2 or

∥vt−∥2 ≥ 1 + ∥vt∥2. To see this, note that

∥vt+∥2 = ∥vt + vt∥2 = ∥vt∥2 + ∥vt∥2 + 2⟨vt,vt⟩ = ∥vt∥2 + 1 + 2⟨vt,vt⟩.

Similarly, we have that ∥vt−∥2 = ∥vt∥2+1−2⟨vt,vt⟩. The claim then follows since either ⟨vt,vt⟩ ≥ 0

or −⟨vt,vt⟩ ≥ 0. The theorem then follows from the tree interpretation of Ak.

As mentioned in Section 2.1.2 Sós which asks if the hereditary discrepancy of a union of two sets

systems is bounded above by the discrepancy of each individual set system. The Hoffman set system

(Section 2.1.2), the example of Pálvölgyi [Pál10], and the three permutations family of Newman,

Neiman, and Nikolov [NNN12] (Section 2.1.1) showed instances of constantly many set systems

where no such bounds exist.

Proof of Theorem 6. Consider the range of m in [n, n2] and
(
n2, 2n

(1−ϵ)
]
separately. In the first

interval, we let A be the matrix Ak padded with m − n rows of zeros. Here, herdisc(A)
detlb(A)

∼= log n ∼=
√
logm · log n. When m ∈

(
n2, 2n

(1−ϵ)
]
, we consider the matrix PN ⊗Ak where N = ⌊log2(m/n)⌋

and k = ⌊log2 nϵ⌋. Observe that PN ⊗Ak is an m′ × n′ matrix where m′ = 2N+k ≤ m/n1−ϵ < m

and n′ = N ·2k ≤ log2(m/n) ·nϵ ≤ n−nϵ log n since m ≤ 2n
(1−ϵ)

. We obtain A by padding PN ⊗Ak

with zero vectors so that it has exactly m rows and n columns. Note that logm ∼= N and log n ∼= k.

By Theorem 40, herdisc(A)
detlb(A) ≳

√
Nk ≳

√
logm log n, as required.

The reader might object that the matrix Ak has negative entries which would not occur for incidence

matrices of a set system. We remedy this by considering A±
k as defined in Theorem 40 instead.

2.2.3 Upper Bound on Hereditary Discrepancy

In this section we prove Theorem 7. To this end we introduce the volume lower bound on hered-

itary discrepancy, introduced by Lovász, Spencer, and Vesztergombi [LSV86], and, in a more

general setting, by Banaszczyk [Ban93], and studied by Dadush, Nikolov, Talwar, and Tomczak-

Jaegermann [DNTT18].

Let A be an m×n real matrix, and define the symmetric convex set KA := {x ∈ Rn : ∥Ax∥∞ ≤ 1}.
Let us define the volume lower bound of A, denoted volLB(A), by

volLB(A) = max
k∈[n]

max
S⊆[n],|S|=k

1

volk (KA ∩WS)
1/k

,

whereWS is the canonical subspace in the dimensions indexed by S (i.e.WS = span {ei, i ∈ S}) and
volk is the k-dimensional volume within WS , i.e., the Lebesgue measure restricted to this subspace.

We also define a dual volume lower bound by

volLB∗(A) = max
k∈[n]

max
S⊆[n],|S|=k

volk (conv(±ΠSa1, . . .±ΠSam))
1/k

c
2/k
k

,
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where ΠS is the orthogonal projection onto WS , ai
⊤ is the i-th row of A, and ck = πk/2

Γ( k
2+1)

is the

volume of the k-dimensional unit Euclidean ball.

We also need the concept of a polar set of a set K ⊆ Rn, defined as

K◦ := {y ∈ Rn : y⊤x ≤ 1 ∀x ∈ K}.

It is a consequence of the hyperplane separator theorem that for any closed convex K containing 0,

K◦◦ = K [Roc70, Section 14]. Moreover, it is clear from the definition that K ⊆ L implies L◦ ⊆ K◦.

We have the following relationship between volLB(A) and volLB∗(A).

Claim 41. For any matrix A ∈ Rm×n, volLB(A) ≍ volLB∗(A).

Proof. Let KA be defined as above, and let LA := conv(±a1, . . .± am). We claim that, for any set

S ⊆ [n], (KA ∩WS)
◦ = ΠSLA, where the polar (KA ∩WS)

◦ is taken within the subspace WS . It

is sufficient to show this for S = [n], since we can always replace A with its submatrix consisting of

the columns indexed by S. In the case S = [n], we just need to show K◦
A = LA. Notice that

KA = {x ∈ Rn : ∥Ax∥∞ ≤ 1}

= {x ∈ Rn : ⟨Ax,y⟩ ≤ 1 for all ∥y∥1 ≤ 1}

= {x ∈ Rn : ⟨x,A⊤y⟩ ≤ 1 for all ∥y∥1 ≤ 1}.

By the definition of polar, we see that KA = L◦
A as

LA = {A⊤y : y ∈ Rm where ∥y∥1 ≤ 1}.

Thus K◦
A = L◦◦

A = LA as required.

Once we have established that (KA ∩WS)
◦ = ΠSLA, we have, by the Santaló-Blaschke and the

reverse Santaló inequalities (see Chapters 1 and 8 of [AGM15]),

volk(KA ∩WS)
1/kvolk((KA ∩WS)

◦)1/k ≍ c2/kk .

This completes the proof.

The next lemma shows a relationship between volLB(A) and detlb(A) that, as far as we are aware,

has not been observed before.

Lemma 42. For any matrix A ∈ Rm×n, volLB∗(A) ≲
√
n · detlb(A).

In the proof of Lemma 42 we use the following result of Nikolov [Nik15, Theorem 10]. Closely

related results were shown earlier by Dvoretzky and Rogers [DR50, Theorem 5B] and Ball [Bal89,

Proposition 7].

Lemma 43. ([Nik15, Theorem 10]). Let m ≥ n and E ⊆ Rn be a minimum volume ellipsoid

containing the points ±a1, . . . ,±am ∈ Rn. Then there exists a set T ⊆ [m] of size n such that

|det((ai)i∈T )| ≥
√
n!

nn
voln(E)

cn
≍ n1/4e−n/2 voln(E)

cn
,
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where (ai)i∈T is the matrix with columns ai for i ∈ T , and voln is the n-dimensional Lebesgue

measure.

Note that originally in [Nik15] the theorem shows that there is a distribution on random multisets

T for which E|det((ai)i∈T )|2 = n!
nn

voln(E)2

c2n
. Since the determinant is zero unless T is a set, this

implies Lemma 43.

Proof of Lemma 42. Take some S ⊆ [n] of size k such that

volLB∗(A) =
volk(ΠSLA)1/k

c
2/k
k

,

where a⊤1 , . . . ,a
⊤
m are the rows of A, and LA := conv(±a1, . . . ± am). Applying Lemma 43 to

±ΠSa1, . . . ,±ΠSam, we have that, taking E ⊆ WS to be the smallest volume ellipsoid containing

±ΠSa1, . . . ,±ΠSam, there exists a set T ⊆ [m] of size k for which

|det((ΠSai)i∈T )| ≳ k1/4e−k/2
volk(E)

ck
≥ k1/4e−k/2 volk(ΠSLA)

ck
.

The last inequality follows because LA ⊆ E. Re-arranging and raising to the power 1/k, this gives

us that

volLB∗(A) =
volk(ΠSLA)1/k

c
2/k
k

≲
|det((ΠSai)i∈T )|1/k

c
1/k
k

≲
√
k · detlb(A),

where, in the final inequality, we used that (ΠSai)i∈T is the transpose of a k by k submatrix of

A, and we also used the estimate c
−1/k
k ≲

√
k, which follows from Stirling’s approximation. Since

k ≤ n, the result follows.

We remark in passing that the trivial inequality volk(E) ≥ volk(ΠSLA) for a k-dimensional sym-

metric convex polytope with 2m vertices ΠSLA and an ellipsoid E containing it can be improved

to volk(E) ≥
√

k
log(2m)volk(ΠSLA) when m is small, using, e.g., results of Gluskin [Glu89]. Substi-

tuting this inequality in the proof of Lemma 42 gives the bound volLB∗(A) ≲
√
log 2m · detlb(A).

The final ingredient we need for the proof of Theorem 7 is an upper bound on the hereditary dis-

crepancy of partial colorings in terms of the volume lower bound, due to Dadush, Nikolov, Tomczak-

Jaegermann, and Talwar.

Lemma 44. [DNTT18, Lemma 8]). There exist universal constants c ≥ 1 and ϵ0 ∈ (0, 1) such that

the following holds. For any closed convex set K ⊆ Rn satisfying −K = K and

n
min
k=1

min
S⊆[n]:|S|=k

volk(K ∩WS) ≥ 1,

and for any y ∈ (−1, 1)n, there exists an x ∈ [−1, 1]n with |fixed(x)| ≥ ⌈ϵ0n⌉ and x−y ∈ cK, where

fixed(x) := {i ∈ [n] : |xi| = 1}.

We are now ready to complete the proof of Theorem 7.

Proof of Theorem 7. It suffices to show that disc(A) ≲
√
n detlb(A), since this implies that for any
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submatrix B of A with k columns we also have

disc(B) ≲
√
k detlb(B) ≤

√
n detlb(A).

Using Lemma 44, we construct a sequence of partial colorings x0 = 0, . . . ,xT ∈ {−1,+1}n, where
T ≲ 1 + log1/(1−ϵ0)(n), each xt ∈ [0, 1]n, and

∥A(xt − xt−1)∥∞ ≲
√
n(1− ϵ0)t−1 detlb(A). (2.8)

To construct x1, we apply Lemma 44 to y := 0, and K := volLB(A) · KA. By the definition of

volLB(A), this K satisfies the assumption of the lemma, and we let x1 equal the x guaranteed by

the lemma. Since x1 ∈ cK = c · volLB(A) ·KA, by the definition of KA we have that

∥Ax1∥∞ ≤ c · volLB(A) ≍ volLB∗(A) ≲
√
n detlb(A),

where the last two inequalities follow, respectively, by Claim 41 and by Lemma 42. In general, to

get the bound (2.8) for xt − xt−1 for t ≥ 2, we set S := [n] \ fixed(xt−1), and apply Lemma 44

with y := ΠSx1, and K := volLB(AS) · KAS
, where AS is the submatrix of A consisting of the

columns indexed by S. If x ∈ [−1,+1]S is the partial coloring guaranteed by the lemma, we define

xt by setting its coordinates in S to equal the corresponding coordinates in x, and the remaining

coordinates to equal the corresponding coordinates in xt−1. It is straightforward to check that

fixed(xt) ≥ (1− (1− ϵ0)t)n and (2.8) hold for all t. Moreover, once t ≥ T ≥ 1 + log1/(1−ϵ0)(n), we

must have xt ∈ {−1,+1}n.

Having constructed x1, . . . ,xT , we observe that, by (2.8) and the triangle inequality,

∥Ax∥∞ ≲
√
n · detlb(B)

(
1 +

√
(1− ϵ0) +

√
(1− ϵ0)2 + · · ·

)
≍
√
n · detlb(A).

2.2.4 Upper Bound in Terms of VC Dimension

In this section we present another proof of a weak upper bound of the ratio between the hereditary

discrepancy and determinant lower bound of a matrix A using the VC dimension of A, denoted

dim(A). We introduce some terminology from stochastic processes that will appear in our proof. For

a metric space (T, d), let N (T, d, ϵ) be the covering number of T i.e. N (T, d, ϵ) is the smallest number

of closed balls with centers in T and radii ϵ whose union covers T . Further, let ∥Y ∥ψ2 be the sub-

gaussian norm of a real-valued random variable Y where ∥Y ∥ψ2
:= inf{t ≥ 0 : E exp

(
Y 2/t2

)
≤ 2}.

Finally, for a class of real-valued functions F defined on a probability space (Ω, µ), where Ω is a finite

set, we define the L2(µ) norm by ∥f∥L2(µ) :=
(∑

ω∈Ω |f(ω)|2µ(ω)
)1/2

. If µ is the uniform measure

on Ω, then we simple write L2 rather than L2(µ).

The following result is a consequence of well-known lemmas. We recount it here for completeness.

Lemma 45. For any non-constant matrix A ∈ {0, 1}m×n,

herdisc(A) ≲
√
n · dim(A).
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Proof. It is enough to prove that disc(A) ≲
√
n · dim(A) since, applying this inequality to any

submatrix B consisting of a subset of k columns from A shows that, disc(B) ≲
√
k · dim(B) ≤√

n · dim(A).

We prove that disc(A,x) ≲
√
n · dim(A) is satisfied in expectation by a uniformly random coloring

x ∈ {−1,+1}n with entries X1, X2, ...Xn which are independent Rademacher random variables (i.e.,

uniform in {−1,+1}). Let F denote the class of indicator functions defined by the rows of A, i.e.,

for every i ∈ [m], we define a function fi : [n]→ {0, 1} given by fi(j) = ai,j . We will show that

E sup
f∈F

∣∣∣∣∣ 1√
n

n∑
i=1

Xif (i)

∣∣∣∣∣ ≲√dim(F).

For each indicator function f , let the random variable Zf :=
∣∣∣ 1√

n

∑n
i=1Xif(i)

∣∣∣. Note that this differs

from the discrepancy of the row indicated by f by a multiple of
√
n, i.e., disc(A,x) =

√
n·supf∈F Zf .

Consider the random process (Zf )f∈F . We will apply Dudley’s inequality (Lemma 46) to show that

E sup
f∈F

Zf ≲
∫ 1

0

√
logN (F , L2, ϵ)dϵ. (2.9)

In order to apply Dudley’s inequality we must show that (Zf )f∈F has sub-gaussian increments. Note

that, since ∥Xi∥ψ2
≲ 1, we have

∥Zf − Zg∥ψ =
1√
n

∥∥∥∥∥
∣∣∣∣∣
n∑
i=1

Xif(i)

∣∣∣∣∣−
∣∣∣∣∣
n∑
i=1

Xig(i)

∣∣∣∣∣
∥∥∥∥∥
ψ2

≤ 1√
n

∥∥∥∥∥
n∑
i=1

Xi(f − g)(i)

∥∥∥∥∥
ψ2

≲

(
1

n

n∑
i=1

(f − g)(i)2
)1/2

,

where the second step follows from the reverse triangle inequality, and the final step by Hoeffding’s

lemma. The right hand side is ∥f−g∥L2 so when we apply Dudley’s inequality as shown in Lemma 46,

we obtain Equation 2.9.

Using Theorem 47, we bound the covering number with respect to the normalized L2 norm as

logN
(
F , L2, ϵ

)
≲ dim(F) log

(
2

ϵ

)
.

Plugging the right hand side into the integral in Equation 2.9 and integrating, E supf∈F Zf ≲√
dim(F). Recall that the discrepancy of the row indicated by f is

√
n · Zf , thus the hereditary

discrepancy is bounded above as herdisc(A) ≲
√
ndim(F), as was our goal.

Lemma 46. (Dudley’s Inequality, Remark 8.1.5 [Ver18]). Let (Xt)t∈T be a random process on a

metric space (T, d) with sub-gaussian increments i.e. there exists a K ≥ 0 such that ∥Xt −Xs∥ψ2 ≤
Kd(t, s) for all t, s ∈ T . Then

E sup
t,s∈T

|Xt −Xs| ≲ K

∫ ∞

0

√
logN (T, d, ϵ)dϵ.
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Theorem 47. (Covering Numbers via VC Dimension, 8.3.18 [Ver18]). Let F be a class of Boolean

functions on a probability space (Ω,Σ, µ). Then, for every ϵ ∈ (0, 1), we have

N
(
F , L2(µ), e

)
≤
(
2

ϵ

)C·dim(F)

for an absolute constant C.

We note that Lemma 45 can likely be improved further, for example by following the techniques of

Matoušek [Mat95], and carefully tracking constants.

To finish the proof, it remains to show a connection between VC dimension and the determinant

lower bound. To do so, we show that a matrix A ∈ {0, 1}m×n with large VC dimension must contain

a submatrix with large determinant. This submatrix is a binary version of the Hadamard matrix,

described next.

Let the 0-1 Hadamard matrix be the {0, 1} matrix obtained by applying the linear map a 7→ (a+1)/2

to all of the entries in the standard ±1 Hadamard matrix. Denote the n × n 0-1 and standard

Hadamard matrices by H̃n and Hn respectively. We prove the following.

Claim 48.
∣∣∣det(H̃n

)∣∣∣ ≥ 2−n · nn/2.

Proof. Consider Hn and suppose w.l.o.g. that its first rows is the all ones row. Add this row to all

the other rows. Observe that all the other rows now have entries in {0, 2}. Scale them down by a

factor of two. Adding one row to another does not change the determinant. Scaling a row scales the

determinant by the same amount. Since |det (Hn)| = nn/2,
∣∣∣det(H̃n

)∣∣∣ = 2−n · nn/2.

We can now finish the proof of Theorem 7 for A ∈ {0, 1}m×n. If A is a constant matrix (i.e., all

its entries are equal), the bound is trivial, so we assume otherwise. The upper bound arises from

the pair of inequalities herdisc(A) ≲
√
ndim(A) and

√
dim(A) ≲ detlb(A). The former inequality

is achieved by a random coloring, as shown in Lemma 45. The latter follows by considering the

power matrix Pdim(A), which is a submatrix of A. Since every dim(A) × dim(A) 0-1 matrix is a

submatrix of Pdim(A), we can find also find H̃dim(A) as a submatrix of Pdim(A), and, therefore, of

A. By Claim 48 we know that
∣∣∣det(H̃dim(A)

)∣∣∣ ≥ 2− dim(A) · (dim(A))
dim(A)/2

. It follows that

detlb(A) ≥
∣∣∣det(H̃dim(A)

)∣∣∣1/ dim(A)

≳
√

dim(A).

Thus, the two inequalities together give us detlb(A) ≳ herdisc(A)/
√
n as required.



Chapter 3

Linear Discrepancy

In this chapter we discuss algorithmic and the computational complexity aspects of linear discrepancy

from a joint work with Aleksandar Nikolov [LN20].

Our investigation proceeds in two directions: proving hardness results and finding both exact and

approximate algorithms to evaluate the linear discrepancy of certain matrices. For the former, we

show that linear discrepancy is NP-hard so we do not expect to find an efficient exact algorithm

in the general case. Thus for the latter, we restrict our attention to matrices with a constant

number of rows. We present a poly-time exact algorithm for matrices consisting of a single row and

matrices with a constant number of rows and entries of bounded magnitude. We also present an

exponential-time approximation algorithm for general matrices, and an algorithm that approximates

linear discrepancy to within an exponential factor.

Recall the definition of linear discrepancy in Equation (1.2) and repeated below for ease of use. For

a fixed w ∈ [0, 1]n we define lindisc(A,w) to be

lindisc(A,w) = min
x∈{0,1}n

∥A (w − x)∥∞. (3.1)

A vector w∗ which maximizes lindisc(A,w) is known as a deep-hole of A and lindisc(A) is the value

of the linear discrepancy of A with respect to this deep-hole, i.e.,

lindisc(A) = max
w∈[0,1]n

lindisc(A,w). (3.2)

Before stating our results, it is worth mentioning that linear discrepancy can also be seen as an

analogue of the covering radius in lattice theory. Let Λ ⊂ Rn be a lattice, i.e. discrete additive

subgroup of Rn, and let us choose b1, . . . ,bn to be a basis of Λ. Let B be a matrix with the bi as

its columns. The covering radius of Λ in the ℓp-norm is defined as

ρ(Λ) = max
y∈Rn

min
z∈Λ
∥y − z∥p = max

w∈Rn
min
x∈Zn

∥B · (w − x)∥p = max
w∈[0,1]n

min
x∈Zn

∥B · (w − x)∥p, (3.3)

and is independent of the basis. This definition is equivalent to the the definition of lindisc(A),

except that the minimum is over Zn rather than {0, 1}n. Haviv and Regev showed that the covering

38
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radius problem (CRP) in the ℓp-norm is Π2-hard to approximate within some fixed constant for

all large enough p [HR06], and Guruswami, Micciancio, and Regev showed it can be approximated

within a factor of 2O(n logn/ log logn) for the case of p = 2 [GMR05].

3.1 Hardness Result

In this section, we show that linear discrepancy (LDS) is NP-Hard by reducing from monotone not-

all-equal 3-SAT (MNAE3SAT) [Gol78] to each. The decision problem version of linear discrepancy

we consider is defined below.

[MNAE3SAT] Monotone Not-All-Equal 3-SAT

Let U be a collection of variables {u1, ..., un} and C be a 3-CNF with clauses {C1, ..., Cm} such
that Ci = ti,1 ∨ ti,2 ∨ ti,3 for positive literals ti,j .

Question: Does there exist a truth assignment τ : U → {T,F} such that C is satisfied and

each clause has at least one true and one false literal?

[LDS] Linear Discrepancy

Let A ∈ Qm×n be a matrix and t ≥ 0 a rational value.

Question: Is lindisc(A) ≤ t?

To see that this reduction is sound, suppose instead that C is a YES-instance of MNAE3SAT. Let

τ∗ be a satisfying truth assignment of C. Let x∗ be the indicator vector of the true variables in τ∗.

Then

disc(A) ≤
∥∥∥∥A(1

2
· 1− x∗

)∥∥∥∥
∞

=
1

2

since every clause has exactly two elements with the same truth value. Thus A is a YES-instance of

DS.

Hereditary discrepancy can be shown to be shard using the same reduction with t = 1. A NO-

instance of MNAE3SAT translates into a NO-instance of HDS since herdisc(A) ≥ disc(A) = 3
2 . A

YES-instance of MNAE3SAT translates into a YES-instance of HDS as it did for DS.

Let τ∗ be a satisfying assignment of C and x∗ be the indicator vector of the true variables. Consider

any subset of the variables U ′ ⊆ U . We will show that AU ′ , the matrix A restricted to the variables

in U ′, satisfies disc(AU ′) ≤ 1. Consider a row of AU ′ . Either the row has fewer than three or exactly

three non-zero entries. In the former case any assignment to the variables achieves discrepancy ≤ 1

for that row. In the latter case all variables in the associated clause are intact. The rows of AU ′

which have three non-zero entries correspond to a subset of the clauses in C. Since τ∗ is a satisfying

assignment of C, it must also be a satisfying assignment of this subset of clauses. Let x∗
U ′ be the

vector x∗ restricted to the variables in U ′ and 1
2 · 1U ′ be the vector 1

2 · 1 restricted to the variables

in U ′. Then

herdisc(A) ≤ max
U ′⊂U

∥∥∥∥AU ′

(
1

2
· 1U ′ − xU ′

)∥∥∥∥
∞
≤ 1

since U ′ was an arbitrary subset of U .
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Before we show that linear discrepancy is hard, we will show that the value of lindisc(A) can be

expressed using a polynomial number of bits in the bit complexity of a matrix for rational matrices.

Lemma 49. For any matrix A ∈ Qm×n, there exists a deep hole for A with bit complexity polyno-

mial in n and the bit complexity of A, and, therefore, lindisc(A) can be written in number of bits

polynomial in n and the bit complexity of A.

Proof. Let ri for i ∈ [m] be the rows of A, lindisc(A) = λA, and w∗ be a deep-hole of A. For every

x ∈ {0, 1}n there exists an i ∈ [m] and σ ∈ {−1, 1} such that σri(w
∗ − x) ≥ λA. Let bx = σri and

consider the following linear program over the variables w ∈ Rn and λ ∈ R:

Maximize: λ

Subject to: bx(w − x) ≥ λ for all x ∈ {0, 1}n

0 ≤ w ≤ 1

Let λ∗ be the optimum value of this linear program. First note that λA ≤ λ∗ since (w∗, λ) satisfies

the constraints. Next we show that λA ≥ λ∗. Suppose, towards contradiction, that λA < λ∗. Then

there exists w′ ∈ [0, 1]n such that

∥A(w′ − x)∥∞ ≥ bx(w
′ − x) ≥ λ∗ > λA

for every x ∈ {0, 1}n. Since λA = lindisc(A), we cannot have lindisc(A,w′) > λA. Thus

λ∗ = lindisc(A). Since this LP has n variables, the number of bits required to express the lin-

ear discrepancy and some deep-hole w∗ of A are polynomial in n and the bit complexity of the

largest entry of A [Sch98].

Theorem 8 (Linear Discrepancy Hardness). Given an m × n matrix A with rational entries, and

a rational number t, deciding whether lindisc(A) ≤ t, is NP-hard and is contained in the class Π2.

Proof. Note first that the fact that LDS is contained in Π2 is a straightforward consequence of

Lemma 49: the “for-all” quantifier is over potential deep holes w ∈ [0, 1]n of the appropriate

polynomially bounded bit complexity, and the “exists” quantifier is over x ∈ {0, 1}n.

Next we prove hardness. Let 3-CNF C be a MNAE3SAT instance as described above. The corre-

sponding LDS instance will be the incidence matrix A ∈ {0, 1}m×n of C: column aj of A corresponds

to variable uj and row ri of A corresponds to clause Ci, and Ai,j = 1 if and only if variable uj

appears in clause Ci. Let the target t in the LDS problem be 3
2 − ϵ for ϵ > 0 to be determined later.

Consider first that case that C is a NO-instance of MNAE3SAT i.e. for every truth assignments

τ , there exists a clause Ci whose literals all get the same truth assignment. Each x ∈ {0, 1}n

corresponds to a truth assignment. If xi = 1 (resp. xi = 0) then ui is true (resp. ui is false). Let

Cj be the clause whose literals have the same truth value. Then

lindisc(A) ≥ lindisc(A, (1/2) · 1) ≥
∣∣∣∣rj (1

2
· 1− x

)∣∣∣∣ = 3

2
>

3

2
− ϵ,

so A is a NO-instance of LDS.
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Consider next the case that C is a YES-instance of MNAE3SAT, and let τ be a satisfying assignment.

Suppose w∗ ∈ [0, 1]n is a deep-hole of A. If w∗
i = 1

2 for all i ∈ [n] then

lindisc(A) = lindisc(A, (1/2) · 1) = disc(A) ≤
∥∥∥∥A(1

2
· 1− x∗

)∥∥∥∥
∞

=
1

2

since every clause has exactly two elements with the same truth value. Thus A is a YES-instance

of LDS as long as we choose ϵ ≤ 1. Suppose then that w∗ ̸= 1
21, and let ϵ be a lower bound on the

smallest non-zero gap between w∗
i and 1/2 i.e. for all w∗

i ̸= 1
2 ,∣∣∣∣w∗

i −
1

2

∣∣∣∣ ≥ ϵ.
By Lemma 49, which implies that w∗ has polynomial bit complexity, we know that we can choose

such an ϵ of polynomial bit complexity. We will show that lindisc(A,w∗) ≤ 3
2 − ϵ by constructing a

colouring x∗. Let

x∗i =

rd(w∗
i ) if w∗

i ̸= 1
2

τ(ui) otherwise

where rd(w∗
i ) is w

∗
i rounded to the closest integer and ui is the variable corresponding to column i.

Let r be a row of matrix A with non-zero entries in columns i, j, and k. We bound the discrepancy

of row r based on the number of rounded variables Rv among {xi, xj , xk}.

Rv = 0: Since none of the variables are rounded, w∗
i = w∗

j = w∗
k = 1

2 and

|r (x∗ −w∗)| =
∣∣∣∣(x∗i − 1

2

)
+

(
x∗j −

1

2

)
+

(
x∗k −

1

2

)∣∣∣∣ = 1

2

since τ is a satisfying assignment.

Rv = 1: W.l.o.g assume that that x∗i is the rounded value and w∗
j = w∗

k = 1
2 . Then

|r (x∗ −w∗)| =
∣∣∣∣(x∗i − w∗

i ) +

(
x∗j −

1

2

)
+

(
x∗k −

1

2

)∣∣∣∣ ≤ (1

2
− ϵ
)
+ 1 =

3

2
− ϵ.

Rv = 2: W.l.o.g assume that x∗i and x∗j are the rounded values and w∗
k = 1

2 . Then

|r (x∗ −w∗)| =
∣∣∣∣(x∗i − w∗

i ) +
(
x∗j − w∗

j

)
+

(
x∗k −

1

2

)∣∣∣∣ ≤ 2 ·
(
1

2
− ϵ
)
+

1

2
=

3

2
− 2ϵ.

Rv = 3: All three values are rounded so

|r (x∗ −w∗)| =
∣∣(x∗i − w∗

i ) +
(
x∗j − w∗

j

)
+ (x∗k − w∗

k)
∣∣ ≤ 3 ·

(
1

2
− ϵ
)

=
3

2
− 3ϵ.

Since r was an arbitrary row of A, lindisc(A) = lindisc(A,w∗) ≤ 3
2 − ϵ as required. This completes

the reduction.
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3.2 Algorithms

In the following we consider restrictions and variants of linear discrepancy for which we are able to

give poly-time algorithms. The first subsection considers matrices with a single row. The second

subsection considers matrices A ∈ Zd×n with constant d and entry of largest magnitude δ. In that

case, we compute lindisc(A) in time O
(
d(2nδ)d

2
)
. The third subsection presents a poly-time 2n

approximation to lindisc(A) for A ∈ Qm×n.

3.2.1 Row Matrix

We begin by developing some intuition for the linear discrepancy of a one-row matrix,A = [a1, ..., an].

For now, let us make the simplifying assumption that the entries of A are non-negative and sorted

in decreasing order. Define the subset sums of A to be the multi-set S(A) = {s1, ..., s2n} where each
si = Ax for exactly one x ∈ {0, 1}n. Enumerate the element of S(A) in non-decreasing order, i.e.

si ≤ si+1. If ℓA = 2 · lindisc(A), then ℓA is the width of the largest gap between consecutive entries

in S(A).

Suppose Ai = [a1, ..., ai]. Let us consider how S(Ai) and lindisc(Ai) change for the first couple of

values of i. Clearly, S(A1) = [0, a1] and lindisc(A1) =
a1
2 . S(A2) is the disjoint union of S(A1) and

S(A1) shifted to the right by a2. Since a1 ≥ a2, S(A2) = [0, a2, a1, a1 + a2] where the largest gap

is of size max(a2, a1 − a2). See Figure 3.1. In general, the entries of S(Ai) consists of two copies of

S(Ai−1) with one shifted to the right by ai. The gaps in S(Ai) are gaps previously in S(Ai−1) or

between an element of S(Ai−1) and one in {ai + s : s ∈ S(Ai−1)}.

0 a1

a1 + a20 a2 a1

Figure 3.1: Obtaining S(A2) from S(A1) when a1 ≥ a2.

A similar structure occurs for general matrices with real valued entries with two caveats: (1) the

previous interval is shifted left or right depending on the sign of the current entry (negative and

positive respectively) and (2) the smallest entry of S(A) is not zero but the sum of the negative

entries in A.

Lemma 50. Suppose Ak−1 = [a1, ..., ak−1] with entries in R and |ai| ≥ |ai+1|. Let the largest gap

in S(Ak−1) be of size ℓk−1. Then, for Ak = [a1, ..., ak−1, ak] where |ak| ≤ |ai| for all i ∈ [k− 1], the

largest gap in S(Ak) is of size max(|ak|, ℓk−1 − |ak|).

Proof. Again, it is important to remember that the entries of S(Ak) are exactly those in S(Ak−1)
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along with those in {ak + s : s ∈ S(Ak−1)}. Let ℓ = max(|ak|, ℓk−1 − |ak|).

We first show that 2·lindisc(Ak) ≤ ℓ by showing that gaps between consecutive entries in S(Ak) have

size at most ℓ. If (sj , sj+1) is a consecutive pair in S(Ak−1) such that sj+1−sj > ℓ, then sj and sj+1

are no longer consecutive in S(Ak), since sj ≤ sj + ak ≤ sj+1 if ak > 0 and sj ≤ sj+1 + ak ≤ sj+1

if ak < 0. See Figure 3.2. Then, the gap given by any such pair gets split into gaps of size at most

max{|ak|, sj+1− sj − |ak|} ≤ ℓ, where the inequality holds because sj+1− sj ≤ ℓk−1. It follows that

the size of each gap in S(Ak) is at most ℓ.

sj sj+1

ak

sj sj+1sj + ak

ak

sj sj+1sj+1 + ak

0

Figure 3.2: All consecutive pairs in S(Ak−1) of size greater than |ak| will be divided into two or
more consecutive pairs in S(Ak). The red interval indicates what happens when ak > 0. The blue
interval indicates what happens when ak < 0.

Next we will show that 2 · lindisc(Ak) ≥ ℓ by producing a pair of consecutive entries in S(Ak) which

achieves gap ℓ. Suppose ℓ = |ak|. Recall that s0 is the smallest subset sum of all entries in Ak,

which equals the sum of all negative entries in Ak. Then it is easy to check that s1 equals s0 + |ak|,
where we recall that ak is the entry in Ak with minimum absolute value. Therefore, (s0, s0 + |ak|)
is a consecutive pair in S(Ak). This means that if ℓ = |ak|, then we are done, as we have produced

a pair with gap ℓ.

When ℓ = ℓk−1 − |ak| > |ak|, we split our analysis into two cases: (1) ak > 0 and (2) ak < 0.

In the former case, let (sj∗ , sj∗+1) be a consecutive pair in S(Ak−1) that achieves gap ℓk−1 and

suppose, towards a contradiction, that sj∗ + ak and sj∗+1 do not appear consecutively in S(Ak).

Then there must be some s ∈ S(Ak) such that sj∗ + ak < s < sj∗+1. Note that s cannot be an

element of S(Ak−1) since sj∗ and sj∗+1 are consecutive in S(Ak−1), so s− ak must be an element

of S(Ak−1). However, since s > sj∗ + ak, we have s − ak > sj∗ . This is a contradiction since sj∗

and sj∗+1 are consecutive entries in S(Ak−1). See Figure 3.3. Thus (sj∗ + ak, sj∗+1) must be a

consecutive pair in S(Ak).

`k−1

sj∗ sj∗ + ak sj∗+1ss− ak

Figure 3.3: Suppose ak < ℓk−1 − ak and there exists s ∈ S(Ak) such that sj∗ + ak < s < sj∗+1.
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The latter case, when ak < 0, is similar. Again there exists a pair of consecutive entries (sj∗ , sj∗+1) in

S(Ak−1) which achieves gap ℓk−1. Suppose, towards contradiction, that sj∗ and sj∗+1− |ak| do not

appear consecutively in S(Ak). Then there must be some s ∈ S(Ak) such that sj∗ < s < sj∗+1−|ak|.
Again, s cannot be an element of S(Ak−1) since sj∗ and sj∗+1 are consecutive in S(Ak−1), so s+|ak|
must be an element of S(Ak−1). However since s < sj∗+1 − |ak|, we have s+ |ak| < sj∗+1. This is

a contradiction since sj∗ and sj∗+1 are consecutive entries in S(Ak−1).

Lemma 50 has the following curious corollary.

Corollary 51. Let A = [a1, ..., an] and A′ = [|a1|, ..., |an|]. Then lindisc(A) = lindisc(A′).

Lemma 50 and Corollary 51 suggest an algorithm: replace the entries of A by their magnitudes.

Sort A. Consider each entry in turn and update the largest gap accordingly. See Algorithm 1.

Theorem 9 (Linear Discrepancy for One Row Matrix). For any matrix A ∈ R1×n, lindisc(A) can

be computed in time O(n log n).

Proof. By Corollary 51 it is sufficient to consider row matrices with non-negative entries. Suppose

that A = [a1, ..., an] is such a matrix with entries sorted in decreasing order. Algorithm 1 correctly

outputs the linear discrepancy for matrices with a single entry. Let Ai = [a1, ..., ai]. Lemma 50

gives us a recursive method for computing the largest gap in S(Ai+1) from the largest gap in S(Ai).

Since lindisc(A) is half the size of the largest gap in S(A), Algorithm 1 computes lindisc(A) as

required.

Algorithm 1: Linear discrepancy of row matrix.

Input: Matrix A ∈ Q1×n.
Output: lindisc(A).

1 for i from 1 to n do
2 A[i]← |ai|
3 sort A in decreasing order
4 ℓ← a1
5 for i from 2 to n do
6 ℓ← max(ai, ℓ− ai)
7 return ℓ

2

Thus, for any row matrix A with n elements, we can find lindisc(A) in time O(n log n). From the

geometric intuition discussed in Section 1.2, we have that finding the largest gap between any two

lattice points inA, can be computed in polynomial time. Note, however, that the task of determining

if the smallest gap is equal to zero is NP-hard [WY92]. Further, there is an intimate relationship

between oracles which approximate the smallest gap (via the Number Balancing Problem) and

oracles which approximate Minkowski’s Theorem the Shortest Vector Problem [HRRY17].

3.2.2 One Row Linear Discrepancy Rounding

Let lindisc(A) = ℓ. By the definition of linear discrepancy, for every w ∈ [0, 1]n there exists an

x ∈ {0, 1}n such that ∥A(w − x)∥∞ ≤ ℓ. In-fact, if w is not a deep-hole, there exists an x which
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satisfies ∥A(w− x)∥∞ < ℓ. However it is not obvious that finding such an x can be done efficiently

i.e. in polynomial time with respect to the bit complexity of A and n. By reducing from the subset-

sum problem, we observe that it is difficult to compute lindisc(A,w) let alone find an x which

minimizes ∥A(w − x)∥∞ ≤ ℓ.

Theorem 10 (Linear Discrepancy for One Row Matrix Approximation). For any matrix A ∈ Q1×n

and any w ∈ ([0, 1] ∩ Q)n, we can find an x ∈ {0, 1}n such that ∥A(w − x)∥∞ ≤ lindisc(A) in time

O(n log n).

Proof. To begin, let A = [a1, ..., an] for positive ai in non-increasing order. We will consider A with

arbitrary entries at the end. Let w = Aw. As before, let S(A) = [s0, ..., s2n−1] be the subset-sums

of A where each si = Ax for an x ∈ {0, 1}n and si ≤ si+1 for all i. Recall that 2 · lindisc(A) is the

largest gap between any two consecutive entries in S(A). Our algorithm will find a pair of subset

sums containing w. If we can show that the size of the interval between these two subset sums is no

more than the gap between some two consecutive entries in S(A), then the closest subset sum to w

among these two will be within lindisc(A) of w.

Just as in Algorithm 1, we refine the interval between two subset sums containing w by incrementally

adding the entries of A in decreasing order. Initially our interval is g0 = [0,
∑n
i=1 ai]. We maintain

the invariants: (1) w ∈ gi for all i, and (2) the end-points of gi are subset sums.

Suppose w ∈ gi = [u, v] and we are considering ai. If u + ai > w then set v ← min(v, u + ai).

Otherwise let u ← u + ai. Algorithm 2 computes this interval and the associated vectors u and v

representing its endpoints.

Consider the values of u and v at the end of the algorithm. We claim that the final interval [u, v]

is at most the width of some gap between two consecutive terms in S(A), the array of all subset

sums of A. Notice u = a1u1 + · · ·+ anun where u = [u1, ..., un] is an endpoint of the interval once

Algorithm 2 completes.

We partition u into maximal blocks where all entries in the same block have the same value i.e.

[u1, u2, ..., uℓ1 ], ..., [uℓr+1, uℓr+2, ..., un] such that uℓi+1 = uℓi+2 = · · · = uℓi+1 for i = 0, 1, ..., r − 1

where ℓ0 = 0.

We claim that Algorithm 2 outputs an interval containing w whose width is at most the distance

between some two consecutive entries in S(A). The proof is by induction on r, the number of blocks.

In the base case, r = 1 and there is only one block. Thus u = 0 or u =
∑
ai. In the case where

u = 0, we must have ai > w for all i ∈ [n], and v = an. Thus w ∈ [0, an] with consecutive elements

0 and an of S(A). In the latter case when u =
∑
ai, we can output w since it is already a subset

sum.

Suppose next that the claim holds for all matrices where the algorithm outputs a vector u with

k blocks, and we will show that it still holds for a matrix A whose output u has k + 1 blocks.

Let u′ = [u1, ..., uℓk+1
] and v′ = [v1, ..., vℓk+1

] be the final vectors after running the algorithm on

A′ = [a1, ..., aℓk+1
]. Further let u′ =

∑ℓk+1

i=1 aiui and v
′ =

∑ℓk+1

i=1 aivi. By the induction hypothesis,

the width of [u′, v′] is at most the distance between some two consecutive elements in the list of

subset sums of A′. The last block of u is [uℓk+1+1, ..., un]. The entries of this block are either all

zeros or all ones. Consider each case in-turn.



CHAPTER 3. LINEAR DISCREPANCY 46

First suppose uℓk+1+1 = · · · = un = 0. Since none of the ai for i = ℓk+1 + 1, ..., n were added to u,

it must be the case that u′ + ai > w for all such i. Thus the interval [u, v] = [u′,min (v′, u′ + an)]

has width at most an. Since 0 and an are consecutive in S(A), as |an| is the entry with the smallest

magnitude in A, the output interval satisfies our requirements.

Next suppose uℓk+1+1 = · · · = un = 1. It must be the case that u = u′ + aℓk+1+1 + · · · + an ≤ w.

Observe that aℓk+1
is in the kth block and so uℓk+1

= 0. Let [u′′, v′′] be our interval after processing

the k − 1st block i.e. u′′ =
∑ℓk
i=1 aiui and v′′ =

∑ℓk
i=1 aivi. Notice that since none of the entries

in the kth block were added to u′′, we must have u′′ + ai > w for all i = ℓk + 1, ..., ℓk+1. In such

cases, we always update v′′ ← min(v′′, u′′ + ai) after each such i, thus the interval [u′, v′] has width

at most aℓk+1
. Thus it suffices to show that aℓk+1+1 + · · · + an and aℓk+1

are consecutive in S(A).

First note that aℓk+1+1 + · · ·+ an ≤ aℓk+1
since u′ + aℓk+1+1 + · · ·+ an ≤ w ≤ v′ ≤ u′ + aℓk+1

. The

two subset sums then are also consecutive, since ai > aℓk+1
for all i < ℓk+1.

Now consider the case where A can have both positive and negative entries. Without loss of

generality we can assume that none of the entries are zero. Let A− = {ai ∈ A : ai < 0} and

A+ = {ai ∈ A : ai > 0}. It suffices to set u0 =
∑
a∈A−

a and v0 =
∑
a∈A+

a and let u and v

be the indicator vectors of A− and A+ respectively. The remainder of the algorithm is identical

except that the matrix should be sorted in decreasing order of magnitude and every time an element

ai ∈ A− is added to u, its entry in u should be set to zero.

Alternative proof of Theorem 10. Let A = [a1, ..., an] with a1 ≥ a2 ≥ · · · an. It turns out that the

linear discrepancy solution structure is the largest difference between ai and the sum of all smaller

elements ai+1 + · · ·+ an. The proof is by induction.

Let A(i) = [a1, ..., ai] and si,j =
∑j
k=i ak, where si+1,i = 0. Recall that by our original algorithm

ℓk = 2lindisc(A(k)) = max(ℓk−1−ak, ak). Now we will show that max(ℓk−1−ak, ak) = maxi∈[k] ai−
si+1,k.

In the base case, k = 1 and a1 = a1 − s2,1. Suppose the claim is true for integers up to k. By

in the induction hypothesis we have ℓk = maxi∈[k] ai − si+1,k. We want to show that ℓk+1 =

maxi∈[k+1] ai−si+1,k+1. By our original algorithm we know that ℓk+1 = max(ℓk−ak+1, ak+1). This

is equivalent to

max

((
max
i∈[k]

ai − si+1,k

)
− ak+1, ak+1

)
.

However note that si+1,k + ak+1 = si+1,k+1, i.e. adding up all the numbers from i + 1 to k + 1.

Further ak+1 = ak+1 + 0 = ak+1 − sk+2,k+1. Thus

ℓk+1 = max
i∈[k+1]

ai − si+1,k+1

as required. Plugging in k = n, we have that ℓn = 2 · lindisc(A) = maxi∈[n](ai − si+1,n).

3.2.3 Constant Rows with Bounded Matrix Entries

Let A ∈ Zd×n with maxi,j |Ai,j | ≤ δ. Let Z = A[0, 1]d be the zonotope of A and let T = [−nδ, nδ]d∩
Zd be the set of all integer lattice points of Z. The following algorithm computes lindisc(A) in
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Algorithm 2: Finding a close subset sum to Aw.

Input: A vector w ∈ [0, 1]n and a row matrix A = [a1, ..., an] of positive integers sorted in
increasing order.

Output: A vector x ∈ {0, 1}n such that ∥A(w − x)∥∞ ≤ lindisc(A).
1 A← sort-decreasing(A)
2 u← zeros(n)
3 v← ones(n)
4 w ← Aw, u← Au, v ← Av
5 return v if w = v
6 for k = 1..n do
7 if u+ ak > w then
8 v ← min (v, u+ ak)
9 if v = u+ ak then

10 v← copy(u)
11 v[k]← 1

12 else
13 u← u+ ak
14 u[k]← 1

15 return u if u is closer to w else v

polynomial time with respect to n for fixed d and δ. The algorithm makes use of Lemma 52 which

is stated below and proved in Section 3.4.

Lemma 52 (LEC in Higher Dimensions). Let V be a set of n points in Rd for some fixed constant

d. The LEB of V , in both ℓ2- and ℓ∞-norms, can be computed in time O(nd).

Theorem 11 (Linear Discrepancy for Matrices with Constantly Many Rows). For any matrix

A ∈ Zd×n where d is some fixed constant and maxi,j |Ai,j | ≤ δ, lindisc(A) can be computed in time

O
(
d(nδ)d

2+d
)
.

Proof. For every one of the (2nδ+1)d integral points b ∈ T , compute whether Ax = b for some x ∈
{0, 1}n using dynamic programming. This procedure generalizes dynamic programming algorithms

for knapsack and subset sum and will be outlined in the following. Let a1, ...,an be the columns of

A. Construct a matrix M with dimensions [−nδ, nδ]d × n. Cell (v, i) of M contains the indicator

[M(v − ai, i− 1) ∨M(v, i− 1)]; this corresponds to a linear combination of the first i− 1 columns

of A which adds up to v − ai or a linear combination of the first i − 1 columns which adds up

to v. The first column of M is the indicator vector for {a1}. Computing the entries of M takes

time O(2nδ)d+1. M(b, n) indicates the feasibility of Ax = b. Computing this for all b takes time

O(2nδ)d+1. Let S ⊆ T be the set of points b in Z such that Ax = b for some x ∈ {0, 1}n, and set

|S| = N .

Apply Lemma 52 to the points of S in ℓ∞-norm. The output is some radius r and point x∗ such

that the ℓ∞-ball centered at x∗ with radius r is the largest such ball with center inside the convex

hull of S not containing any points of S. Note that r is in-fact the linear discrepancy of A. Since r

and x∗ can be computed in time O(Nd), lindisc(A) can be computed in time O(2nδ)d
2+d.
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3.3 Poly-time Approximation Algorithm

Next, we prove Theorem 12 restated below.

Theorem 12 (Approximate Linear Discrepancy for Matrices). For any matrix A ∈ Qm×n, the

linear discrepancy of A can be approximated in polynomial time within a factor of 2n+1.

Recall that rd(w) is the function which rounds each coordinate of w to its nearest integer (with ties

broken arbitrarily). Let the operator norms of a matrix A be:

∥A∥p→q = max
x∈Rn\{0}

∥Ax∥q
∥x∥p

.

Note that

lindisc(A) ≤ max
w∈[0,1]n

∥A(w − rd(w))∥∞ ≤
1

2
max

z∈[−1,1]n
∥Az∥∞ =

1

2
∥A∥∞→∞.

To bound lindisc(A) from below, we show that ∥A∥∞→∞ ≤ 2n+1 · lindisc(A). This completes the

proof of the theorem, since ∥A∥∞→∞ equals the largest ℓ1 norm of any row of A, and can be

computed in polynomial time.

Let us try to interpret the statement ∥A∥∞→∞ ≤ 2n+1 · lindisc(A). Note that ∥Az∥∞ is equal to

the Minkowski P-norm ∥z∥P for P = {x : ∥Ax∥∞ ≤ 1} i.e. ∥z∥P = inf{t ≥ 0 : z ∈ tP} so

∥A∥∞→∞ = max
z∈[−1,1]n

∥Az∥∞ = max
z∈[−1,1]n

∥z∥P .

By interpreting z as the difference of two vectors x,x′ ∈ [0, 1]n we have that

∥A∥∞→∞ = max
z∈[−1,1]n

∥z∥P = max
x,x′∈[0,1]n

∥x− x′∥P .

It is an easy, and well-known fact that lindisc(A) is the smallest t such that [0, 1]n ⊆
⋃

x∈{0,1}n(x+P);
see [Mat09]. We then just need to show that the diameter of the unit hyper-cube with respect to

the Minkowski P-norm is no more than this scale-factor t times O(2n). We prove the following more

general statement.

Lemma 53. Let K be a convex symmetric polytope and S ⊂ Rn be convex. Suppose there exist N

elements x1, ..., xN ∈ S such that

S ⊆
⋃
xi

xi + tK.

Then maxx,x′∈S∥x− x′∥K ≤ 2tN .

Proof. Fix any two points x and x′ in S. Let Pi be the polytope xi + tK. Since S is convex, the

line segment λx + (1 − λ)x′ for λ ∈ [0, 1] is in S. Therefore λx + (1 − λ)x′ intersects a sequence

of polytopes Pk1 , ...,Pkr with centres xk1 , ..., xkr , such that any two consequtive polytopes in the

sequence intersect. Since the polytopes are convex, we can assume that they appear in the sequence
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at most once, so r ≤ N . By the triangle inequality we have

∥x− x′∥K = ∥(x− xk1) + (xk1 − xk2) + · · ·+ (xkr − x′)∥K
≤ ∥x− xk1∥K + ∥xk1 − xk2∥K + · · ·+ ∥xkr − x′∥K
≤ t+ 2t(N − 1) + t = 2tN

where the last inequality follows as x ∈ Pk1 , x′ ∈ Pkr , and ∥xki − xki+1∥K ≤ 2t.

Proof of Theorem 12. In Lemma 53, set K to be the parallelepiped defined by A, S = [0, 1]n,

t = lindisc(A), and {x1, ..., xN} = {0, 1}n.

3.4 Largest Empty Ball Problem

Let V be a set of n points in the plane and let ch(V ) denote the convex hull of V . The largest

empty circle problem (LEC), takes V and outputs both a radius r and point x∗ ∈ ch(V ) such that

the circle centered at x∗ with radius r is the largest empty circle not containing any point of V . We

generalize this problem to other norms and to higher dimensions as follows: V is a set of n points in

Rd, and the goal is to compute a point x∗ in ch(V ) such that x∗ + rB does not contain any point of

V , where B is the unit ball of either the ℓd2 or the ℓd∞ norm. In the following we present an algorithm

which solves this largest empty ball (LEB) problem.

Lemma 52 (LEC in Higher Dimensions). Let V be a set of n points in Rd for some fixed constant

d. The LEB of V , in both ℓ2- and ℓ∞-norms, can be computed in time O(nd).

Proof. We use the following terminology. Define a face F of the Voronoi diagram vd(V ) of V to be

a subset of Rd such that, for some S ⊆ V , and every x ∈ F , S are the points in V closest to x. In

particular, this means that any x ∈ F is equidistant from all points in S.

The algorithm of Toussaint [Tou83] computes the LEB of n points V in the plane with respect to

the ℓ2-norm as follows,

1. Compute vd(V ). Note that vd(V ) is the union of Voronoi faces of dimension k, the set of

which we denote vdk(V ), over all k = 0, ..., d− 1.

2. Compute the convex hull of V , denoted ch(V ). Let h be the number of facets of ch(V ).

3. Preprocess the points of ch(V ) so that queries of the form “Is a point x in ch(V )?” can be

answered in time O(log h). For every v ∈ vd0(V ), determine if v ∈ ch(V ). Let C1 = {v ∈
vd0(V ) : v ∈ ch(V )}.

4. Determine the intersection points of faces in vdk(V ) with faces of ch(V ) of co-dimension k, for

pairs of such faces that intersect at a unique point. Let C2 be the set of all such intersection

points.

5. For all points v ∈ C1 ∪ C2, find the largest empty circle centered at v. Output a v which

maximizes this radius.
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We find the analogue of each step for points in Rd with respect to the ℓ2-norm, and then adapt the

algorithm to the ℓ∞-norm.

In the following let N = n⌈d/2⌉. The complexity, i.e. total number of faces of every dimension, of

the ℓ2-Voronoi diagram in Rd for fixed d is O(N) and can be computed in time O(N + n log n) by

a classic result of Chazelle [Cha93]. The complexity of ch(V ) is O(N) and can also be computed in

time O(N + n log n).

To determine the set C1 of Voronoi intersection points inside the convex hull, we let H be the set of

bounding hyperplanes of ch(V ). Assume, without loss of generality, that ch(V ) contains the origin,

and, for each H ∈ H, let H− be the half-space with H as its boundary containing the origin. Then

ch(V ) =
⋂
H∈HH−. We simply test, for each Voronoi intersection point v, whether v ∈ H− for

each H ∈ H, in total time O(N). Since there are at most O(N) Voronoi intersection points, we can

find C1 in time O(N2).

To determine the set C2 of all unique intersection points of k-faces of vdk(V ) and faces of ch(V )

of co-dimension k will require solving several linear systems. Note that the points in each face

F in vdk(V ) satisfy d − k equality constraints ⟨a1,x⟩ = b1, ⟨ak,x⟩ = bk for linearly independent

vectors a1, ...ak ∈ Rd. Similarly, the points in each face of co-dimension k of ch(V ) satisfy k linearly

independent equality constraints. Since there are at most O(2dN) = O(N) faces of ch(V ), there

are at most that many faces of ch(V ) of co-dimension k. We can then go over all Voronoi faces F

of dimension k, and all faces G of ch(V ) of co-dimension k, and solve the corresponding system of

(d− k) + k = d linear equations. If the system has a unique solution, we check if that solution is in

F ∩G, and, if so, we add it to C2. Thus, for constant d, the size of C2 and the time to compute it

are bounded bounded above by O(N · 2dN) = O(N2).

In total there are at most O(N + N2) points in C1 ∪ C2 which can be computed in time O(N2).

Thus solving the largest empty ball problem in dimension d for constant d takes time O(nd).

Next we consider the largest empty ball problem in ℓ∞-norm. The convex hull remains the same, so

we just have to consider the Voronoi diagram with respect to the ℓ∞-norm. Again, constructing the

Voronoi diagram can be done in expected time O(n⌈d/2⌉ logd−1 n) using the randomized algorithm

of Boissonnat et al. [BSTY98]. Next we consider the number of intersections between the Voronoi

diagram and the convex hull. First note that Voronoi diagrams with respect to the ℓ∞-norm need

not consist of only hyperplanes and their intersections. Indeed, in Rd, for two points with the same

y-coordinate, there exists regions with affine dimension two which are equidistant to both points.

To remedy this, we assume that no two points in V have the same i-th coordinate, for any i ∈ [d].

This is without loss of generality, by perturbing the points in V slightly. It remains to consider the

complexity of each bisector in ℓ∞-norm. By Claim 54, in constant dimension d, each such bisector

can have at most O(d2) facets. Therefore, the complexity of any face of the Voronoi diagram, being

the intersection of at most d bisectors, is bounded by a function of d. Thus the bounds of the

ℓ2-norm algorithm still hold, up to constant factors that depend on d.

Claim 54. (Bound on Number of Facets of ℓ∞ Bisectors.) Let u,v ∈ Rd be such that assume that

ui ̸= vi for all i ∈ [d]. Then the bisector {x : ∥x− u∥∞ = ∥x− v∥∞} has at most O(d2) facets.

Proof. Let x be a point in the bisector at ℓ∞ distance r from u and v. Pick coordinates i and j and
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signs σ and τ in {−1,+1} such that

σi(xi − ui) = τj(xj − vj) = r. (3.4)

Moreover, let us make this choice so that either i ̸= j or σi ̸= τi. This is always possible, since,

otherwise, the assumption on u and v is violated. Then, (3.4) defines a hyperplane in Rd, namely

Hi,j,σ,τ = {x : σixi−τjxj = σiui−τjvj}. Note that there are at most
(
2d
2

)
∈ O(d2) such hyperplanes,

and each x in the bisector lies in at least one of them. Moreover, a point x in Hi,j,σ,τ lies in the

bisector if and only if it satisfies the inequalities

|xk − uk| ≤ σi(xi − ui) ∀k ∈ [d],

|xk − vk| ≤ τj(xj − vj) ∀k ∈ [d].

Thus, the bisector is the union of (d− 1)-dimensional convex polyhedra, one per each of the O(d2)

hyperplanes Hi,j,σ,τ .

3.5 Open Problems

Because of the similarity between the closest vector problem and linear discrepancy, we suspect

that linear discrepancy is also Π2-complete, and the hardness result of Theorem 8 is, in this sense,

not tight. Recall from the introduction of this chapter, we noted that Haviv and Regev showed

CRP is Π2-hard to approximate to with-in a factor of 3
2 . We conjecture that a similar hardness

of approximation result should hold for linear discrepancy. Since the publication of our paper,

Mansurangsi [Man21] showed that linear discrepancy is indeed hard to approximate to within a

factor of 9/8.

We suspect that the algorithm used to prove Theorem 9 can be generalized to matrices A ∈ Qd×n

with running time Õ(nd). This would be a substantial improvement on the O
(
d(nδ)d

2
)
running

time algorithm used to prove Theorem 11, and would be independent of the magnitude of the largest

entry of A.

It is also interesting to extend the largest empty ball algorithm from Lemma 52 to other ℓp norms,

or even arbitrary norms, given appropriate access to the norm ball. Currently, this seems rather

difficult as Voronoi diagrams with respect to the ℓp-norm for p ∈ (2,∞) are poorly behaved. For

the standard ℓ2-norm Voronoi diagram in Rd, it is the case that d+ 1 affinely independent vertices

are equidistant to exactly one point. This is no longer the case even in R3 for ℓ4-norm [IKLM95]. In

particular, there exists a set of four vertices such that the intersection of their pair-wise bisectors has

size three. The situation is even worse for general strictly convex norms. There exists such norms

where the pair-wise bisectors of a set of four points in R3 can have arbitrarily many intersections.

We currently also have no evidence that the approximation factor in Theorem 12 is tight. One

possibility is that there exists an approximation preserving reduction from the closest vector problem

in lattices to linear discrepancy. This would show that one cannot expect a significant improvement to

Theorem 12 without also improving the best polynomial time approximation to the covering radius,
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which is currently also exponential in the dimension n. On the other hand, we also conjecture that

the approximation factor in Theorem 12 can be taken to be a function of min{m,n}, or even of the

rank of the matrix A.



Chapter 4

Balanced Graph Partitions

This chapter is based on a part of a joint work with Evi Micha, Aleksandar Nikolov, and Nisarg

Shah [LMNS23].

Recall that hedonic games are partitions of agents into coalitions where the preference of each agent

only depends on the other agents in the coalition to which they belong. Such games are symmetric

and boolean if agents have boolean utilities for one another and their utilities are symmetric. Along

with restrictions on the number of coalitions, these games have been studied before under other

objectives, such as swap stability [BMM22] and Pareto optimality [CFH19]. Envy-freeness has been

studied recently in the hedonic games literature [Pet16; BY19], again with possibly negative utilities.

Another concept similar to envy-freeness is Nash-stability [BJ02; OBT12], which requires that no

agent be happier by joining another part (rather than by swapping places with an agent in another

part).1 This problem is also studied in the case where the parts are required to be of almost the same

size [BTV10]. However, since such partitions do not always exist, the literature primarily focuses

on the computational complexity of distinguishing between graphs which have partitions which are

envy-free — we recall the definition below — and those which are not.

Instead, our focus is on providing worst-case guarantees on the necessary violation of envy-freeness,

as is commonly done in the literature on fair resource allocation [LMMS04; CKMPSW19; ACIW19].

We make a connection to discrepancy theory [CST14] to establish a constructive O(
√
n) bound

though the discrepancy of the graph may be overkill. In addition to achieving the goal of distributing

each agent’s friends as evenly as possible between the parts (i.e. she will not have many more friends

in another part than her own part), the discrepancy bound also ensures that she does not have many

more friends in her own part than in any other part. The latter restriction, a flipped version of the

satisfactory partition problem, has also been studied separately as the co-satisfactory or unfriendly

partition problem [AMP90]. Manurangsi and Suksompong [MS22] use discrepancy theory in a similar

problem with n agents partitioned into k groups, but with agents having utilities over goods being

allocated to the groups, not over the other agents.

We recount the standard graph setting here: Consider a set V = [n] of agents who are members

of a social network. The network is represented by an undirected graph G(V,E), where the agents

1The two differ only when the other part consists entirely of the agent’s friends.

53
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are the nodes and an edge (i, i′) ∈ E indicates friendship between agents i and i′. This induces the

utility function of agent i, denoted ui : V → {0, 1}, where ui(i′) = 1 if (i, i′) ∈ E and 0 otherwise.

Let NG(i) denote the set of neighbors of agent i in G, i.e., NG(i) = {i′ ∈ V : (i, i′) ∈ E}. We refer

to dG(i) = |NG(i)| as the degree of agent i. We omit G when it is clear from the context.

A k-partition of V is given by X = (X0, . . . , Xk−1), where Xj ∩Xj′ = ∅ for all distinct j, j′ ∈ [k];

Xj ̸= ∅ for all j ∈ [k]; and ∪j∈[k]Xj = V . We may refer to an individual group Xj as a part. With

slight abuse of notation, we denote by X(i) the part Xj to which agent i belongs (i.e., i ∈ Xj). We

assume that n ≥ k, so a k-partition exists. The utility of agent i for S ⊆ V is denoted by, with slight

abuse of notation, ui(S). We assume that utilities are additive, i.e., ui(S) =
∑
i′∈S ui(i

′) = |S∩N(i)|.

For r ≥ 0, a k-partition X is EF-r if for every pair of agents i, i′ ∈ V , ui(X(i)) ≥ ui(X(i′) ∪ {i} \
{i′}) − r. Further, we take the ui(S) for a subset S ⊂ V to be ui(S) = dS(i). The satisfactory

partition problem asks if there exists a balanced k-partition which is EF-0.

4.1 Envy-Freeness

Before finding k-partitions which are approximately envy-free, we show that EF-1 cannot always be

guaranteed even for k = 2.

Theorem 55. Even when k = 2, a 2-partition that is EF-1 does not always exist.

Proof. Consider the K3,3,3 graph which consists of three set of three nodes each, denoted by C1 =

{c11, c12, c13}, C2 = {c21, c22, c23} and C3 = {c31, c32, c33}, respectively, and every node of each set

is adjacent to every node in the other two sets.

For the sake of contradiction, assume that X = (X0, X1) is a partition of the graph that is EF-1.

Since the graph is 6-regular, we can see that |X0| ≥ 4 and |X1| ≥ 4, as if an agent i is assigned to a

part with only at most two of its neighbours, then the other four of its neighbours are assigned to

the other part along with an agent i′ which is not neighbour of i, and then i envies i′ for more than

one agent. Without loss of generality, we assume that |X0| = 4. If X0 contains three nodes of the

same set, then we can easily see that this partition is not EF-1, as each of them is assigned to the

same group with at most one of its neighbours. As there are three sets and X0 contains four agents,

we see that two agents of the same set, say c11 and c12, are assigned to X0. Then these two agents

are in the same part along with at most two of its neighbours, while all the remaining nodes are

assigned to X1. Then, c11 and c12 envy c13 for more than one agents, which is a contradiction.

To obtain non-trivial bounds on envy-freeness for higher values of k, we turn to the discrepancy

theory literature. Intuitively, we want to color the elements of a set using k colors such that each

pre-determined subset has an approximately equal number of elements of each color. Formally, we

are given a universe Ω = [n] and a set system S = {S0, · · · , Sm−1}, where Si ⊆ [n] for each i ∈ [m].

The k-color discrepancy of a coloring χ : Ω→ [k] on the set system S is defined as

disck(S, χ) = max
j∈[k],i∈[m]

∣∣∣∣χ−1(j) ∩ Si
∣∣− |Si|/k∣∣ .
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The k-discrepancy of S is then the minimum k-color discrepancy over all χ:

disck(S) = min
χ:Ω→[k]

disck(S, χ).

Here we have that disck(S) = O(
√

n
k ln(km/n)) for any set system S and a k-coloring achieving this

bound can be computed in polynomial time [HS14, Corollary 44].

In this setting, where Ω = V = [n], a k-coloring χ : Ω → [k] induces a k-partition X given by

Xj = χ−1(j) for all j ∈ [k].2 Further, if we consider the set system S where Si = NG(i) for each

i ∈ [n] (i.e., with m = n), then we are guaranteed that agent i can have at most 2disck(S, χ)
more neighbors in any other part than in her own part, implying EF-(2disck(S, χ)). The above

discrepancy bound then immediately yields the existence of a k-partition that is EF-O(
√

n
k ln k).

However, this may not be balanced.

To fix this, we add another set Sn = V to our set system; we now have m = n + 1, which does

not asymptotically change the discrepancy bound. Now, we obtain a k-partition X that is also

approximately balanced: ||Xj | − |Xj′ || = O(
√

n
k ln k) for all j, j′ ∈ [k]. By arbitrarily moving

O(
√

n
k ln k) agents between parts, we can make it perfectly balanced, while only increasing the EF

approximation by O(
√

n
k ln k). Thus, we have Theorem 17 which states,

Theorem 17 (Constructive Envy-Free Partitions). For any k ≥ 2, a k-partition that is EF-

O(
√

n
k ln k) is guaranteed to exist and can be computed in polynomial time.

For discrepancy, the aforementioned upper bound is known to be almost tight: there is a lower bound

of Ω(
√
n/k) [HS14, Theorem 61]. However, for our “one-sided” envy-freeness guarantee, achieving

a constant approximation remains an open question.

Conjecture 56. Every graph admits an EF-2 bisection for all k ≥ 2.

4.2 Beyond Balancedness

An interesting variation of our problem is to drop the requirement of balancedness and simply seek k

non-empty groups, i.e., imbalanced k-partitions. This variation was first introduced by [GK00] and,

since then, it has been given much attention [BTV10] due to its importance to real-life applications

such as clustering [FTT04; Sha04].

In this section, we briefly consider this case and study envy-freeness for unbalanced k-partitions.

In particular, we provide a complete picture for k = 2 by making a connection to the literature on

satisfactory partitions, and point out interesting open questions for k ≥ 3.

First, we use the following result from the literature on satisfactory partitions, restated in our

framework, to establish the existence of an EF-2 imbalanced partition when k = 2.

Theorem 57. [Sti96; BTV07] Given a graph G = (V,E) and functions a, b : V → N such that

d(i) ≥ a(i) + b(i) + 1 for every i ∈ V , there exists an imbalanced 2-partition X = (X0, X1) of V

such that ui(X0) ≥ a(i) for each i ∈ X0 and ui(X1) ≥ b(i) for all i ∈ X1, and it can be computed in

polynomial time.

2Technically, we also need to ensure Xj ̸= ∅, but this is guaranteed due to the discrepancy bound.
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In our case, we use functions a(i) = b(i) = ⌊(d(i) − 1)/2⌋ for all i ∈ V . Note that these satisfy the

condition d(i) ≥ a(i)+b(i)+1. Hence, the above result allows us to efficiently compute a 2-partition

X satisfying ui(X(i)) ≥ ⌊(d(i)− 1)/2⌋ for all i ∈ V . Since there are only two parts, this also implies

that for all i, i′ ∈ V ,

ui(X(i′))− ui(X(i)) ≤ d(i)− 2 · ⌊(d(i)− 1)/2⌋

≤ d(i)− 2 · (d(i)− 2)/2 = 2,

which implies that X is EF-2.

Corollary 58. An imbalanced 2-partition that is EF-2 always exists and can be computed in poly-

nomial time.

Theorem 57 admits an extension to k > 2 parts, but in our case, this only guarantees that ui(X(i)) ≥
⌊(d(i)− k+ 1)/k⌋ for all i ∈ V [BTV07]. This does not meaningfully limit the number of neighbors

that agent i has in another part and, therefore, fails to provide a non-trivial approximation to envy-

freeness. That said, if one is interested in the slightly weaker guarantee of proportionality [Ste48],

which, in our setting, would require ui(X(i)) ≥ d(i)/k, then this would provide an additive 1-

approximation.

For the satisfactory partition problem, where the goal is to indeed minimize ui(X(i′)) − ui(X(i)),

as in the equation above, it is easy to see that an additive error of 2 is the best possible. Consider

dividing any clique with an odd number of nodes into two parts. An agent i in the smaller part

will have at least two more neighbors in the larger part than in her own part. However, this does

not hold for envy-freeness: if i envisions swapping places with an agent i′ from the other part, then

X(i′) ∪ {i} \ {i′} will only contain one more neighbor of i than X(i) does. Nonetheless, notice that

the example that is used in the proof of Theorem 55 can also be used to show that EF-1 cannot

always be guaranteed even in the imbalanced case when k = 2.

However, if we restrict our attention to trees, we can achieve EF-1 even with balanced k-partitions

for all k ≥ 2 (see Theorem 18 restated below).

Algorithm 3: EF-1 Trees

1 ∀j ∈ [k], Xj ← ∅;
2 Phase 1: for i ∈ N do
3 Xi mod k = Xi mod k ∪ i;
4 Phase 2: for ℓ = 2 to d do
5 for i ∈ N with level(i) = ℓ that is envious for more than one agents do
6 i′ ← an arbitrary child of i such that X(i′) = X(p(i));
7 X(i′) = X(i′) ∪ {i}\{i′};
8 X(i) = X(i) ∪ {i′}\{i};

9 return X = (X0, ..., Xk−1)

Theorem 18 (Compute EF-1 Balanced k-partition in Trees). For all k ≥ 2 and every tree, we can

find a balanced EF-1 k-partition in polynomial time.

Proof. We show that Algorithm 3 returns a balanced EF-1 k-partition for every tree, in polynomial
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time. The algorithm works as follows. Let d denote the depth of the tree. Without loss of generality,

suppose the tree is labelled as following. Agent 0 is at level 1, agent 1 is the left most node of level

2, agent 2 is the second leftmost node of level 1, and so on, while agent n− 1 is the rightmost node

of level d. Algorithm 3 first colors the nodes of the tree in a simple round-robin fashion to obtain

EF-2 (in fact, it achieves a discrepancy bound of 2, whereby there are at most 2 more nodes of any

color than of any other color), and then makes small edits to improve its guarantee to EF-1.

Suppose that at Line 5 of the algorithm, when ℓ = level(i), i is not envious for more than one agents.

Then, when ℓ = level(i) + 1, a child of i may be moved to the same part with i, but no child of i

that is assigned to the same part with i is removed from it, while afterwards no neighbour of i is

never moved to a different part. Hence, clearly, the partition remains EF-1 with respect to i.

Now, suppose i is envious for more than one agents. This means that before Line 4, |X(i) ∩ c(i)| =
⌊|c(i)|/k⌋ < |c(i, T )|/k, and for some i′ ̸∈ N(i), |X(i′)∩ c(i, T )| = ⌈|c(i, T )|/k⌉ and X(i′) = X(p(i)).

Then, i and one of her children that is assigned to X(i′) are swapped. Hence, i is currently assigned

to the same group with at least ⌊|c(i, T )|/k⌋+1 of her neighbours while any other part still contains

at most ⌈|c(i, T )|/k⌉ neighbours of i. Thus, at Line 5 of the algorithm, when ℓ = level(i) + 1, i is

not envious for more than one agents, and by the same reasoning as above, we have that partition

remains EF-1 with respect to i until the end of the algorithm.

Generally it is hard to distinguish between EF -0 and EF -1 graphs [BTV06], however, we show that

this is possible for trees.

Theorem 19 (Distinguishing EF-0 and EF-1 in Trees). For k = 2 and every tree, we can distinguish

whether it has an EF-1 partition or not in polynomial time.

Proof. We describe a dynamic program (DP) which distinguishes between EF-0 and EF-1 in a

balanced k-partition for any constant k in a tree T with nodes V of size n. First consider the case

for k = 2 (partitioning the nodes into two parts). See Algorithm 4. At the end, we point out the

modifications necessary in order to obtain a DP for general k.

For each non-leaf node vi in the tree, define a table Mi. Index Mi by (c0, c1, c2, d0, d1, d2). Here c0,

c1, and c2 indicate the number of children of vi in the zeroth, first, and unassigned parts while d0, d1,

and d2 indicate the number of descendants of vi in the zeroth, first, and unassigned parts excluding

the children respectively. The entryMi(c0, c1, c2, d0, d1, d2) stores true or false depending on whether

there exists an EF-0 partition of the descendants of vi matching the corresponding indices i.e. there

are c0 children in part zero, c1 children in part one, etc.

From Mi, we construct a set Si which contains the summary of all possible partitions of vi. Each

entry of Si takes the form (s, p0, p1, p2). It indicates the partition of the subtree rooted at vi

and the number of descendants(including children) of vi in the zeroth, first, and unassigned parts

respectively. In particular, define Si as follows. Let c(i, T ) be all children of vi. For all true entries

Mi(c0, c1, c2, d0, d1, d2) where c0 + c1 + c2 = |c(i, T )|,

� if c0 + c2 > c1 + 1, add (+1, c0 + c2 + d0 + d2, c1 + d1, 0) to Si. In this case at least one more

than half of the children of i can be in the first part, so i can be in the first part as well. All

previously unassigned children, and thus descendants, of i will be put into the first part.
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Algorithm 4: Distinguishing EF-0 and EF-1 in a Balanced 2-partition for Trees

1 v1 ← root of T ;
2 summarize-node(v1);
3 for (s, p0, p1, p2) ∈ v1.S do
4 if s = +1 and |p0 + 1− p1| ≤ 1 then
5 return True;
6 else if s = −1 and |p1 + 1− p0| ≤ 1 then
7 return True;
8 else if s = 0 and (|p0 + 1 + p2 − p1| ≤ 1 or |p1 + 1 + p2 − p0| ≤ 1) then
9 return True;

10 return False;

11 Function(SummarizeNode(v: node)) if v has only leaf nodes as children then
12 return v.S = {(+1, |Cv(T )|, 0, 0), (−1, 0, |Cv(T )|, 0)};
13 nc ← number of children of v;
14 nd ← number nodes in the subtree rooted at v;
15 v.M ← zeroes(nc, nc, nc, nd, nd);
16 v.M(0, 0, 0, 0, 0, 0)← True;
17 for u ∈ Cv(T ) do
18 summarize-node(u);
19 for v.M(c0, c1, c2, d0, d1, d2) = True and c0 + c1 + c2 + d0 + d1 + d2 maximal and

(s, p0, p1, p2) ∈ u.S do
20 if s = +1 then
21 v.M(c0 + 1, c1, c2, d0 + p0, d1 + p1, d2)← True;
22 else if s = −1 then
23 v.M(c0, c1 + 1, c2, d0 + p0, d1 + p1, d2)← True;
24 else if s = 0 then
25 v.M(c0, c1, c2 + 1, d0 + p0, d1 + p1, d2 + p2)← True;

26 v.S = ∅;
27 for v.M(c0, c1, c2, d0, d1, d2) = True and c0 + c1 + c2 = |Cv(T )| do
28 if c0 + c2 > c1 + 1 then
29 add (+1, c0 + c2 + d0 + d2, c1 + d1) to v.S;
30 if c1 + c2 > c1 + 1 then
31 add (−1, c0 + d0, c1 + c2 + d1 + d2) to v.S;
32 if c0 + c2 = c1 or c0 + c2 + 1 = c1 or c1 + c2 = c0 or c1 + c2 + 1 = c0 then
33 add (0, c0 + d0, c1 + d1, c2 + d2) to v.S;
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� if c1 + c2 > c0 +1, add (−1, c0 + d0, c1 + d1 + c2 + d2, 0) to Si for reasons similar to the above.

� if c0+ c2 = c1, c0+ c2+1 = c1, c1+ c2 = c0, or c1+ c2+1 = c0 add (0, c0+d0, c1+d1, c2+d2)

to Si. Here, the part containing i determines the part of its unassigned ancestors must belong

to. At the same time, the parent of i might determine the part of i since i could have an equal

number children in the zeroth and first part. Thus we temporarily leave i (and its unassigned

descendants) unassigned.

Note that for every true if-statement above we add the corresponding entry to Si. Thus we could

add at most two entries to Si for every entry of Mi.

In the base case, let i be a node with |c(i, T )| children all leaves. Then it suffices to construct the

summary Si directly,
Si = {(+1, |c(i, T )|, 0, 0), (−1, 0, |c(i, T )|, 0)}.

Generally, for a vertex i with nc = |c(i, T )| children, where each child u has and associated summary

Su, we construct the table Mi as follows. Initially, set Mi(0, 0, 0, 0, 0) to true. For u ∈ |c(i, T )|,
consider each entry in Su with every trueMi(c0, c1, c2, d0, d1, d2). For a particular (s, p0, p1, p2) ∈ Su,

� if s = +1, then Mi(c0 + 1, c1, c2, d0 + p0, d1 + p1, d2) is true. Since s ̸= 0, p2 = 0.

� similarly, if s = −1, then set Mi(c0, c1 + 1, c2, d0 + p0, d1 + p1, d2) to true.

� if s = 0, then set Mi(c0, c1, c2 + 1, d0 + p0, d1 + p1, d2 + p2) to true.

Let v1 be the root of T . To determine if T has a balanced EF-0 2-partition, consider all entries

(s, p0, p1, p2) of S1. If s = +1 and |c0+1− c1| ≤ 1 or if s = −1 and |c1+1− c0| ≤ 1, then a balanced

EF-0 2-partition exists (recall that in both these cases c2 = 0). If s = 0, then if |c0+1+ c2− c1| ≤ 1

or |c1 + 1 + c2 − c0| ≤ 1 then a balance EF-0 2-partition exists.

We use induction to show the correctness of this algorithm. The base case is true by inspection. To

show that the recurrence (from the summaries Su of the children u of vi to the summary of vi) is

valid, let |c(i, T )| = nc as above.

Suppose each Svj contains all the possible EF-0 partitions of the sub-tree SB(vj) rooted at vj for

each vj ∈ c(i, T ). We show that every valid EF-0 partition of the sub-tree SB(vi) rooted at vi can be

formed from the Svj s. Consider an EF-0 partition of SB(vi), denoted χi : V (SB(vi))→ {+1,−1}.
Wlog. assume that χ(vi) = 1. For all children vj ∈ c(i, T ), such that χ(vj) = −1, χ restricted to

SB(vj), denoted as χ|vj , is a valid EF-0 partition so appears in Svj . Next consider those vj ∈ c(i, T ),
such that χ(vj) = 1. If half or more of the children of vj are assigned 1 by χ, then again χ is a

valid EF-0 partition restricted to SB(vj) and χ|vj must appear in Svj . Thus it remains to consider

the case where fewer than half of the children of vj are assigned 1 by χ. Since χ is a valid EF-0

partition for SB(vi), it must be the case that number of children of vj assigned 1 by χ is less than

or equal to ⌊|c(j, T )|/2⌋ + 1. Construct a EF-0 partition of SB(vj) by taking χ|vi and unassigning

vj . Further, recursively unassign all descendants of vj which no longer belong to the same part as

at least half of its neighbors. Note that this EF-0 partition appears in Svj . Since the restriction of

χ to SB(vj) appears in each Svj for each child vj ∈ c(i, T ) and all unassigned nodes are eventually

put in the same part as their parent, we see that χ will appear as a valid EF-0 partition in Svi .
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Note that |Si| ≤ 2n4 for every vertex vi. Filling out each entry of Mi requires looking at all n6

entries of Mi and comparing them to the values in Si, the summary of child u ∈ c(i, T ) of vi. The

running time for this is at most 2n10. Since we do this for every node in the tree, the total running

time is O(n11).

In order to transform the above into a DP for k > 2, we need to make the following changes to

Mi and Si. Let Mi have entries indexed by (c0, ..., ck, d0, ..., dk) where cj indicates the number of

children of vi in part j (independent of the part containing vi) and dj is the number of descendants

in part j not counting the children. As before, ck counts the number of unassigned children and

dk counts the number of unassigned descendants not counting the children of vi. Similarly, for Si,
entries are of the form (s, p0, p1, ..., pk) where s ∈ {0, ..., k − 1} indicates the part containing vi (0

means that vi is unassigned) and pk indicates the number of descendants in part j (dk is the number

of unassigned descendants of vi).

The process for constructing the summaries Si and filling out the tables Mi is also similar to the

k = 2 case. Suppose that Mi is filled out. For every true entry Mi(c0, ..., ck, d0, ..., dk) where

c0 + · · ·+ ck = |c(i, T )|,

� if cℓ∗ + u > cℓ + 1 for every ℓ ̸= ℓ∗, add (ℓ∗, c0 + d0, ..., cℓ∗ + dℓ∗ + dk, ..., ck−1 + dk−1, 0) to Si.

� if cℓ∗ +ck = cℓ or cℓ∗ +ck = cℓ+1 for every ℓ ̸= ℓ∗, then add (0, c0+d0, ..., ck−1+dk−1, ck+dk)

to Si.

Suppose c(i, T ) are the children of i and Su is the summary corresponding to u ∈ c(i, T ). Consider
every entry (s, p0, ..., pk) of Su. For each such entry, consider every Mi(c0, ..., ck, d0, ..., dk) which is

true. If s = j for j ≥ 1, set Mi(c0, ..., cj + 1, ..., ck, d0 + p0, ..., dj + pj + pk, ..., dk−1 + pk−1, dk) to

true. If s = 0, then set Mi(c0, ..., cj , ck +1, d0 + p0, ..., dk−1 + pk−1, dk + pk) to true. To determine if

an EF-0 balanced k-partition of the tree exists, consider every entry (s, p0, p1, ..., pk) of S1 where v1

is the root. For every entries whose s ≥ 1, if |ds + 1− dj | ≤ 1 for every j ̸= s, then such a partition

exist. If s = 0, then if there exists an j such that |dj + 1+ dk − dℓ| ≤ 1 for every ℓ ̸= j, then such a

partition exists. Note that the running time of this algorithm is on the order of O(n2k+7).

4.3 Open Problems

In this chapter, we considered the problem of partitioning n agents into k almost equal-sized groups,

when the agents have binary preferences, induced by a social network. We designed algorithms

which approximately satisfy the envy-free fairness guarantees. We leave open the questions: Does

an EF-2 partition always exist?

There are natural ways to extend our model. One can consider more general preferences than

symmetric and binary. Symmetric weighted preferences are particularly interesting as while one can

verify that our positive result of min 2-cut carries over this case, our guarantees of min k-cut for

k ≥ 3 are not easily expandable beyond the binary case. Moreover, if the agents are described by a

number of attributes, the construction of fair and diverse groups is another interesting direction.



Chapter 5

Balanced Friendly Partitions in

Random Graphs

In this chapter we cover another joint work with Aleksandar Nikolov currently in submission. In

particular, we prove Theorem 21, Theorem 25, Theorem 26, and Theorem 27 where γ-friendly k-

partitions are defined in Definition 16 for undirected graphs. Suppose instead that G is a directed

graph. Then, these definitions can be extended to apply to G by replacing the number of neighbours

of v ∈ V (G) in the set P ⊆ V (G), denoted dP (v), by the number of out-neighbours of the vertex v

in P . With a slight abuse of notations, we will also use dP (v) to represent this value when dealing

with directed graphs. Finally, note that a partition is balanced if no two of its parts differ by more

than one in size.

Definition 16 (γ-Friendly k-Partitions). Given a graph G = (V,E) and a partition π = (P1, . . . , Pk)

of V into non-empty parts, we say that π is an

� average γ-friendly k-partition if, for every v ∈ Pi, dPi
(v) ≥ 1

k−1

∑
j ̸=i dPj (v) + γ;

� max γ-friendly k-partition if, for every v ∈ Pi, dPi
(v) ≥ maxj ̸=i dPj

(v) + γ.

� sum γ-friendly k-partition if, for every v ∈ Pi, dPi
(v) ≥

∑
j ̸=i dPj

(v) + γ.

If k = 2, these three definitions are equivalent, so we say that v ∈ Pi is a γ-friendly vertex if

dPi
(v) ≥ dPj

(v) + γ for j ̸= i.

We restate the theorems below for ease of use. Input graphs to these theorems are drawn from the

Erdös-Rényi digraph random graph model defined in Definition 15.

Definition 15 (Erdös-Rényi Digraph Model). GB(n) is a distribution on random digraphs with n

vertices. To construct G ∼ GB(n), take the complete graph on n vertices and for each of the n(n−1)

directed edges, add the edge to G independently with probability Bern(1/2). Note that G does not

have self loops.

Further, for random graphs, we want to know if they contain average balanced γ-friendly k-partitions.

61
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Theorem 21 (γ-Friendly Bisections in Erdös-Rényi Random Digraphs). Let G ∼ GB(2n) as in Def-

inition 15. Then, for all constant integers γ ≤ −1, G has a γ-friendly bisection with uniform positive

probability. Further, with high probability, G does not have a balanced γ-friendly for integer γ ≥ 0 .

The proof of Theorem 21 makes use of a corresponding result for graphs drawn from a Gaussian

random graph model, GN (2n). See Definition 59.

Definition 59. (Gaussian Graph Model). GN (n) is a distribution on random digraphs with n

vertices. To construct G ∼ GN (n), take the complete graph on n vertices and for each of the n(n−1)

directed edges, add the edge with edge-weight drawn independently and identically from the Gaussian

distribution N (1/2, 1/4).

In particular we show Lemma 60 and use local limit results to approximate G ∼ GB(2n) using

G ∼ GN (2n) with high accuracy in order to prove Theorem 21.

Lemma 60. Let G ∼ GN (2n) as in Definition 59. For any δ > 0, if we define γ := −1/2− δ, then
G has a γ-friendly bisection w.u.p.p. Further, w.h.p, G is not γ-friendly when γ ≥ −1/2.

In order to extend Theorem 21 to the random graph model in Definition 15 with p ̸= 1/2 satisfying

np(1 − p) → ∞, it suffices to define a random Gaussian graph model similar to Definition 59 with

edge weights of the complete digraph drawn from N (p, p(1 − p)). Then we can prove a version

of Lemma 60 where G ∼ GN (2n) for this modified graph model. The current proof of Lemma 60

can be reused with only slight modifications to serve this purpose. Going forward, we focus on the

case where p = 1/2.

The structure of proving a result for G ∼ GB(n) by first proving a result for G ∼ GN (n) will be a

reoccurring motif in our other theorems.

For Theorem 25, we will additionally need Assumption 24 as discussed in the introduction.

Assumption 24. For any integer k > 2 and constant δ > 0, define the function f : [0, 1] → [0, 1]

defined over the variable a as

f(a) := P [σ1Z1 + σ2Z2 ≥ (ck − δ) ∧ σ1Z1 − σ2Z2 ≥ (ck − δ)] , (1.6)

where Z1 and Z2 are standard Gaussians, ck := Φ−1
(
1− 1

k

)
, σ1 :=

√
(1+a)k−2
2(k−1) , and σ2 :=

√
(1−a)k
2(k−1) .

Further, define the function g

g (A) =
∏
i,j∈[k]

(
f(ai,j)

ai,j

)ai,j
(1.7)

defined on the k × k doubly stochastic matrix A with entry in row i and column j denoted ai,j.

The function ln g(A) has a unique maximum over the set of doubly stochastic matrices at A∗ := 1
kJ.

Theorem 25 (Average γ-Friendly k-Partition). For any constant integer k > 2, let G ∼ GB(kn),
ck := Φ−1 (1− 1/k) where Φ is the CDF of the standard normal distribution, and σ =

√
nk

4(k−1) . If

Assumption 24 holds, then for any δ > 0, with high probability G has an average σ(ck − δ)-friendly
balanced k-partition.

Conversely, with high probability, G will not have an average σ · ck-friendly balanced k-partition.
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Theorem 26 (Maximum γ-Friendly k-Partition). For constant k > 2, let G ∼ GB(kn). Then, if

γ ≥ 0, with high probability G does not have any max γ-friendly balanced k-partitions.

Theorem 27 (Sum γ-Friendly k-Partition). For constant k > 2, let G ∼ GB(kn). Then, even with

γ ≲k −n, with high probability G does not have any sum γ-friendly balanced k-partitions.

For each of the above theorems, we define a corresponding lemma for graphs drawn from GN (kn),

namely, Lemma 61, Lemma 62, Lemma 63 stated below.

Lemma 61. For constant k where k > 2, let G ∼ GN (kn). Suppose that Assumption 24 holds.

Then, with γ := σ (ck − δ) where ck := Φ−1 (1− 1/k), σ :=
√

nk
4(k−1) , and δ > 0, G has an average

γ-friendly balanced k-partition w.u.p.p.

Conversely, if γ := σck, then w.h.p. G will not have an average, γ-friendly balanced k-partition.

Lemma 62. For constant k where k > 2, let G ∼ GN with |V | = kn. Then, if γ ≥ 0, G does not

have any max γ-friendly balanced k-partitions w.h.p.

Lemma 63. For constant k where k > 2, let G ∼ GN with |V | = kn. Then, if γ ≲k −n, G does not

have any sum γ-friendly balanced k-partitions w.h.p.

We prove Lemma 61 in Section 5.2.2 using the second moment method. To derive Theorem 25 from

it, we not only use the local limit theorems mentioned above, but also a method of amplifying the

uniformly positive probability result to a high probability result that we adapt from [MSS23]. The

converse components of Lemma 61, Lemma 62, and Lemma 63 are instead shown using the first

moment method and we do so in Section 5.2.1.

Our work suggests a number of interesting open problems. See Table 5.1 for a summary of what

is known and what is open about the existence of friendly balanced partitions in random directed

and undirected graphs. In addition, a natural open problem is to either complement our existence

results with algorithms to compute friendly balanced partitions, or to show evidence that this is

computationally hard.

In the first two sections, Section 5.1 and Section 5.2, we prove the lemmas pertaining to graphs

G ∼ GN (2n), namely Lemma 60 which we will use as a model to prove Lemma 61, Lemma 62,

and Lemma 63. Then, in Section 5.3, we will use a modified version of a result of Minzer, Sah,

and Sawhney [MSS23, Theorem 2.2] to transfer these G ∼ GN (2n) results to those corresponding

to theorems for G ∼ GB(2n), namely Theorem 21, Theorem 25, Theorem 26, and Theorem 27.

We conclude the main body of work in Section 5.4 with a summary of what is known so far and

what remains to be explored in the domain of γ-friendly balanced k-partitions in random digraphs.

Section 5.5 and Section 5.6 contain tricky function bounds and proofs of local limit lemmas which

are necessary but difficult to parse on first-reading.

Before we begin, there are a few additional pieces of terminology we must introduce. Let N (µ, σ)

the normal distribution with mean µ and variance σ. Further, let H be the discrete entropy function

of a random variable Y . If Y takes values y ∈ D, then

H(Y ) =
∑
y∈D

Pr[Y = y] log
1

Pr[Y = y]
.
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Further, we recall a well know approximation of multinomial coefficients which we include here for

completeness.

Lemma 64. For integer k ≥ 2 the multinomial
(

kn
n,...,n

)
= knk

(2πn)(k−1)/2

(
1 +Ok

(
1
n

))
.

Proof. We have by Stirling’s approximation,(
kn

n, ..., n

)
=

(kn)!

(n!)k
=

√
k · knk

(2πn)
(k−1)/2

(
1−Ok

(
1

n

))

5.1 Bisections in the Gaussian Case

To prove Lemma 60, i.e., the existence of a γ-friendly bisection with uniform positive probability, we

use the second moment method. In particular, we show that the number of γ-friendly bisections, Xγ ,

is non-zero with uniform positive probability by showing that EXγ ≫ 1 and that (EXγ)
2 ≥ c · EX2

γ

for some constant c. Then, by the Paley-Zygmund inequality, we have that

P [Xγ > 0] ≥ (EXγ)
2

EX2
γ

≥ c. (5.1)

We show EXγ ≫ 1 in Lemma 65 and (EXγ)
2 ≥ c · EX2

γ in Lemma 67.

To show that with high probability there does not exist a γ-friendly bisection when γ = −1/2, we
use the first moment to show that EXγ = o(1) in the second part of Lemma 65.

Lemma 65. (First Moment γ-Friendly Bisection in GN (2n)). Let G ∼ GN (2n). Let Xγ be the

number of γ-friendly bisections of G for any γ = − (1/2 + δ) where δ > 0. Then

EXγ ≍δ
e4δ
√
n/π

√
πn

. (5.2)

Instead, when γ = −1/2, EXγ = o(1).

Proof. Assume that V (G) = {x1,1, ..., x1,n, x2,1, ..., x2,n}, and let ρ = (P1, P2) be a bisection where

Pi = {xi,j : j ∈ [n]} for i ∈ {1, 2}. Fix some vertex x1,1 and let Eγ(ρ;x1,1) be the event that x1,1

is γ-friendly with respect to ρ. Further, let Eγ(ρ) be the event that all vertices are γ-friendly with

respect to ρ. Since all the edges are directed and independent, PEγ(ρ;x1,1) = P [Eγ(ρ;x1,1)]
2n

and

it suffices to compute PEγ(ρ;x1,1).

Let Xi,j be the random variable for the weight of the directed edge from vertex x1,1 to xi,j where

X1,1 = 0 and Xi,j ∼ N (1/2, 1/4). Let Si =
∑n
j=1Xi,j be the sum of the edges from x1,1 to the nodes

in part Pi. Note that S1 ∼ N (n/2 − 1/2, n/4 − 1/4) and S2 ∼ N (n/2, n/4) as x1,1 has a weighted

edge incident to all nodes except itself in P1 and all nodes in P2. Then PEγ(ρ;x1,1) = P(S1−S2 ≥ γ)
where S1 − S2 ∼ N (−1/2, n/2− 1/4). By standardizing S1 − S2, we have

PEγ(ρ;x1,1) = P [S1 − S2 ≥ γ] = P

[
S1 − S2 + 1/2√

n/2− 1/4
≥ −δ√

n/2− 1/4

]
= P

[
Z ≥ −δ√

n/2− 1/4

]
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where Z is a standard Gaussian random variable. We can bound PEγ(ρ;x1,1) below by

PEγ (ρ;x1,1) >
1

2
+

δ√
n/2
· ϕ

(
δ√
n/2

)
≥ 1

2
+
δ · e−δ2/n√

πn
≥ 1

2
+

δ√
πn

(
1− δ2

n

)
.

and similarly we can bound PEγ(ρ;x1,1) above by

PEγ (ρ;x1,1) ≤
1

2
+

δ√
n/2
· ϕ (0) < 1

2
+

δ√
πn

.

Together, we have the following approximation of PEγ(ρ;x1,1) up to O (1/n) error,

PEγ (ρ;x1,1) =
1

2
+

δ√
πn

+ δ2 ·O
(
1

n

)
(5.3)

Since EXγ =
∑
ρ PEγ(ρ) =

(
2n
n

)
· P (Eγ(ρ;x1,1))

2n
, EXγ is bounded below by

EXγ ≳
22n√
πn

(
1

2
+
δ · e−δ2/n√

πn

)2n

≥
exp

(
δ
(
1− δ2

n

)√
8n
π

)
√
πn

and above by

EXγ ≲
22n√
πn

(
1

2
+

δ√
πn

)2n

≤
exp

(
δ
√

8n
π

)
√
πn

Thus, when n→∞, we have

EXγ ≍
exp

(
δ
√

8n
π

)
√
πn

≫ 1

Note that when δ = 0, we have that PEγ(ρ;x1,1) = 1/2. Following the same calculations as above,

EXγ ≍ 1/
√
πn = o(1) as required.

Claim 66. Let G ∼ GN (2n) as in Definition 59. Let ρ1 = (P1,1, P1,2) and ρ2 = (P2,1, P2,2) be two

bisections of V (G) and let |P1,1 ∩ P2,1| = |P1,2 ∩ P2,2| = αn. Then for

ψn(α) := fn(α)
αfn(1− α)1−α (5.4)

with

fn(α) :=
arctan

(√
α

1−α

)
π

+
δ√
πn

+

√
1− α
α
· δ

2

πn
, (5.5)

P [Eγ(ρ1) ∧ Eγ(ρ2)] ≤ ψn(α)
2n where Eγ(ρ) is the event that G is γ-friendly with respect to ρ and

γ := −(1/2 + δ) as in Lemma 60.

Proof. We compute P [Eγ(ρ1;x1,1) ∧ Eγ(ρ2;x1,1)] where Eγ(ρ;x1,1) is the event that some vertex

x1,1 is γ-friendly with respect to bisection ρ. Assume that x1,1 ∈ P1,1 of ρ1 and x1,1 ∈ P2,1 of ρ2.

As in the proof of the first moment, let Xi,j be the random variable for the weight of the directed

edge x1,1 to xi,j . Note that there are αn vertices in common between P1,1 and P2,1 as well as

between P1,2 and P2,2. Further there are (1−α)n vertices in common between P1,1 and P2,2 as well
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as between P1,2 and P2,1. Let

R+ =
∑

xi,j∈P1,1∩P2,1

Xi,j −
∑

xi,j∈P1,2∩P2,2

Xi,j (5.6)

R− =
∑

xi,j∈P1,1∩P2,2

Xi,j −
∑

xi,j∈P1,2∩P2,1

Xi,j (5.7)

where R+ ∼ N (−1/2, nα/2− 1/4) and R− ∼ N (0, n(1− α)/2). The γ-friendly events Eγ(ρ1;x1,1)

and Eγ(ρ2;x1,1) are equivalent to the inequalities R+ + R− ≥ γ and R+ − R− ≥ γ being true

respectively. Note that these two inequalities define two half-spaces in R+ and R−, so the prob-

ability P [Eγ(ρ1;x1,1) ∧ Eγ(ρ2;x1,1)] is equal to the Gaussian measure of the wedge formed by the

intersection of these two half-spaces which satisfy the two inequalities. Standardize R+ and R−

as R+ :=
(
R+ + 1

2

)√
4

2αn−1 and R− := R−

√
2

(1−α)n . Then, in terms of the standardized random

variables, we have

Eγ(ρ1;x1,1) =

[√
2αn− 1

4
·R+ +

√
(1− α)n

2
·R− ≥ −δ

]
(5.8)

Eγ(ρ2;x1,1) =

[√
2αn− 1

4
·R+ −

√
(1− α)n

2
·R− ≥ −δ

]
(5.9)

It follows that P [Eγ(ρ1;x1,1) ∧ Eγ(ρ2;x1,1)] is equal to the standard Gaussian measure of the wedge

formed by the intersection of the half-spaces defined by the inequalities in Equation (5.8) and (5.9).

See Figure 5.1.

R+

R
−

−

R+

R
−

−δ

√

4

2αn−1

δ

√

Figure 5.1: R+ and R− are as defined in Equations (5.6) and (5.7). R+ and R− are the same random
variables after standardizing. The left image depicts the wedge whose Gaussian measure is equal to
P [Eγ(ρ1;x1,1) ∧ Eγ(ρ2;x1,1)]. The right image depicts the same wedge after standardizing.

We can decompose this wedge into three regions defined by the following linear expressions:

L1 :=

√
2αn− 1

4
·R+ +

√
(1− α)n

2
·R−, L2 :=

√
2αn− 1

4
·R+ −

√
(1− α)n

2
·R−,

L⊥
1 :=

√
(1− α)n

2
·R+ −

√
2αn− 1

4
·R−, and L

⊥
2 :=

√
(1− α)n

2
·R+ +

√
2αn− 1

4
·R−.

The first region R1 is the intersection of the half-spaces L1 ≥ 0 and L2 ≥ 0. The second region R2
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consist of two “partial strips” defined by L1 ∈ [−δ, 0] in the half-space L⊥
1 ≥ 0 and L2 ∈ [−δ, 0] in

the half-space L⊥
2 ≥ 0. The final region R3 is the subset of the intersection of L1 ≥ −δ and L2 ≥ −δ

not contained in the union of R1 and R2 i.e. the region bounded by WVOX in Figure 5.2.

R+

R
−

δ

√

4

2αn−1

δ

√

2

W

Figure 5.2: The three regions under consideration are R1 (red), R2 (blue), and R3 (gray). Note

that the width of the blue strip is |V O| = δ
√

2
n and the length of one triangle composing R3 is

|WV | =
√

1−α
α ·

1√
n
.

We bound the standard Gaussian measure of each region in turn. For R1, let θ be half of the angle

of the wedge formed by L1 ≥ 0 and L2 ≥ 0. Note that up to multiplicative error on the order of

1 +O(1/n), sin θ =
√
α, cos θ =

√
1− α, and tan θ =

√
α

1−α . Since the standard Gaussian measure

is rotationally symmetric, µ(R1) =
θ
π = arctan

(√
α

1−α

)
1
π .

We bound µ(R2) from above by reducing the two dimensional standard Gaussian in
(
R+, R−

)
to

a one dimensional standard Gaussian. Notice that the two partial strips which make up R2 have

Gaussian measure equal to the strip L2 ∈ [−δ, 0]. Thus, we can express the Gaussian measure of R2

as

µ (R2) =

∫ |V O|

0

ϕ (ℓ2) dℓ2

where |V O| = δ sin(θ)
√

2
αn = δ

√
2
n is the width of the strip L2 ∈ [−δ, 0]. It follows that µ (R2) ≤

δ√
πn

.

We bound µ(R3) from above by computing the area of R3 (region bounded by WVOX), and

multiplying it by the maximum of the density for all (x, y) ∈ R3. Since |WV | = δ cos(θ)
√

2
αn =

δ
√

2
n ·
√

1−α
α , |WV | = δ

√
2
n , and |WO| form a right-angle triangle. Thus R3 has area |V O| · |WV | =

δ2
(
2
n

)
·
√

1−α
α . Note that the Gaussian density ϕ evaluated on R3 is maximized at (x, y) = (0, 0),

so µ (R3) ≤
√

1−α
α ·

δ2

πn .

Together we have the following upper bound for µ(R1) + µ(R2) + µ(R3):

fn(α) :=
arctan

(√
α

1−α

)
π

+
δ√
πn

+

√
1− α
α
· δ

2

πn
≥ µ(R1) + µ(R2) + µ(R3), (5.10)
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and thus P [Eγ(ρ1;x1,1) ∧ Eγ(ρ2;x1,1)] = µ(R1) + µ(R2) + µ(R3) ≤ fn(α).

The above upper-bound for the probability that x1,1 is γ-friendly with respect to bisections ρ1 and

ρ2 assumed that x1,1 ∈ P1,1 of ρ1 and P2,1 of ρ2. Over all n vertices in P1,1, αn will be in P2,1,

while the remaining (1− α)n will be in P1,1 for ρ1 but end up in P2,2 for ρ2. Repeating the above

computations for such vertices x1,1 ∈ P1,1 ∩ P2,2, we find that

P [Eγ(ρ1;x1,1) ∧ Eγ(ρ2;x1,1)] ≤ fn(1− α). (5.11)

To see this, observe that P [Eγ(ρ1;x1,1) ∧ Eγ(ρ2;x1,1)] is equal to the Gaussian measure of the

intersections of the half-spaces R+ +R− ≥ γ and −R+ +R− ≥ γ where R+ and R− are defined in

Equations (5.6) and (5.7) with Xi,j as the random variable for the directed edge from x1,1 to xi,j .

Again we can decompose this wedge into three regions and bound the Gaussian measure of each as

we have done above. Thus, define

ψn(α) := fn(α)
αfn(1− α)1−α. (5.12)

It follows that P [Eγ(ρ1) ∧ Eγ(ρ2)] ≤ ψn(α)2n.

Using Claim 66, we can bound the probability that Xγ is far from its expectation in Lemma 67. We

will first state Lemma 67 before we prove it at the end of the section as it will require a modified

Laplace method, defined in Lemma 68.

Lemma 67. (Second Moment γ-Friendly Bisection). With Xγ as defined in Lemma 65, (EXγ)
2 ≥

c · EX2
γ for a universal constant c.

We use a modified version of the Laplace method to bound the sum in Equation (5.26) (Lemma

3, [AM06]). Typically, this will require taking the limit as n→∞, but we take extra precaution as

the joint probability ψn is a function of n.

Lemma 68. (Modified Laplace Lemma). Let {ψn}n∈N be a family of positive, twice-differentiable

functions on [0, 1] which are symmetric about 1/2. Let q ≥ 1 and define 00 ≡ 1 for

Qn =

n∑
z=0

(
n

αn

)q
ψn(α)

qn. (5.13)

Define a family {gn}n∈N of functions on [0, 1] where

gn(α) :=
ψn(α)

αα(1− α)1−α
. (5.14)

Let αmax = 1
2 and for ξ ∈ O(1/

√
n), define the interval Iξ = [αmax − ξ, αmax + ξ] ⊂ [0, 1]. If

1. gn(αmax) > gn(α)
(
1 + c1√

n

)
for all α ∈ [0, 1]\Iξ and some constant c1 > 0,

2. ln gn is uni-modal on Iξ and maximized at αmax,

3. (ln gn)
′′(αmax) < 0, and
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4. in the Taylor expansion of ln gn(α) about α = αmax:

ln gn (αmax) + (ln gn)
′
(αmax) (α− αmax) + (ln gn)

′′
(αmax)

(α− αmax)
2

2
+R (α− αmax)

3
,

(5.15)

R (α− αmax)
3 ≤ c′ (α− αmax)

3
for some constant c′.

Then there exists a constant c which is a function of αmax, gn(αmax), and g
′′
n(αmax) such that

Qn < cn−(q−1)/2gn(αmax)
n.

In Lemmas 69 and 73 below, we will show that gn defined in (5.14) as

gn(α) :=
ψn(α)

αα(1− α)1−α
,

satisfies the prerequisites of Lemma 68. Instead of dealing with gn(α) directly, it will be useful to

consider instead the function

ln gn(α) = α ln

(
fn(α)

α

)
+ (1− α) ln

(
fn(1− α)
1− α

)
,

where fn is defined in Equation (5.5) and repeated below for convenience:

fn(α) =
arctan

(√
α

1−α

)
π

+
δ√
πn

+

√
1− α
α
· δ

2

πn
.

The derivatives of ln gn(α) are then

(ln gn)
′
=

d

dα
(α ln fn(α) + (1− α) ln fn(1− α)− α lnα− (1− α) ln(1− α))

=

(
ln fn(α)− ln fn(1− α) +

αf ′n(α)

fn(α)
− (1− α)f ′n(1− α)

fn(1− α)
+ ln

(1− α)
α

) (5.16)

(ln gn)
′′
= 2

f ′n(α)

fn(α)
+ 2

f ′n(1− α)
fn(1− α)

+
αf ′′n (α)

fn(α)
+

(1− α)f ′′n (1− α)
fn(1− α)

− α (f ′n(α))
2

fn(α)2
− (1− α)(f ′n(1− α))2

fn(1− α)2
− 1

α(1− α)
.

(5.17)

When α ∈ [0.01, 0.99], we can simplify gn(α) slightly by simplifying fn(α). Observe that the first

term of fn(α) is independent of n, the second is independent of α, while the last is of order O(1/n)

if α is constant. If we define f(α) =
arctan(

√
α

1−α )
π , then gn(α) is

gn(α) ≤

(
f(α) + δ√

πn
+ 200δ2

πn

)α
·
(
f(1− α) + δ√

πn
+ 200δ2

πn

)1−α
αα(1− α)1−α

=

(
f(α) + δ√

πn

)α
·
(
f(1− α) + δ√

πn

)1−α
αα(1− α)(1−α)

(
1 +Ok

(
1

n

))
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We then define

g̃n(α) :=

(
f(α) + δ√

πn

)α
·
(
f(1− α) + δ√

πn

)1−α
αα(1− α)(1−α)

, (5.18)

as an approximation of gn(α) for our second moment applications. In this case, let

fn(α) =
arctan

(√
α

1−α

)
π

+
δ√
πn

. (5.19)

The first and second derivatives of fn are then

f ′n(α) =
1

2π
√
α(1− α)

, and (5.20)

f ′′n (α) =
2α− 1

4π (α(1− α))3/2
. (5.21)

Lemma 69. Let αmax = 1/2 and gn as defined in Equation (5.14). For constant δ ≥ 0, ξ ≤ 2δ/
√
πn,

and α ∈ [0, 1]\Iξ, gn(αmax) > gn(α)
(
1 +O

(
1
n

))
.

Proof. By symmetry, it suffices to only consider [0, αmax − ξ). We decompose it into three intervals

[0, 0.01], [0.01, 0.1], and [0.1, αmax − ξ). The outline of the body of the proof is as follows.

On [0.0.1), Claim 70 shows that gn is monotonically decreasing by showing that g′n < 0. Thus it

will suffice to show that gn(αmax) >
(
1 +O

(
1
n

))
limα→0+ gn(α). On [0.01, 0.1), Claim 71 shows that

g̃n given in Equation (5.18) is convex by showing that g̃′′n < 0. Thus gn(α) is bounded above on

this interval will be subsumed by showing that gn is bounded above on [0, 0.01] and [0.1, αmax−ξ].

Finally, on [0.1, αmax − ξ), Claim 72 shows that gn is monotonically increasing by showing that

(gn)
′ > 0. Thus, gn(αmax) > gn (αmax − ξ)

(
1 +O

(
1
n

))
.

Note that we can bound gn (αmax) from above by

gn (αmax) = 2ψn

(
1

2

)
= 2fn

(
1

2

)
= 2

(
1

4
+

δ√
πn

+
δ2

πn

)
=

1

2
+

2δ√
πn

+
2δ2

πn
.

In the following we will show that 1
2 +

2δ√
πn

+ 2δ2

πn ≥ gn(α)
(
1 +O

(
1
n

))
for α on each of the different

intervals. The claims below are proved in the appendix.

Claim 70. gn(α), as defined in Equation (5.14), is monotonically decreasing on [0, 0.01).

Since g′n is monotonically decreasing by Claim 70 on [0, 0.01), gn(α) achieves its maximum value for

limα→0+ gn(α) =
1
2 + δ√

πn
. Thus, for every α ∈ [0, 0.1), gn(αmax) ≥

(
1 +O

(
1
n

))
limα→0+ gn (α).

Claim 71. gn(α), as defined in Equation (5.14), is convex for α ∈ [0.01, 0.1].

Since g′′n is convex on [0.01, 0.1) by Claim 71, its maximum value will be obtained at one of its

endpoints. These are considered in the previous and next intervals.

Claim 72. gn, as defined in Equation (5.14), is monotonically increasing on [0.1, αmax − ξ).
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Finally, we consider the interval [0.1, αmax − ξ). By Claim 72, we have that gn(α) is monotonically

increasing on this interval. Thus gn(α) is maximized at the right end-point α = αmax − ξ. At this

end-point we have

fn (αmax − ξ) =
arctan

(
1 + 2ξ

1−2ξ +O
(
ξ2
))

π
+

δ√
πn

=
1

4
+

ξ

π (1− 2ξ)
+O

(
ξ2
)
+

δ√
πn

,

fn (αmax + ξ) =
arctan

(
1− 2ξ

1+2ξ +O
(
ξ2
))

π
+

δ√
πn

=
1

4
− ξ

π (1 + 2ξ)
+O

(
ξ2
)
+

δ√
πn

,

by considering the Taylor expansions of
√
1− x = 1− x

2 −O
(
x2
)
about x = 0 and arctan(1− x) =

4
π −

x
2 −O

(
x2
)
about x = 0. Plugging these into gn (αmax) we get,

gn(αmax − ξ) =
(
fn(αmax − ξ)
αmax − ξ

)αmax−ξ (fn(αmax + ξ)

αmax + ξ

)αmax+ξ

=

√
fn(αmax − ξ)fn(αmax + ξ)

1/4− ξ2

(
fn(αmax + ξ)

(
1
2 − ξ

)
fn(αmax − ξ)

(
1
2 + ξ

))ξ

=

√
fn(αmax − ξ)fn(αmax + ξ)

1/4− ξ2

(
1
4 + ξ

π(1−2ξ) +O
(
ξ2
)
+ δ√

πn

1
4 −

ξ
π(1+2ξ) +O (ξ2) + δ√

πn

(
1− 6ξ

1 + 2ξ

))ξ

=

√
fn(αmax − ξ)fn(αmax + ξ)

1/4− ξ2

((
1− 8ξ

π(1 + 2ξ)

)
·
(
1− 6ξ

1 + 2ξ

))ξ
=

√
fn(αmax − ξ)fn(αmax + ξ)

1/4− ξ2
exp

(
ξ

(
1− 8ξ

π(1 + 2ξ)
− 6ξ

1 + 2ξ

))

=

√√√√(1

2
− 2ξ

π (1 + 2ξ)
+

√
2δ√
πn

)(
1

2
+

2ξ

π (1− 2ξ)
+

√
2δ√
πn

)(
1 + ξ +O

(
ξ2
))

=

√
1

4
−O(ξ2)

(
1 + ξ +O

(
ξ2
))

=
1

2
+O(ξ).

Comparing gn(αmax−ξ) with gn(αmax), gn(αmax) ≥ gn(α) (1 +O(1/
√
n)) on this interval as well.

Lemma 73. Let αmax = 1/2, ξ = o(1), and Iξ = [αmax − ξ, αmax + ξ]. For gn as defined in

Equation (5.14) on Iξ,

1. ln gn is unimodal with mode achieved at αmax,

2. (ln gn)
′′(αmax) + c < 0 for some positive universal constant c, and

3. in the Taylor expansion of ln gn(α) about αmax:

ln gn (αmax) + (ln gn)
′
(αmax) (α− αmax) + (ln gn)

′′
(αmax)

(α− αmax)
2

2
+R (α− αmax)

3
,

(5.22)

R (α− αmax)
3 ≤ c′ (α− αmax)

3
for some constant c′.

Proof. To show that ln gn is uni-modal on Iξ with mode achieved at αmax, it suffices to refer back

to the second part of Lemma 69 where we showed that ln g′n(α) ≥ 0 for α ∈ [0.1, αmax− ξ). Observe
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that the monotonicity of g′n(α) can be extended to the interval [0.1, αmax). By symmetry, we also

have (ln gn)
′(α) ≤ 0 for (αmax, 0.9]. At αmax, (ln gn)

′ (αmax) = 0 so αmax is indeed the mode of ln gn.

For the second property we compute (ln gn)
′′(αmax). By Equation (5.17), we have that

(ln gn)
′′
(αmax) =

4f ′n(1/2)

fn(1/2)
+
f ′′n (1/2)

fn(1/2)
− (f ′n(1/2))

2

fn(1/2)2
− 4

Using Equations (5.19), (5.20), (5.21), we have that fn(1/2) =
1
4+

δ√
πn

, f ′n(1/2) =
1
π , and f

′′
n (1/2) =

0. Thus

(ln gn)
′′(1/2) =

 4

π
(

1
4 + δ√

πn

)
−

 1

π
(

1
4 + δ√

πn

)
2

− 4

=

(
4

π

)4− 1

π
(

1
4 + δ√

πn

)
(1 +O

(
1

n

))
− 4

=

(
4

π

)(
4(π − 1)

π

)(
1 +O

(
1

n

))
− 4

≤ 2.16

(
4

3

)2

− 4 = 3.84− 4 = −0.16

It follows that the second property is true if c > 0.16.

For the third property we will bound the remainder term of the Taylor expansion, R (α− αmax)
3
,

by bounding |(ln gn)′′′(c)| from above for every c ∈ Iξ. Take the second derivative of ln gn from

Equation (5.17) and compute the third derivative,

(ln gn)
′′′
(α) =

3 · f ′′n (α)
fn(α)

− 3(f ′n(α))
2

(fn(α))2
+
αf

′′′

n (α)

fn(α)
− 3αf ′n(α)f

′′
n (α)

(fn(α))
2

− 3 · f ′′n (1− α)
fn(1− α)

+
3(f ′n(1− α))2

(fn(1− α))2
− (1− α)f ′′′

n (1− α)
fn(1− α)

+
3(1− α)f ′n(1− α)f ′′n (1− α)

(fn(1− α))2

+
1− 2α

α2(1− α)2
(5.23)

Recall, from Equation (5.19), (5.20), and (5.21) the definitions of fn, f
′
n, and f ′′n . For α in the

interval Iξ = [αmax − ξ, αmax + ξ], we have the following

fn(α) =
arctan

(√
α

1−α

)
π

+
δ√
πn

=⇒ fn(α) ≍
1

4

f ′n(α) =
1

2π
√
α(1− α)

=⇒ f ′n(α) ≍
1

π

f ′′n (α) =
(2α− 1)

4π (α(1− α))3/2
=⇒ |f ′′n (α)| ≤

2ξ

π

f ′′′n (α) =
(8α2 − 8α+ 3)

8π (α(1− α))5/2
=⇒ f ′′′n (α) ≍ 4
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since δ is a constant. Recall that ξ = O
(

1√
n

)
. By plugging the above into the definition of (ln gn)

′′′,

we have that |(ln gn)′′′(α)| = O(1) for α ∈ Iξ as required.

Proof of Lemma 68. We group together the terms of Qn and show that the sum of each group is

bounded above by O
(
n−(q−1)/2gn(αmax)

n
)
. First, recall the following inequalities from Lemma 3

([AM06]) which bound the terms of Qn by a function of gn(α): Equation (5.24) when α is bounded

away from zero and one by a constant and Equation (5.25) when α is close to zero and one,(
n

z

)q
ψn(z/n)

qn <
gn(α)

qn

(2πα(1− α)n)q/2

(
1 +

1

n

)q
, (5.24)(

n

z

)q
ψn (z/n)

qn
< (8πn)−q/2gn(α)

qn. (5.25)

We subdivide the interval [0, 1] into [0, 0.1)∪ [0.1, αmax− ξ)∪ [αmax− ξ, αmax + ξ]∪ (αmax + ξ, 0.9]∪
(0.9, 1]. Since the functions gn(α) are symmetric about αmax, it suffices to show that the sum of

the terms on the first three intervals are bounded above by O
(
n−(q−1)/2gn(αmax)

n
)
. On intervals

[0, 0.1) and [0.1, αmax − ξ) we have that gn(αmax) ≥ gn(α)
(
1 +O

(
1√
n

))
. By Equation (5.25), the

sum on [0, 0.1) can be bounded by

∑
α∈[0,0.1)

(
n

αn

)q
ψn(α)

qn <
∑

α∈[0,0.1)

(8πn)−q/2gn(α)
qn

<
n · gn (αmax)

qn

(8πn)q/2
(
1 + c1√

n

)qn
= n(8πn)−q/2e−O(q

√
n) · gn(αmax)

qn

≪ cn−(q−1)/2gn(αmax)
qn.

Similarly, by Equation (5.24), the sum on [0.1, αmax − ξ) can be bounded by

∑
α∈[0.1,αmax−ξ)

(
n

αn

)q
ψn(α)

qn <
∑

α∈[0.1,αmax−ξ)

gn(α)
qn

(2πα(1− α)n)q/2

<
ngn (αmax)

qn
eq/n

(2πα(1− α)n)q/2

≪ cn−(q−1)/2gn (αmax)
qn
.

Using Equation (5.24) on the interval [αmax − ξ, αmax + ξ], we have that

∑
z∈n·Iξ

(
n

z

)q
ψn(α)

qn < (2παmax(1− αmax)n)
−q/2

∑
α∈Iξ

gn(α)
qn

≤ (2παmax(1− αmax)n)
−q/2

(
qn

∫
Iξ

gn(α)
qndα+ gn(αmax)

qn

)

Substitute gn(α)
qn = eqn ln gn(α) and expand ln gn by its Taylor approximation about αmax as shown

in Equation (5.15). Since gn is unimodal and maximize at αmax on Iξ, e
qn ln gn is as well. It follows
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that ln g′n(αmax) = 0. Observe that

eqn ln gn(α)

eqn ln gn(αmax)
= exp qn ·


(
ln gn (αmax) (α− αmax)

2
)′′

2
+R (α− αmax)

3


=

exp qn ·


(
ln gn (αmax) (α− αmax)

2
)′′

2


 · (1 + qn ·R (α− αmax)

3
)

=

exp qn ·


(
ln gn (αmax) (α− αmax)

2
)′′

2


 · (1 +O

(
1√
n

))
,

since α ∈ Iξ and ξ = O
(

1√
n

)
. By the Laplace method (Section 3.3, [BC89]),

∫
Iξ

eqn ln gn(α)dα = eqn ln gn(αmax)

∫ ∞

−∞
eqn(ln gn)

′′(αmax)
x2

2 dx

(
1 +O

(
1

n

))
= gn (αmax)

qn

√
2π

qn
∣∣(ln gn)′′ (αmax)

∣∣
(
1 +O

(
1

n

))

Together, we have the bound

Qn ≤
qn(1−q)/2gn(αmax)

qn

(2παmax(1− αmax)))q/2

(√
2π

n
∣∣(ln gn)′′ (αmax)

∣∣ + o (1)

)
.

Proof of Lemma 67. We consider two bisections ρ1 and ρ2 on the set of vertices V = {xi,j : i ∈
{1, 2} and j ∈ [n]}. Let ρ1 = (P1,1, P1,2) and ρ2 = (P2,1, P2,2). Further, let Eγ(ρi) be the event that

ρi is a γ-friendly bisection. We compute P [Eγ(ρ1) ∧ Eγ(ρ2)].

Group together pairs of (ρ1, ρ2) by the number of entries upon which they agree in each part. In

particular, let |P1,1 ∩ P2,1| = |P1,2 ∩ P2,2| = αn for some α ∈ (0, 1). Note that the probability

P [Eγ(ρ1) ∧ Eγ(ρ2)] only depends on α. There are
(
2n
n

)
choices for ρ1 and, if we let z := αn,

(
n
z

)2
choices for ρ2. Thus,

EX2
γ =

(
2n

n

) n∑
z=0

(
n

z

)2

P [Eγ(ρ1) ∧ Eγ(ρ2)] . (5.26)

The ratio
EX2

γ

(EXγ)2
is then

EX2
γ

(EXγ)2
=

∑n
z=0

(
n
z

)2
P [Eγ(ρ1) ∧ Eγ(ρ2)]((

2n
n

)
PEγ(ρ1)

)2 . (5.27)

By Claim 66, ψn(α)
2n ≥ P [Eγ(ρ1) ∧ Eγ(ρ2)] where ψn is defined in Equation (5.4). Further,

with Qn =
∑n
z=0

(
n
z

)2
ψn(z/n)

2n, we see that sums of the form Qn are bounded above by c ·(
n
n/2

)2
ψn(1/2)

2n by Lemma 68.

Compare the denominator to c ·
(
n
n/2

)2
ψn(1/2)

2n. For a fixed vertex x1,1, PEγ(ρ1;x1,1) =
1
2 +

δ√
πn

+

O
(
1
n

)
by Lemma 65 Equation (5.3) and ψn(1/2) =

1
4+

δ√
πn

+ δ2

πn , so we have (PEγ(ρ1))
2 ≈ ψn(1/2)2n.
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It follows that

EX2
γ

(EXγ)2
≲

(
2n

n

)−1

· ψn(1/2)−2n ·

(
n∑
z=0

(
n

z

)2

· ψn
( z
n

)2n)
= c.

5.2 Multiple Equal Parts

Next, we generalize the problem to k balanced parts. Throughout this section, draw G from distribu-

tion GN (kn) as in Definition 59. Further, let the vertices of G be V (G) = {xi,j : i ∈ [k], j ∈ [n]}. As
we saw in Definition 16, there are three different ways to generalize the γ-friendly bisection problem

to k parts: average, maximum, or sum. We consider each in turn.

Let Xγ be the random variable which counts the number of γ-friendly balanced k-partitions. We

compute the asymptotics of the first moment of Xγ for each type of generalization and — for those

types where EXγ is bounded away from zero — second moments of Xγ . In particular, for average,

balanced k-partitions (Lemma 61), we show that γ-friendly exist w.u.p.p. when γ ≲k
√
n by showing

that EXγ is bounded away from zero (Lemma 74) and EX2
γ/ (EXγ)

2
is bounded above by a constant

(Lemma 80). In the next section, we will improve this to a w.h.p. result.

For maximum, balanced k-partitions (Lemma 62), we show that there does not exist any γ-friendly

partitions when γ ≥ 0 by showing that EXγ vanishes (Lemma 75). It is unknown if γ-friendly

balanced k-partitions will appear when γ is taken to be a small negative constant possibly dependent

on k. We discuss this further in Section 5.4.

Similarly, for sum, balanced k-partitions (Lemma 63), we show that there does not exist any γ-

friendly partitions even when γ ≲k −n by again showing that EXγ vanishes (Lemma 76).

5.2.1 First Moment

Without loss of generality, let ρ = (P1, ..., Pk) be a random balanced k-partition where Pi = {xi,j :
j ∈ [n]}. As in the bisection case, fix some vertex, say x1,1, and let Eγ(ρ;x1,1) be the event that

x1,1 is γ-friendly with respect to ρ. Let Eγ(ρ) be the event that ρ is γ-friendly for all vertices.

We compute the probability that Eγ(ρ) occurs for each type of generalization. Let Xi,j be the

random variable for the weight of the directed edge from vertex x1,1 to xi,j where X1,1 = 0 and

Xi,j ∼ N (1/2, 1/4). Let Si =
∑n
j=1Xi,j be the sum of weights of the edges from x1,1 to the nodes in

part Pi. Note that S1 ∼ N (n/2− 1/2, n/4− 1/4) and Si ∼ N (n/2, n/4) for i > 1. For simplicity we

define S′
1 := S1+X where X ∼ N (1/2, 1/4) instead of S1. Note that P [|S1 − S′

1| ≥ log n] ≤ O(1/n).

This difference is negligible since γ ≲k
√
n and we can reduce γ by O(log n) without changing its

order of magnitude. In the following, when we write S1 we mean S′
1.

Lemma 74. (First Moment Average γ-Friendly Balanced k-Partition). For integer k ≥ 3, let

ck = Φ−1(1− 1/k). Then, for any constant δ > 0, when γ := (ck − δ)σ for σ :=

√
n
4

(
1 + 1

k−1

)
, the

number of γ-friendly balanced k-partitions, denoted Xγ , satisfies EXγ = eΩk(n). Further, if γ ≥ ckσ,
then EXγ = o(1).
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Proof. From the definition of γ-friendly average balanced k-partitions, we have

PEγ(ρ;x1,1) = P

[
S1 −

1

k − 1

k∑
i=2

Si ≥ γ

]
,

where 1
k−1

∑k
i=2 Si ∼ N

(
n
2 ,

n
4(k−1)

)
and S1 − 1

k−1

∑k
i=2 Si is distributed like N

(
0, σ2

)
. Standard-

izing S1 − 1
k−1

∑k
i=2 Si, we have that PEγ(ρ;x1,1) = P[σZ ≥ γ] = P[Z ≥ (ck − δ)] = 1− Φ(ck − δ).

Recall that ck was chosen so that 1 − Φ(ck) = 1/k. Using first order approximations and the

concavity of the Φ function on the interval (0,∞), we have that

1 + c1
k

= 1− (Φ(ck)− ϕ(ck − 1)δ) > 1− Φ(ck − δ) > 1− (Φ(ck)− ϕ(ck)δ) =
1 + c2
k

(5.28)

where c1 = kϕ(ck − 1)δ and c2 = kϕ(ck)δ.

To obtain an upper and lower bound on EXγ , sum over the
(

kn
n,...,n

)
1
k! balanced k-partitions.

EXγ =
∑
ρ

PEγ (ρ;x1,1)
kn

=

(
kn

n, ..., n

)
P [Eγ (ρ;x1,1)]

kn

k!

=
knk
√
k · P [Eγ (ρ;x1,1)]

kn

(2πn)(k−1)/2k!

(
1 +Ok

(
1

n

))
(Lemma 64)

=
knk
√
k · P [Z ≥ (ck − δ)]kn

(2πn)(k−1)/2k!

(
1 +Ok

(
1

n

))
= exp

(
k(1− ln k)− k − 1

2
ln (2πn) +

1

2
ln k

)
·

knkP[Z ≥ (ck − δ)]kn
(
1 +Ok

(
1

n

))
Apply the bound on P[Z ≥ ck − δ] from Equation (5.28) to obtain

eknc1 ≥ exp

(
−k(1− ln k) +

k − 1

2
ln (2πn)− 1

2
ln k

)
EXγ ≥ eknc2 (5.29)

From the above, we can deduce that EXγ ≫ 0 when γ = (ck − δ)σ.

Suppose instead that γ = σck. Then, since 1− Φ(ck) =
1
k , and we have

EXγ = exp

(
k(1− ln k)− k − 1

2
ln (2πn) +

1

2
ln k

)(
1 +Ok

(
1

n

))
= o(1).

Lemma 75. (First Moment Max γ-Friendly Balanced k-Partition). For γ = 0, the expected number

of maximum γ-friendly balanced k-partitions is EXγ = o(1).

Proof. Again, we compute PEγ(ρ;x1,1) for some vertex x1,1. Let S′
1 ∼ N (n/2, n/4), and let S1 ∼

N (n/2− 1/2, n/4− 1/4) as it was originally defined. Then S′
1 and S1 +

1
2 are two normal random

variables with the same mean, and by Theorem 1.3 in [DMR23] (see also [AAL23]) we have that the

total variation distance between them is bounded by dtv(S
′
1, S1 +

1
2 ) ≤

3
2n . This means that there
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is a coupling between S′
1 and S1 +

1
2 so that P[S1 +

1
2 ̸= S′

1] ≤ 3
2n , and, therefore, P[S1 ≥ S′

1] ≤ 3
2n .

We then have that

P
[
S1 ≥

k
max
i=2

Si

]
≤ P

[
S′
1 ≥

k
max
i=2

Si

]
+ P[S1 ≥ S′

1] ≤ P
[
S′
1 ≥

k
max
i=2

Si

]
+

3

2n
,

since the events S′
1 < maxki=2 Si and S1 < S′

1 imply S1 < maxki=2 Si. Notice now that S′
1, S2, ..., Sk

are independent and identically distributed, and the event S′
1 ≥ maxki=2 Si is equivalent to the

event S′
1 = max{S′

1, S2, ..., Sk} which occurs with probability 1
k by symmetry. Therefore, we have

P
[
S1 ≥ maxki=2 Si

]
≤ 1

k +
3
2n , which is equivalent to PEγ(ρ;x1,1) ≤ 1

k +
3
2n . The rest of the proof of

the lemma follows as in the proof of Lemma 74.

Lemma 76. (First Moment Sum γ-Friendly Balanced k-Partition). For any δ > 0, γ = −n(k−2+δ)
2 ,

the expected number of sum γ-friendly balanced k-partitions is EXγ = o(1).

Proof. The computations here are similar to those of Lemma 74, though we compare S1 with
∑k
i=2 Si

instead of 1
k−1

∑k
i=2 Si. Note that S1−

∑k
i=2 Si ∼ N

(
−1
2 −

n(k−2)
2 , kn4 −

1
4

)
. By standard concentra-

tion inequalities, the probability that |S1−
∑k
i=2 Si| differs from the mean by more than c

√
kn log kn

is inverse exponential with respect to c. Thus P
(
S1 −

∑k
i=2 Si ≥ γ

)
≪ 1

k .

5.2.2 Second Moment

Similar to the bisection case (Lemma 67), consider two balanced k-partitions ρ1 and ρ2 on the set

of kn vertices with ρ1 = (P1,1, ..., P1,k) and ρ2 = (P2,1, ..., P2,k). We compute P [Eγ(ρ1) ∧ Eγ(ρ2)]
in Lemma 79 by summing over all possible overlaps between P1,i and P2,i. In particular, let Z be

the k× k matrix whose entries zi,j denote represents the number of vertices in part P1,i of ρ1 which

end up in part P2,j of ρ2 i.e. zi,j := |P1,i ∩ P2,j |. Further, let A be a k × k matrix, whose entry ai,j

is the fraction of vertices in part P1,i of ρ1 which end up in part P2,j of ρ2 i.e. ai,j :=
zi,j
n . Note that

A is an element of the Birkhoff Polytope Pn ⊆ Rn×n which is the polytope of all doubly stochastic

matrix.

We define several important functions which will appear throughout this section: f : (0, 1) → R,

ψ : Pk → R, and g : Pk → R. Define f(a) as,

f(a) := P[σ1Z1 + σ2Z2 ≥ (ck − δ) ∧ σ1Z1 − σ2Z2 ≥ (ck − δ)], (5.30)

for standard Gaussians Z1, Z2, ck := Φ−1 (1− 1/k), σ1 :=
√

(1+a)k−2
2(k−1) , and σ2 :=

√
k(1−a)
2(k−1) (these

terms are exactly the same as those which appear in Assumption 24).

Define ψ (A) as,

ψ (A) :=
∏
i,j∈[k]

f(ai,j)
ai,j . (5.31)

Finally, define g (A) as,

g(A) :=
ψ(A)∏

i,j∈[k] a
ai,j
i,j

=
∏
i,j∈[k]

(
f(ai,j)

ai,j

)ai,j
. (5.32)
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Before using the second moment method, we recall the definition of a high dimensional Laplace

method in Theorem 77 and show that it applies to a special function in Lemma 78.

Theorem 77. (High-Dimensional Laplace Method, [Won01]). Consider the Laplace-type integral

J(n) =

∫
D

h(x)e−nζ(x)dx. (5.33)

If x0 is an interior point of D ∈ Rm and if the following hold:

1. J(n) converges absolutely for all n ≥ n0.

2. In L2-norm, for every ϵ > 0 we have d(ϵ) > 0 where

d(ϵ) = inf{ζ(x)− ζ(x0) : x ∈ D and |x− x0| ≥ ϵ}.

3. The Hessian matrix (
∇2ζ

)
(x0) =

(
∂2ζ

∂xi∂xj

) ∣∣∣∣
x=x0

,

is positive definite.

Then for n→∞ the Laplace-type integral of Equation 5.33 has the Laplace approximation

J(n) ∼
(
2π

n

)m/2
h (x0)

(
det
(
∇2ζ

)
(x0)

)−1/2
exp (−nζ (x0)) . (5.34)

Lemma 78. Suppose Assumption 24 holds. Let ζ(A) := − ln g(A) with g as defined in Equa-

tion (5.32), A ∈ Pk, and A∗ := Jk/k. Then the conditions of Theorem 77 are satisfied for the

following integral, and we have the approximation:

J(n) =

∫
Pk

exp (−nζ(A)) dA

=

(
1 +O

(
1

n

))(
2π

n

)(k−1)2/2 (
det
(
∇2ζ

)
(A∗)

)−1/2
exp (−nζ (A∗)) .

Proof. There are three conditions required for Theorem 77. Consider each in-turn.

1. To see that the integral J(n) converges on Pk, note that exp (−nζ(A)) is a continuous function

and that Pk is a compact set.

2. To show that ∀ϵ ∈ (0, 1) : d(ϵ) > 0, fix ϵ > 0 and assume |A −A∗| ≥ ϵ in Frobenius norm.

Note that Assumption 24, gives us that ζ has a unique maximum at A∗ and is both continuous

and differentiable, (∇ζ) (A∗) = 0. Second,
(
∇2ζ

)
(A∗) ≻ 0. By applying the Fundamental

Theorem of Calculus, we have that d(ϵ) > 0.

3. Positive definiteness of the Hessian matrix
(
∇2ζ

)
(A∗) is given in Claim 81.

Since all three conditions hold, we can apply the high-dimensional Laplace method to ζ(A).
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Now we define Lemma 79, but defer its proof until after Lemma 80.

Lemma 79. Let G ∼ GN (kn) as in Definition 59. Let ρ1 = (P1,1, ..., P1,k) and ρ2 = (P2,1, ..., P2,k)

be two balanced k-partitions of V (G) and let ρ1 ∩ ρ2 = A be a k × k matrix where the entry in row

i, column j, denoted ai,j, equals |P1,i ∩ P2,j |/n. Let ψ(A) be defined as

ψ (A) :=
∏
i,j∈[k]

f(ai,j)
ai,j .

as was stated in Equation (5.31). Then

ψ (A)
n ≥ P [Eγ(ρ1) ∧ Eγ(ρ2)] .

Lemma 80. (Second Moment Average γ-Friendly Balanced k-Partition). With Xγ from Lemma 74

and under Assumption 24, (EXγ)
2 ≳ EX2

γ .

Proof. For EX2
γ , we group together pairs of (ρ1, ρ2) by the fraction of entries upon which they agree

in each part, denoted by ρ1 ∩ ρ2. Note that for a fixed Z, the number of pairs (ρ1, ρ2) such that

ρ1 ∩ ρ2 = Z/n is the product of the
(

kn
n,...,n

)
choices for ρ1 and the

∏
i∈[k]

(
n

zi,1,...,zi,k

)
choices for ρ2

given ρ1. Thus,

EX2
γ =

(
kn

n, ..., n

)∑
Z

P [Eγ(ρ1) ∧ Eγ(ρ2)] ·
∏
i∈[k]

(
n

zi,1, ..., zi,k

)
. (5.35)

We will see from Lemma 79 that ψ (Z/n)
n ≥ P [Eγ(ρ1) ∧ Eγ(ρ2)] where ψ is defined in Equa-

tion (5.31). Let Qn =
∑

Z,A:= 1
nZ ψ(A)n ·

(∏
i∈[k]

(
n

ai,1n,...,ai,kn

))
. We want to approximate Qn by

an integral, so we use function g(A), where

g(A) :=
ψ(A)∏

i,j∈[k] a
ai,j
i,j

=
∏
i,j∈[k]

(
f(ai,j)

ai,j

)ai,j
.

as defined in Equation (5.32) to simplify the terms of Qn similar to Equation (5.24) and Equa-

tion (5.25) for g(a) in the bisection case.

By Stirling’s approximation, we have that when every ai,j of A is bounded away from zero and one

by a constant the following is true,∏
i∈[k]

(
n

ai,1n, ..., ai,kn

)ψ(A)n <
g(A)n

(2πn)
k(k−1)

2

(∏
i,j∈[k] ai,j

)1/2 (1 +Ok

(
1

n

))
. (5.36)

Note that this does not apply in the tail, when some term ai,j is close to 0 or 1. Here we can use

the unique maximum of g from Assumption 24, to see that limn→∞
g(A)n

g(A∗)n = 0. Thus the terms of

the sum Qn in this interval is also bounded by the maximum value at A∗.

We approximate Qn by an integral and then, by Lemma 78, we can use the high-dimensional Laplace

Method (Theorem 77) to approximate the integral . When replacing the sum over matrices Z whose

rows and columns sum to n with stochastic matrices A ∈ Pn, we first must perform a change of
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variables. In particular, we pull out a factor of n from each independent entry to obtain a multiple

of n(k−1)2 which we pull out of the integral.

Qn = n(k−1)2
∫
Pk

en ln g(A)

(2πn)
k(k−1)

2

(∏
i,j∈[k] ai,j

)1/2 dA(1 +Ok

(
1

n

))

≲
n(k−1)2

(
2π
n

) (k−1)2

2 e
n ln g

(
Jk
k

) (
det
(
∇2|A=Jk/k

))−1/2

(2πn)
k(k−1)

2 k
k
2

(
1 +Ok

(
1

n

))

=
n(k−1)2

(
2π
n

) (k−1)2

2 knkf
(
1
k

)kn (
det
(
∇2|A=Jk/k

))− 1
2

(2πn)
k(k−1)

2 k
k
2

(
1 +Ok

(
1

n

))

≲k
knkf

(
1
k

)kn
(2πn)

(k−1)
2 k

k
2

(
1 +Ok

(
1

n

))

where ∇2|A=Jk/k is the Hessian of ln g(A) evaluated at Jk/k. By Assumption 24, g is concave in

the neighbourhood of 1
kJk, so det

(
∇2|A=Jk/k

)
is a constant dependent only on k. From Lemma 79,

f (1/k) is the Gaussian measure of a wedge of angle π
2 whose apex is at distance r from the origin,

where

r :=
ck − γ
σ1

= (ck − δ)

√
2(k − 1)(

1 + 1
k

)
k − 2

= (ck − δ)
√
2.

This will be important when comparing with the first moment terms arising from the denominator.

For the denominator, (EXγ)
2, we have

(
kn

n, ..., n

)(
P[Eγ(ρ1, x1,1)]

kn

k!

)2

=
knk
√
k
(
P[Eγ(ρ1, x1,1)]

2
)nk

(2πn)
(k−1)

2 k!

(
1 +Ok

(
1

n

))

Recall that (PEγ(ρ1, x1,1))
2
= P[Z1 ≥ (ck − δ)∧Z2 ≥ (ck − δ)] for independent standard Gaussians

Z1 and Z2. This is the Gaussian measure of a wedge of angle π
2 at a distance

√
2(ck − δ) away from

the origin and it is exactly the value of f(1/k).

Putting these bounds together,
EX2

γ

(EXγ)2
≲ k!

k(k+1)/2 ≲k 1 as required.

Proof of Lemma 79. This will be similar to the proof of Claim 66. Fix a vertex x1,1 in part P1,1 of

ρ1 and part P2,1 of ρ2 and compute P [Eγ(ρ1;x1,1) ∧ Eγ(ρ2;x1,1)]. Let a := a1,1.

Recall from Definition 16, that in order for x1,1 to be γ-friendly with respect to ρ1, we required that∑
xi,j∈P1,1

Xi,j ≥ 1
k−1

∑
xi,j∈P1,2∪···∪P1,k

Xi,j + γ. Similarly, in order for x1,1 to be γ-friendly with
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respect to ρ2, we require that
∑
xi,j∈P2,1

Xi,j ≥ 1
k−1

∑
xi,j∈P2,2∪···∪P2,k

Xi,j + γ. Thus, we define

R+ =
∑

xi,j∈P1,1∩P2,1

Xi,j −
1

k − 1

 ∑
xi,j∈(P1,2∪···∪P1,k)∩(P2,2∪···∪P2,k)

Xi,j

 (5.37)

R
(1)
− =

∑
xi,j∈P1,1∩(P2,2∪···∪P2,k)

Xi,j (5.38)

R
(2)
− =

∑
xi,j∈(P1,2∪···∪P1,k)∩P2,1

Xi,j (5.39)

where these variables are distributed like

R+ ∼ N
(an

2
,
an

4

)
− 1

k − 1
N
(
(k − 1)n− (1− a)n

2
,
(k − 1)n− (1− a)n

4

)
∼ N

(
− (1− a)n

2

(
1− 1

k − 1

)
,
n

4

(
a+

1

k − 1
− 1− a

(k − 1)2

))
R

(i)
− ∼ N

(
(1− a)n

2
,
(1− a)n

4

)
for i ∈ {1, 2}.

Further define the following random variables and extract a factor of
√

nk
4(1−k) to obtain

T1 = R+ +
R

(1)
− +R

(2)
−

2

(
1− 1

k − 1

)
(5.40)

T2 =
R

(1)
− −R

(2)
−

2

(
1 +

1

k − 1

)
(5.41)

where T1 ∼ N
(
0, σ2

1

)
for σ2

1 = (1+a)k−2
2(k−1) and T2 ∼ N

(
0, σ2

2

)
for σ2

2 = k(1−a)
2(k−1) . Since R

(1)
− and R

(2)
−

are independent and identically distributed Gaussian random variables, R
(1)
− +R

(2)
− and R

(1)
− −R

(2)
−

are uncorrelated jointly Gaussian random variables, and are, therefore, independent as well. Thus

T1 and T2 are independent random variables with joint pdf

fT1,T2
(t1, t2) =

1

2πσ1σ2
exp

(
− t21
2σ2

1

− t22
2σ2

2

)
. (5.42)

Standardizing T1 and T2, it follows that

P [Eγ(ρ1;x1,1) ∧ Eγ(ρ2;x1,1)] = PZi∼N (0,1) [Z1σ1 + Z2σ2 ≥ (ck − δ) ∧ Z1σ1 − Z2σ2 ≥ (ck − δ)] .

Let δ ∈ (0,min(ck, 1)) where ck is the constant such that P[Z ≥ ck] = 1/k. Then the region where

both inequalities holds is a wedge with angle 2θ where θ := arctan
(
σ1

σ2

)
and whose apex is at a

distance w := ck−γ
σ1

from the origin, denoted R. It is important to note that both θ and w are

functions of a, the fraction of overlap between part in ρ1 and the part in ρ2. See Figure 5.3.

Note that P [Eγ(ρ1;x1,1) ∧ Eγ(ρ2;x1,1)] = θ
π when γ = 0. In general, when γ > 0 we have that

f(a) := µ(R) =
∫
R

e−x2/2

2π
dx. (5.43)
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−γ

σ2

γ

σ1

γ

σ2

Z1

Z2

Z2 = Z1
σ1

σ2

−

γ

σ2

Z2 = −Z1
σ1

σ2

+
γ

σ2

Figure 5.3: Region in gray depicts is the wedge R which is the domain of the two dimensional
Gaussian (Z1, Z2) where Z1σ1 + Z2σ2 ≥ (ck − δ) and Z1σ1 − Z2σ2 ≥ (ck − δ).

(a) View 1 (b) View 2 (c) View 3

Figure 5.4: Plot of part of the function g for k = 3. Let A be the k × k stochastic matrix of

the overlaps between the different parts. Recall that g (A) =
∏
i,j

(
f(ai,j)
ai,j

)ai,j
. We plotted three

different views of the function
∏
j

(
f(a1,j)
a1,j

)a1,j
(one row of the A which is the product of three

terms).

Note that when α = 1/k, we have that σ1

σ2
= 1 and θ = π

4 .

The above is an upper-bound for the probability that x1,1 is γ-friendly with respect to the balanced

k-partitions ρ1 and ρ2 assuming that x1,1 is in part P1,1 of ρ1 and part P2,1 of ρ2. Over all n vertices

in P1,1, a1,1n will be similar to x1,1 while the remaining (1−a)n will be in part P1,1 of ρ1 but end up

in part P2,i for ρ2 where i ∈ {2, ..., k}. If we repeat the above computations for a vertex x1,j which

ended up in P2,i, we would find that P [Eγ(ρ1;x1,j) ∧ Eγ(ρ2;x1,j)] ≤ f(a1,i). The same is true for the

ai,jn vertices xi,j in part P1,i of ρ1 and part P2,j of ρ2 i.e. P [Eγ(ρ1;x1,j) ∧ Eγ(ρ2;x1,j)] ≤ f(ai,j).

Thus, if we define ψ (A) :=
∏
i,j∈[k] f(ai,j)

ai,j , we have that P [Eγ(ρ1) ∧ Eγ(ρ2)] ≤ ψ (A)
n
. Let

gn(A) be as defined in Equation (5.32). The plot of part of gn is shown in Figure 5.4.

Note that Claim 81, stated below is related to Assumption 24. In particular, for a fixed integer

k ≥ 3, Assumption 24 says that ln g has a global optima at Jk/k while Claim 81 shows that ln g is

concave at Jk/k and ∇2 ln g is continuous.
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Claim 81. Let A∗
k be the k × k matrix Jk/k. Define the function

ln g(A) =
∑
i,j∈[k]

ai,j ln fn(ai,j)− ai,j ln ai,j

where g : Pk → R was defined in Equation (5.32) as

g(A) :=
∏
i,j∈[k]

(
f(ai,j)

ai,j

)ai,j

with the Birkhoff Polytope Pk. Then ∇2 ln g is continuous and ∇2 ln g is concave and has a local

maxima at A∗
k.

Proof. In our application, we will identify the k×k matrix Ak with a vector ak containing k
2 entries.

The entries of ak will be indexed just as they were in Ak.

Let F : R(k−1)2 → Rk
2

be an affine transformation from the set of (k− 1)2 real-valued vectors to the

set of k2 real-valued vector where, given ak−1 ∈ R(k−1)2 ,

(F (ak−1))i,j =



(ak−1)i,j if i, j < k

1−
∑k−1
ℓ=1 (ak−1)ℓ,j if i = k and j < k

1−
∑k−1
ℓ=1 (ak−1)i,ℓ if j = k and i < k

2− k +
∑
ℓ1,ℓ2∈[k−1](ak−1)ℓ1,ℓ2 otherwise

.

Then we can write F (a) = Ma+ c for k2 × (k − 1)2 matrix M and vector c with k2 entries.

Further, let ln g̃ : Rk×k → R be the same function as ln g where the domain is the set of all real

vectors with k2 entries as oppose to just the those drawn from the Birkhoff Polytope Pk. Then, in

terms of the indepenent variables, ln g (ak−1) = ln g̃ ◦ F (ak−1) and the Hessian of the ln g can be

written as M⊤∇2 ln g̃(F (ak−1))M. For vectors ak with k2 independent entries ai,j for i, j ∈ [k],

ln g̃(ak) =
∑
i,j∈[k]

aij ln f (ai,j)− ai,j ln ai,j

and, in particular, for the vector 1k2/k, ∇ ln g̃ (1k2/k) = c · Ik2 . Thus, to show that ln g is concave

at 1k2/k, we will show that ∇2 ln g is negative definite, by showing that(
d

da

)2

a ln f(a)− a ln a < 0.

By logarithmic derivatives, we have that(
d

da

)2

a ln f(a)− a ln a =
af ′′(a)

f(a)
− a

(
f ′(a)

f(a)

)2

+
2f ′(a)

f(a)
− 1

a
. (5.44)

Thus, we need to be able to compare the ratio of these terms involving f(a), f ′(a), and f ′′(a). Recall
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that f : (0, 1)→ R is defined in Equation (5.30) as

f(a) := P[σ1Z1 + σ2Z2 ≥ (ck − δ) ∧ σ1Z1 − σ2Z2 ≥ (ck − δ)],

where Z1 and Z2 are standard Gaussians, ck := Φ−1 (1− 1/k), σ1 :=
√

(1+a)k−2
2(k−1) , and σ2 :=

√
k(1−a)
2(k−1) .

See Assumption 24. If we let the vector x be

x =

[
X1

X2

]
=

[
σ1Z1 + σ2Z2

σ1Z1 − σ2Z2

]
(5.45)

Then x has covariance matrix Σ(a) with reciprocal Σ−1(a) where

Σ(a) =

[
1 ak−1

k−1
ak−1
k−1 1

]
Σ−1(a) =

1

det (Σ)

[
1 1−ak

k−1
1−ak
k−1 1

]
. (5.46)

Note that Σ
(
1
k

)
= Σ−1

(
1
k

)
= Ik. It follows that

f(a) =

∫ ∞

ck−δ

∫ ∞

ck−δ

exp
(

−x⊤Σ−1x
2

)
2π
√
det (Σ)

dx1dx2 (5.47)

=

∫ ∞

ck−δ

∫ ∞

ck−δ

exp

(
−(x2

1+2x1x2( 1−ak
k−1 )+x

2
2)

2 det(Σ)

)
2π
√

det (Σ)
dx1dx2 (5.48)

We want to take the derivative and second derivative of f with respect to a. To this end, we define

u(a, x1, x2) and v(a) and compute their derivative and second derivative with respect to a.

u(a, x1, x2) := x21 + 2x1x2

(
1− ak
k − 1

)
+ x22 (5.49)

u

(
1

k
, x1, x2

)
= x21 + x22 (5.50)

u′(a, x1, x2) = −2x1x2
(

k

k − 1

)
(5.51)

u′′(a, x1, x2) = 0. (5.52)

Further, we define

v(a) := det (Σ) (a) = 1−
(
1− ak
k − 1

)2

(5.53)

v

(
1

k

)
= 1 (5.54)

v′(a) =
2k(1− ak)
(k − 1)2

(5.55)

v′
(
1

k

)
= 0 (5.56)

v′′(a) = − 2k2

(k − 1)2
. (5.57)
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Using these functions, we can write

f(a) =
1

2π

∫ ∞

ck−δ

∫ ∞

ck−δ
v(a)−1/2 exp

(
−u(a, x1, x2)

2
v(a)−1

)
dx1dx2 (5.58)

f

(
1

k

)
=

1

2π

∫ ∞

ck−δ

∫ ∞

ck−δ
exp

(
−
u
(
1
k , x1, x2

)
2

)
dx1dx2 (5.59)

=

(∫ ∞

ck−δ

exp
(
−x2/2

)
√
2π

dx

)2

= (1− Φ (ck − δ))2 >
1

k2
(5.60)

where the last line follows by our choice of ck. Now, take the derivative of f with respect to a.

f ′(a) =
1

2π

∫ ∞

ck−δ

∫ ∞

ck−δ

(
d

da

)
v(a)−1/2 exp

(
−1

2
u(a, x1, x2)v(a)

−1

)
dx1dx2 (5.61)

=
1

2π

∫ ∞

ck−δ

∫ ∞

ck−δ
−1

2
v(a)−3/2 exp

(
−1

2
u(a, x1, x2)v(a)

−1

)
u′(a, x1, x2) (5.62)

+
1

2
v(a)−5/2v′(a) exp

(
−1

2
u(a, x1, x2)v(a)

−1

)
u(a, x1, x2) (5.63)

− 1

2
(v(a))

−3/2
v′(a) exp

(
−u(a, x1, x2)

2v(a)

)
dx1dx2 (5.64)

Observe that since v′
(
1
k

)
= 0, the terms in Equation (5.63) and Equation (5.64) are equal to zero

when we evaluate f ′(a) at 1
k and we have

f ′
(
1

k

)
=

1

2π

∫ ∞

ck−δ

∫ ∞

ck−δ
−1

2
exp

(
−
u
(
1
k , x1, x2

)
2

)
u′
(
1

k
, x1, x2

)
dx1dx2 (5.65)

=

(
k

k − 1

)(∫ ∞

ck−δ

x exp
(
−x2/2

)
√
2π

dx

)2

(5.66)

=

(
k

k − 1

)
exp

(
−(ck − δ)2

)
2π

. (5.67)

Next, we take the second derivative of f with respect to a and only compute those terms which

would be non-zero when a = 1/k. For the term in Equation (5.62), if we apply the product rule

on v(a)3/2 or u′(a, x1, x2), then the resulting terms will be equal to zero. Thus, we can only take a

derivative with respect to exp
(
−u(a,x1,x2)

2v(a)

)
. For the terms in Equation (5.63) and Equation (5.64),

if we do not take a derivative with respect to v′(a), then the result will have a multiple of v′(a) and

so the term will evalute to zero when we set a = 1/k. It follows that

f ′′
(
1

k

)
=

1

2π

∫ ∞

ck−δ

∫ ∞

ck−δ

1

4
exp

(
−
u
(
1
k , x1, x2

)
2

)
u′
(
1

k
, x1, x2

)2

(5.68)

+
1

2
v′′
(
1

k

)
exp

(
−
u
(
1
k , x1, x2

)
2

)
u

(
1

k
, x1, x2

)
(5.69)

− 1

2
v′′
(
1

k

)
exp

(
−
u
(
1
k , x1, x2

)
2

)
dx1dx2 (5.70)

Substituting in the definitions of u
(
1
k , x1, x2

)
from Equation (5.50), u′

(
1
k , x1, x2

)
from Equation (5.51),
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and v′′
(
1
k

)
from Equation (5.57), we have the following closed form for f ′′

(
1
k

)
,

f ′′
(
1

k

)
=

1

2π

∫ ∞

ck−δ

∫ ∞

ck−δ
exp

(
−x

2
1 + x22
2

)
x21x

2
2

(
k

k − 1

)2

(5.71)

−
(

k

k − 1

)2

exp

(
−x

2
1 + x22
2

)(
x21 + x22

)
(5.72)

+

(
k

k − 1

)2

exp

(
−x

2
1 + x22
2

)
dx1dx2 (5.73)

=

((
k

k − 1

)∫ ∞

ck−δ

(
1− x2

)
exp

(
−x2/2

)
√
2π

dx

)2

(5.74)

=

(
k

k − 1

)2
 (ck − δ)2 exp

(
− (ck − δ)2

)
2π

 (5.75)

Substitute the functions f
(
1
k

)
from Equation (5.60), f ′

(
1
k

)
from Equation (5.67), and f ′′

(
1
k

)
from Equation (5.75) into our original function stated in Equation (5.44) and let w(a) := a ln f (a)−
1
a ln

1
a to obtain,

w′′
(
1

k

)
=

1

k

(
f ′′
(
1
k

)
f
(
1
k

) )− 1

k

(
f ′
(
1
k

)
f
(
1
k

) )2

+
2f ′
(
1
k

)
f
(
1
k

) − k (5.76)

=
k

(k − 1)2

 exp
(
− (ck − δ)2

)
2π (1− Φ (ck − δ))2

2 (ck − δ)2
exp(−(ck−δ)2)
2π(1−Φ(ck−δ))2

− 1

 (5.77)

+
2k

k − 1

 exp
(
− (ck − δ)2

)
2π (1− Φ (ck − δ))2

− k (5.78)

If we can show that the terms in Equation (5.77) and Equation (5.78) are negative, then we would

have completed the proof that ln g is negative definite at 1k2k.

First, if ϕ is the PDF of the standard Gaussian, then

ϕ(ck − δ) =
exp

(
−(ck − δ)2/2

)
√
2π

.

Further, we can write 1−Φ(ck−δ) as the complement of the CDF of the standard Gaussian, denoted

Φ(ck − δ). Note that the ratio Φ(x)/ϕ(x) is the well know Mill’s ratio. We denote this quantity by

m(x). Substituting Mill’s ratio where appropriate in Equation (5.76), we have

w′′
(
1

k

)
=
k
(
(ck − δ)2m(ck − δ)2 − 1 + 2(k − 1)m(ck − δ)2

)
(k − 1)2m(ck − δ)4

− k. (5.79)

Thus it suffices to show that(
(ck − δ)2m(ck − δ)2 − 1 + 2(k − 1)m(ck − δ)2

)
(k − 1)2m(ck − δ)4

< 1.
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Recall that m(x) can be bounded as

π√
x2 + 2π + (π − 1)x

< m(x) <
4√

x2 + 8 + 3x
. (5.80)

where the lower bound is due to Boyd [Boy59] and the upper bound is due to Sampford [Sam53].

Using the bounds in Equation (5.80), we have

m (x)
2
<

16

x2 + 8 + 9x2 + 6x2
√

1 + 8/x2
(5.81)

=
8

4 + 5x2 + 3x2
√

1 + 8/x2
(5.82)

m (x)
2
>

π2

2π + ((π − 1)2 + 1)x2 + 2(π − 1)x2
√
1 + (2π)/x2

(5.83)

Plugging these into Equation (5.79) with x = ck − δ, we have in the numerator,

(
x2m(x)2 − 1 + 2(k − 1)m(x)2

)
(5.84)

<
8x2

4 + 5x2 + 3x2
√
1 + 8/x2

− 1 +
16(k − 1)

4 + 5x2 + 3x2
√

1 + 8/x2
(5.85)

=
8x2 −

(
4 + 5x2 + 3x2

√
1 + 8/x2

)
+ 16(k − 1)

4 + 5x2 + 3x2
√
1 + 8/x2

(5.86)

≤
3x2

(
1−

√
1 + 8/x2

)
+ 16(k − 1)− 4

8x2 + 4
(5.87)

and in the denominator,

(k − 1)2m(ck − δ)4 =
(k − 1)2π4(

2π + ((π − 1)2 + 1)x2 + 2(π − 1)x2
√
1 + (2π)/x2

)2 (5.88)

≥ (k − 1)2π4(
2π + x2

(
3.58642 + 4.2832

√
1 + (2π)/x2

))2 . (5.89)

Together, we have(
0.75 · x2

(
1−

√
1 + 8/x2

)
+ 4(k − 1)− 1

)
·
(
2π + x2

(
3.58642 + 4.2832

√
1 + (2π)/x2

))2
(2x2 + 1) (k − 1)2π4

(5.90)

<

(
0.75 · x2

(
1−

√
1 + 8/x2

)
+ 4k − 5

)
·
(
2π + x2

(
3.58642 + 4.2832

√
1 + (2π)/x2

))2
2x2(k − 1)2π4

≤ 1

(5.91)

for integer k ≥ 7 as x > 1 for small δ. When k ∈ {3, 4, 5, 6}, we can explicitly evaluate Equa-

tion (5.76) to see that w′′ ( 1
k

)
< 0.
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5.3 Bernoulli Edges

The general structure will again be via the second moment method though, as we will soon show,

much of the groundwork has already been laid. In particular, Minzer, Sah, and Sawhney [MSS23]

proved several lemmas — restated in Lemma 82, Lemma 83, and Lemma 84 for ease of use — which

approximate the sum and difference of binomial random variables by the tail of a standard Gaussians

random variable up to error on the order of O(1/n). We will use these lemmas to translate the γ-

friendly bisection problem in G ∼ GB(2n) to the same problem in G ∼ GN (2n). For the average,

γ-friendly, balanced k-partitions problem, we can do the same but will require similar lemmas which

we prove in the appendix, namely Lemma 85, Lemma 86, and Lemma 87 for balanced k-partitions.

Lemma 82 (A.1, [MSS23]). Let X1 ∼ Bin(n, 1/2) and X2 ∼ Bin(n− ℓ, 1/2) for 0 ≤ ℓ ≤ n. For n

large,

P [X1 −X2 = t] =
1√
πn

exp

(
−
(
t− ℓ/2√

n

)2

+O

(
1

n

))
± exp

(
Ω(log n)2

)
(5.92)

Lemma 83 (A.2, [MSS23]).

P [Bin (n− 1, 1/2)− Bin (n, 1/2) ≥ t] = PZ∼N (0,1)

[
Z ≥ t

√
2√
n

]
+O

(
1

n

)
.

Lemma 84 (A.4, [MSS23]). Given a ∈ (0, 1), define

gγ(a) := PZi∼N (0,1)

[√
aZ1 +

√
1− aZ2 ≥ γ ∧

√
aZ1 −

√
1− aZ2 ≥ γ

]
.

Let X1 ∼ Bin(k− 1, 1/2), X2 ∼ Bin(n− k, 1/2), X3 ∼ Bin(k, 1/2), and X4 ∼ Bin(n− k, 1/2). Then

for any integer Γ and γ = Γ/
√
n, we have the following approximation,

P [X1 −X3 +X2 −X4 ≥ Γ ∧X1 −X3 −X2 +X4 ≥ Γ] = gγ(a) +O

(
1

n

)
.

Lemma 85 (Binomal Local Limit). For non-negative integer ℓ ≤ n,

P

[
Bin((k − 1)n, 1/2)

k − 1
− Bin(n− ℓ, 1/2) ∈ (t− 1, t]

]
=√

2(k − 1)

πkn
exp

(
−2(k − 1)

nk

(
t− ℓ

2

)2

+O

(
1

n

))
± exp

(
−Ω(log n)2

)
(5.93)

Lemma 86 (Binomial Local Limit Difference). For constant non-negative integer ℓ ≤ n and constant

k,

P

[
Bin(n− 1, 1/2)− Bin((k − 1)n, 1/2)

k − 1
≥ t
]
= P

[
Z ≥ t

√
4(k − 1)

kn

]
+Ok

(
1

n

)
.

Lemma 87 (Correlated Binomial Local Limit). Let an be an integer. Define X1 ∼ Bin(an, 1/2),
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X3 ∼ Bin((k − 1)n− (1− a)n, 1/2), and X2, X4 ∼ Bin((1− a)n, 1/2). Then, for γ,

P

[
X1 −

X3

k − 1
+X2 −

X4

k − 1
≥ γ ∧X1 −

X3

k − 1
− X2

k − 1
+X4 ≥ γ

]
= PZi∼N (0,1) [σ1Z1 + σ2Z2 ≥ γ ∧ σ1Z1 − σ2Z2 ≥ γ] +Ok

(
1

n

)
(5.94)

where σ1 =

√
nk2(a+ k−2

k )
8(k−1)2 and σ2 =

√
nk2(1−a)
8(k−1)2 .

5.3.1 γ-Friendly Bisection

Lemma 88. (First Moment γ-Friendly Bisection in GB(2n)). Let G ∼ GB(2n). For any integer

γ ≤ −1, let Xγ be the number of γ-friendly bisections of G. Then

E[Xγ ] = ec
√
n. (5.95)

Instead, when γ ≥ 0, EXγ = o(1).

Proof. Assume that |V (G)| = 2n. Let V (G) = {xi,j : i ∈ [2], j ∈ [n]}. Let ρ = (P1, P2) be a

bisection of the vertices. Fix vertex x1,1 and let Eγ(ρ, x1,1) be the event that vertex x1,1 is γ-

friendly with respect to ρ. Further let Eγ(ρ) be the event that all vertices are γ-friendly with

respect to ρ. Since the edges are directed, the events Eγ(ρ, xi,j) are independent and we have that

PEγ(ρ) = P [Eγ(ρ, x1,1)]
2n
.

Let Xi,j be the indicator for the edge x1,1 → xi,j where X1,1 = 0 and Xi,j = Bern(1/2). Without

loss of generality, let P1 = {x1,j : j ∈ [n]} and P2 = {x2,j : j ∈ [n]}. Define Si =
∑
j∈[n]Xi,j and

observe that S1 ∼ Binom(n− 1, 1/2) while S2 ∼ Binom(n, 1/2). By Lemma 83, we have that

PEγ(ρ, x1,1) = P(S1 − S2 ≥ γ) = PZ∼N (0,1)

[
Z ≥ γ

√
2

n

]
+O

(
1

n

)
.

If γ ≤ −1, then we have that PEγ(ρ, x1,1) =
1
2 +Ω

(
1√
n

)
and it follows that

EXγ =
∑
ρ

PEγ(ρ) =

(
2n

n

)
P [Eγ(ρ, x1,1)]

2n
=

(
2n

n

)(
1

2
+

c√
n

)2n

≈ ec
√
n ≫ 1.

Similarly, if γ ≥ 0, then we have that PEγ(ρ, x1,1) =
1
2 +O

(
1
n

)
and it follows that

EXγ =
∑
ρ

PEγ(ρ) =

(
2n

n

)
P [Eγ(ρ, x1,1)]

2n
=

(
2n

n

)(
1

2
+
c

n

)2n

= o (1) .

The second moment computations are similar.

Lemma 89. (Second moment for γ-Friendly Bisections in GB(2n)). With Xγ as defined in Lemma 88,

(EXγ)
2 ≥ c · EX2

γ for a universal constant c.
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Proof. The proof is similar to Lemma 67. We sum over all pairs of bisections ρ1 = (P1,1, P1,2)

and ρ2 = (P2,1, P2,2) and compute the probability that P [Eγ(ρ1) ∧ Eγ(ρ2)]. Suppose that the

overlap of ρ1 and ρ2 is |P1,1 ∩ P2,1| and is equal to an integer z. Let α := z/n. Then, compute

P [Eγ(ρ1, x1,1) ∧ Eγ(ρ2, x1,1)] as follows.

Fix vertex x1,1 and assume without loss of generality that it appears in P1,1 of ρ1 and P2,1 of ρ2.

Let Xi,j be the indicator for the edge (x1,1, xi,j) with X1,1 = 0. Let Si,j =
∑

(k,ℓ)∈P1,k∩P2,ℓ
Xk,ℓ for

i, j ∈ {1, 2}. By Lemma 84, we have

P [Eγ(ρ1, x1,1) ∧ Eγ(ρ2, x1,1)]

= P [S1,1 + S1,2 − S2,1 − S2,2 ≥ γ ∧ S1,1 − S1,2 + S2,1 − S2,2 ≥ γ]

= PZi∼N (0,1)

[√
αZ1 +

√
1− αZ2 ≥ γ ∧

√
αZ1 −

√
1− αZ2 ≥ γ

]
+Ok

(
1

n

)
.

Notice that this is exactly the probability that we encountered in the proof of Claim 66 for the

Gaussian distributed edges. Using the same argument, we have

P [Eγ(ρ1) ∧ Eγ(ρ2)] ≤ ψn(α)2n,

where ψn(α) is defined in Equation (5.4). Plugging this probability into

EX2
γ =

(
2n

n

) n∑
z=0

(
n

z

)2

P [Eγ(ρ1) ∧ Eγ(ρ2)] ,

the remainder of the argument is identical to that of Lemma 67.

Proof of Theorem 21. For integer γ ≤ −1, we want to show that every G ∼ GB(2n) contains a

γ-friendly bisection with uniform positive probability. To this end, we have from Lemma 88 that

EXγ ≫ O(1). Further, from Lemma 89, we have that the second moment of Xγ satisfies (EXγ)
2 ≥

c ·EX2
γ from a universal constant c. It follows from the Paley-Zygmund inequality that P [Xγ > 0] ≥

(EXγ)
2

EX2
γ
≥ 1

c as required.

For the case where γ ≥ 0, Lemma 88 also gives that EXγ = o(1).

5.3.2 γ-Friendly Balanced k-Partition

Lemma 90. (First Moment γ-Friendly Balanced k-Partition in GN (kn)). Let G ∼ GB(kn). For

any integer k > 2 and γ ≤ σ(ck − δ) where δ > 0, ck := Φ−1 (1− 1/k), and σ :=
√

nk
4(k−1) , let Xγ be

the number of average γ-friendly balanced k-partitions of G. Then EXγ = eΩk(n).

Conversely, when γ ≥ σck, we have EXγ = o(1).

Proof. Let X ′
γ be the number of average γ-friendly balanced k-partitions of G′ where G′ ∼ GN (kn).

From Lemma 86, we have that EXγ = EX ′
γ + Ok (1). By Lemma 65, we have that EX ′

γ = eΩk(n),

then EXγ = eΩk(n) as well. Conversely, when γ ≥ σck, EX ′
γ = o(1) and EXγ = o(1) as well.
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Lemma 91. (Second Moment γ-Friendly Balanced k-Partition in GB(kn)). Suppose assumption 24

holds. With Xγ as defined in Lemma 90, (EXγ)
2 ≥ c · EX2

γ .

Proof. Let V (G) = {xi,j : i ∈ [k], j ∈ [n]} be the set of vertices and let ρ1 = (P1,1, ..., P1,k)

and ρ2 = (P2,1, ..., P2,k) be two balanced k-partition. Fix x1,1 and let Eγ(ρi, x1,1) and Eγ(ρi)

be the events that ρi is γ-friendly with respect to x1,1 and γ-friendly respectively. As before,

let Xi,j be the indicator for the edge x1,1 to xi,j where X1,1 = 0 and Xi,j = Bern(1/2). Let

Si,j =
∑
xu,v∈Pi,j

Xu,v. Note that S1,i1 , S2,i2 ∼ Binom(n−1, 1/2) where x1,1 ∈ P1,i1 and x1,1 ∈ P2,i2 .

Otherwise S1,i ∼ Binom(n, 1/2). Since our chosen γ will be much much greater than a constant, it

suffices to take the distribution of S1,i1 , S2,i2 to be Binom(n, 1/2) as well.

Suppose that A is the k × k stochastic which records the amount of overlap between the ρ1 and ρ2

i.e. entry ai,j in A is equal to |P1,i ∩ P2,j |/n. Further, we define

X1 =
∑

xi,j∈P1,1∩P2,1

Si,j (5.96)

X2 =
∑

xi,j∈P1,1∩(P2,2∪···∪P2,k)

Si,j (5.97)

X3 =
∑

xi,j∈(P1,2∪···∪P1,k)∩(P2,2∪···∪P2,k)

Si,j (5.98)

X4 =
∑

xi,j∈(P1,2∪···∪P1,k)∩P2,1

Si,j (5.99)

It follows that

P [Eγ(x1,1; ρ1) ∧ Eγ(x1,1; ρ2)]

= P

[
X1 −

X3

k − 1
+X2 −

X4

k − 1
≥ γ ∧X1 −

X3

k − 1
+X4 −

X2

k − 1
≥ γ

]
By Lemma 87 we have that

P

[
X1 −

X3

k − 1
+X2 −

X4

k − 1
≥ γ ∧X1 −

X3

k − 1
+X4 −

X2

k − 1
≥ γ

]
= P

[
X ′

1 −
X ′

3

k − 1
+X ′

2 −
X ′

4

k − 1
≥ γ ∧X ′

1 −
X ′

3

k − 1
+X ′

4 −
X ′

2

k − 1
≥ γ

]
+Ok

(
1

n

)
where X ′

1, X
′
2, X

′
3, X

′
4 are Gaussian random variables with the same mean and variance as their

Binomial counter part which appear in Lemma 79. The remainder on the proof follows exactly

as Lemma 80.

Lemma 92. For constant k > 2, let G ∼ GB(kn). Further, let γ := σ (ck − δ) where δ > 0,

ck := Φ−1 (1− 1/k), σ :=
√

nk
4(k−1) . Suppose that assumption 24 holds. Then G has an average

γ-friendly balanced k-partition with uniform positive probability.

Proof. We use the Paley-Zygmund inequality to show that P [Xγ ≥ 0] is bounded below by a con-

stant. From Lemma 90 we know that EXγ ≫ 1. From Lemma 91 we know that there exists a

constant c such that (EXγ)
2 ≥ c · EX2

γ . It follows that P
[
Xγ >

1
2

]
≥
(
1− 1

2EXγ

)2
1
c ≥

1
2c .
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5.3.3 With High Probability

We can turn the with uniform positive probability result of Lemma 92 into the with high probability

result of Theorem 25 by using a modified version of Theorem 94 from Minzer, Sah, and Sawh-

ney [MSS23]. This result boosts constant probability events in the domain of undirected graphs

with labeled vertices which are invariant under relabelling, i.e. Sn-invariant, to 1 − o(1) by reduc-

ing the friendliness at every vertex by o(
√
n). We will show that the same result applies to directed

graphs. Since each vertex is Ωk(
√
n)-friendly for the average γ-friendly balanced k-partition problem

before boosting, they will remain so after.

We first define a metric between two directed graphs.

Definition 93. For any two directed graphs on a fixed (labeled) vertex set V , let

d(G,H) = max
v∈(G∆H)

deg(v),

where G∆H denotes the graph with edge set equal to the symmetric difference of G and H, namely,

(E(G)\E(H)) ∪ (E(H)\E(G)), and where deg(v) denotes the out degree of the vertex v in G∆H.

Theorem 94. (Similar to Theorem 2.2, [MSS23]). Let G be a family of directed graphs on a labeled

vertex set V that is invariant under permuting vertices, and let µ(·) be the uniform measure on

labeled directed graphs on n vertices. Let ϵ ∈ (0, 1), possibly dependent on n. Suppose that µ(G) ≥ ϵ
and let

GT =

{
H : min

G∈G
d(G,H) ≤ T

}
.

Then µ
(
G
c log(1/ϵ)

√
n/ logn

)
≥ 1− ϵ for an absolute constant c.

The proof of Theorem 94 relies crucially upon a trichotomy on boolean functions f Lemma 95. Let

N be the dimension of the domain of f i.e. N = n(n − 1) as this is the total number of edges for

directed graphs. In the rest of this section, probabilities and expectations are taken with respect

to the uniform measure on FN2 , which we identify with {0, 1}N . In Lemma 95 s+f is the positive

sensitivity of a function f defined as

s+f (x) =

0 if f(x) = 1∑
i∈[N ] f(x⊕ ei) if f(x) = 0

,

where ei is the canonical basis vector in the ith coordinate and ⊕ is addition in FN2 . Further,

the influence of the ith variable is Ii[f ] = P [f(x) ̸= f(x⊕ ei)], and the total influence of f is

I[f ] =
∑
i Ii[f ].

Lemma 95. (Similar to Lemma 2.5, [MSS23]). Let ϵ ∈ (0, 1/4] and f : {0, 1}N → {0, 1} such that

Ef ∈ [ϵ, 1 − ϵ]. If f is symmetric under the natural Sn-action of the vertices, then the following

holds, where we sample x from the uniform measure on labeled directed graphs µ:

(Inf 1) P
[
s+f (x) > 0

]
≥ cϵ

√
logn
n .
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(Inf 2) There is an integer j ∈ [⌊(log2 n)/2⌋, ⌊log2N⌋] such that

2jP
[
s+f (x) ∈

[
2j , 2j+1

]]
≥ cϵ
√
n(log n)5.

(Inf 3) There are integers ℓ ∈ [2, log∗ n − 1], j ∈
[
⌊log2 n+ 30 log(ℓ+1)n⌋, ⌊log2 n+ 30 log(ℓ) n⌋

]
such

that

2j/2P
[
s+f (x) ∈

[
2j , 2j+1

]]
≥ cϵ

√
n(

log(ℓ) n
)2 .

Lemma 96. (Similar to Theorem 2.5 in [MSS23]). If
∑
i∈[n] Ii[f ]

2 ≤ n−1/4,

E
[√

s+f (x)
]
≳ Var(f)

√
log n.

Instead of proving these theorems and lemmas which are slightly modified versions of the ones which

appear in [MSS23], we will identify the necessary modifications to the proofs of the latter theorems

and lemmas in order for them to apply to boolean functions over directed graphs as described

in Theorem 94, Lemma 95, and Lemma 96.

The key component in [MSS23] to obtain a with high probability result is Lemma 2.5. In our paper,

it will be the corresponding Lemma 95. Given Lemma 95, we can use it to construct an algorithm

which doubles the size of µ(G) while possibly decreasing the friendliness at any vertex by at most

O
(√

n/ log n
)
. After log(1/ϵ) iterations we have µ(G) ≥ 1− ϵ.

Its proof starts by assuming that Inf 1 is false. Either I[f ] ≥
√
n(log n)6, in which case

I[f ] ≍
⌊log2N⌋∑
j=0

2jP
[
s+f (x) ∈

[
2j , 2j+1

]]
≲

⌊log2N⌋∑
j=⌊(log2 n)/2⌋

2jP
[
s+f (x) ∈

[
2j , 2j+1

]]
+
√
n

and Inf 2 is true by the pigeonhole principle, or I[f ] <
√
n(log n)6 — the only difference between

the directed and undirected case is the limit of the summations. In the latter case, we will show

that Inf 3 is true.

Since I[f ] <
√
n(log n)6 and f is symmetric with respect to the relabeling of vertices,

∑
(i1,i2)∈E(G)

I(i1,i2)[f ]
2 =

I[f ]2

n(n− 1)
=

(log n)12

n− 1
≤ 1√

n
.

From the statement of Lemma 95, we have Ef ∈ [ϵ, 1− ϵ] so it follows that Var(f) ≥ ϵ. Thus by the

definition of E
[√

s+f (x)
]
and Lemma 96,

⌊log2N⌋∑
j=0

2−j/2wj ≍ E
[√

s+f (x)
]
≳ ϵ
√

log n,
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where wj = 2jP
[
s+f (x) ∈

[
2j , 2j+1

]]
. We bound the two parts of the sum as follows.

⌊log2 n+100⌋∑
j=0

2−j/2wj ≤ 2(log2 n+100)/2P
[
s+f (x) > 0

]
≲ cϵ

√
log n

⌊log2 n(n−1)⌋∑
j=⌊log2 n+30 log logn⌋

2−j/2wj ≤ 2−⌊log2 n+30 log logn⌋/2cϵ
√
n(log n)5 ≲

cϵ

log n

which implies that the summation from ⌊log2 n + 100⌋ to ⌊log2 n + 30 log log n⌋ is bounded from

below by Ω(ϵ
√
n). Conversely, Inf 3 shows that this sum is bounded above by cϵ

√
log n and we

can arrive at a contradiction by choosing a sufficiently small value for c. This part of the proof is

identical to that of Lemma 95 which appears in [MSS23]. We now prove Theorem 25.

Proof of Theorem 25. From Lemma 92 we know that for any δ > 0, a random digraph drawn

from GB(kn) has an average (ck − δ/2)
√

nk
(k−1) -friendly balanced k-partition with uniform positive

probability for a constant ck dependent on k. In particular, if P is the family of graphs which have

an average (ck − δ/2)
√

nk
(k−1) -friendly balanced k partition, then µ(P) = Ωδ(1). By choosing ϵ such

that ϵ ≥ exp
(
− (log n)

1/4
)
, we can apply Theorem 94 to obtain µ

(
P√

n(logn)−1/4

)
= 1−ϵ = 1−o(1).

P√
n(logn)−1/4 is the family of graphs whose metric as stated in Definition 93 differs from P by at

most O(
√
n(log n)−1/4). Since

√
n(log n)−1/4 = o

(√
nk

(k−1)

)
, with high probability, a digraph drawn

from GB(kn) has an average (ck − δ)
√

nk
(k−1) -friendly balanced k partition.

5.4 Open Problems

We summarize the results covered in this and prior works in Table 5.1. Of particular note, for the

bisection case in GB(2n), we were only able to show a positive result w.u.p.p. as opposed to w.h.p.

as was done for the average balanced k-partition case and the undirected bisection case. Unlike

those two cases where random graphs are likely to have Ωk(
√
n)-friendly balanced partitions and

can sacrifice ok(
√
n) friends per vertex to use Theorem 94, random directed graphs typically only

have −O(1)-friendly bisections and cannot make a similar sacrifice. Generally, it seems difficult to

adapt sensitivity/influence based approaches on boolean functions such as those seen in Theorem 94

to cases with small margins of error.

We conjecture the following of maximum −Ok(1)-friendly balanced k-partitions in directed graphs.

Conjecture 97. For γ = Ok(1), graphs drawn from GN (kn) and GB(kn), have maximum γ-friendly

balanced k-partitions w.h.p.

Similar to the directed bisection case, even if it is possible to prove conjecture 97 w.u.p.p., it will

probably require a new approach to turn such a result into a w.h.p. one.

As per Table 5.1, there are many open problems in the undirected case. Among these the average γ-

friendly balanced k-partition is probably the most tractable as it is the most similar to the original
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Directed Undirected
Bisection
in GN (2n)

Lemma 60 Implied by Theorem 1.3 [MSS23]

Balanced
k-

Partition
in GN (kn)

Average
Lemma 61

Max
Lemma 62

Sum
Lemma 63

Average Max Sum

Bisection
in GB(2n)

Theorem 21 Theorem 1.3 [MSS23]

Balanced
k-

Partition
in GB(kn)

Average
Theo-
rem 25

Max Theo-
rem 26

Sum Theo-
rem 27

Average Max Sum

Table 5.1: A survey of the current state of the γ-friendly balanced partition problem. Blue cells
represent a positive result w.h.p. Yellow cells represent a positive result w.u.p.p. Orange cells
represent a negative result which some hope of obtaining a positive result for smaller values of γ.
And red cells represent a negative result which cannot be improved. All uncolored cells represent
avenues for further exploration.

result of Minzer, Sah, Sawhney [MSS23]. A negative result for the sum γ-friendly balanced k-

partition might also be easy to prove similar to the directed case though with a smaller threshold

e.g. on the order of −Ωk(
√
n) as opposed to −Ωk(n). A positive result for the maximum γ-friendly

balanced k-partition problem in undirected graphs however, would be tricky as standard second

moment techniques would be difficult to apply; unlike in the average case where overlapping parts

are essentially independent, computing the overlap probability for maximum γ-friendly balanced

k-partitions would be rather complex.

Further, we can ask: what happens when k = ω(1)? Currently, k is a constant so it is negligible with

respect to n. It might also be possible to prove results similar to Theorem 25 for k where k/n→ 0.

5.5 Proofs from the Bipartite Case

Proof of Claim 70. We show that g′n(α) < 0 for α ∈ [0, 0.01) using the original definition of gn(α),

gn(α) =
fn(α)

αfn(1− α)1−α

αα(1− α)1−α
where fn(α) =

arctan
(√

α
1−α

)
π

+
δ√
πn

+

√
1− α
α
· δ

2

πn
.

Using logarithmic derivatives, we have that g′n = (ln gn)
′gn. By inspection, we note that gn(α) > 0

for all α ∈ [0, 0.01) so it suffices to show that (ln gn)
′ < 0 in order to show that g′n < 0 and that gn

is monotonically decreasing on this interval.

By Equation (5.16), we have that

(ln gn)
′
= ln

(
(1− α)fn(α)
αfn(1− α)

)
+
αf ′n(α)

fn(α)
− (1− α)f ′n(1− α)

fn(1− α)
.
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Note that fn(α)
′ = 1

2π
√
α(1−α)

− δ2

2πn
√
α(1−α)

and we have the following Taylor expansions:

arctan

(√
α

1− α

)
=
√
α+

α3/2

6
+O

(
α5/2

)
about α = 0

arctan

(√
α

1− α

)
=
π

2
−
√
α− α3/2

6
+O

(
α5/2

)
about α = 1√

1− α
α

=
1√
α
−
√
α

2
− α3/2

8
+O

(
α5/2

)
about α = 0√

α

1− α
=
√
α+

α3/2

2
+O

(
α5/2

)
about α = 1.

Plugging these into the following expression, we have

ln

(
(1− α)fn(α)
αfn(1− α)

)
= ln

(1− α)
(√

α+α3/2

6 +O(α5/2)
π + δ√

πn
+
(

1√
α
−

√
α
2 −

α3/2

8 +O
(
α5/2

))
δ2

πn

)
α

(
π
2 −

√
α−α3/2

6 +O(α5/2)
π + δ√

πn
+
(√

α+ α3/2

2 +O
(
α5/2

))
δ2

πn

)
α

fn(α)
− (1− α)
fn(1− α)

=
α(√

α+α3/2

6 +O(α5/2)
π + δ√

πn
+
(

1√
α
−

√
α
2 −

α3/2

8 +O
(
α5/2

))
δ2

πn

)
− (1− α)(

π
2 −

√
α−α3/2

6 +O(α5/2)
π + δ√

πn
+
(√

α+ α3/2

2 +O
(
α5/2

))
δ2

πn

)
Note that f ′n(α) = f ′n(1 − α) and f ′n(α) > 0 when α ∈ [0, 0.01] so it suffices to show that α

fn(α)
−

(1−α)
fn(1−α) ≥ 0. By performing the above computations, we see that (ln gn)

′ < 0.

Proof of Claim 71. We show that g′′n > 0. On this interval we can use the simplified definition of

gn which incorporates the simplified definition of fn as seen in Equation (5.19). Using logarithmic

differentials,

g′′n = gn (ln gn)
′′
+

(
g′n
gn

)2

gn.

Since gn > 0 on this interval, it suffices to show that (ln gn)
′′ > 0. By plugging in the values of

f ′n and f ′′n from Equations (5.20) and (5.21) into Equation (5.17) and clearing the denominator, we

have

fn(α)
2fn(1− α)2 (ln gn)′′ =

fn(α)fn(1− α)
π
√
α(1− α)

(fn(1− α) + fn(α)) (5.100)

+
(2α− 1)fn(α)fn(1− α)

4π(α(1− α))3/2
(αfn(1− α) + (1− α)fn(α)) (5.101)

− 1

4π2α(1− α)
(
αfn(1− α)2 + (1− α)fn(α)2

)
− fn(α)

2fn(1− α)2

α(1− α)
.

(5.102)
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Note that the Taylor approximation of various components of the above function are

1

α(1− α)
=

1

α
+ 1 + α+ α2 +O(α2) approximation at α = 0

fn(α) =
δ√
πn

+ 0.0318843 + 159957(α− 0.01)

− 39.5853(α− 0.01)2 +O(α− 0.01)3 approximation at α = 0.01

fn(1− α) =
δ√
πn

+ 0.468116− 1.59957(0.99− α)

− 39.5853(0.99− α)2 +O(α− 0.01)3 approximation at α = 0.99

By plugging in the above approximations into the right-hand side of Equation (5.100), we see that

it is positive for α ∈ [0.01, 0.1].

Proof of Claim 72. To show gn(α)
′ > 0, consider the logarithmic derivative g′n = gn(ln gn)

′. Since gn

positive on this interval, it suffices to show that (ln gn)
′ > 0 on [0.1, αmax−ξ). From Equation (5.16),

we have that

(ln gn)
′ = ln

fn(α)

fn(1− α)
+
αf ′n(α)

fn(α)
− (1− α)f ′n(1− α)

fn(1− α)
+ ln

(1− α)
α

≥ ln
fn(α)

fn(1− α)
+
αf ′n(α)

fn(α)
− (1− α)f ′n(1− α)

fn(1− α)

≥
2
(

(1−α)fn(α)
αfn(1−α) − 1

)
(

(1−α)fn(α)
αfn(1−α) + 1

) +
αf ′n(α)

fn(α)
− (1− α)f ′n(1− α)

fn(1− α)

≥ ((1− α)fn(α)− αfn(1− α)) · (2fn(α)fn(1− α)− f ′n(α) ((1− α)fn(α) + αfn(1− α)))
fn(α)fn(1− α) ((1− α)fn(α) + αfn(1− α))

.

where the first inequality follows from the lower-bound ln(x) ≥ 2(x − 1)/(x + 1) for x ≥ 1 in

Equation (3) of [Top04] and the second follows as f ′n(α) = f ′n(1−α). It remains to show 2fn(α)fn(1−
α) ≥ f ′n(α) ((1− α)fn(α) + αfn(1− α)). Observe that

2fn(α)fn(1− α) = 2

arctan
√

α
1−α

π
+

δ√
πn

 ·
arctan

√
1−α
α

π
+

δ√
πn


= 2

arctan
√

α
1−α · arctan

√
1−α
α

π2
+ δ

√
π

n
+
δ2

πn


≥ 2

π2
arctan

√
α

1− α
· arctan

√
1− α
α

+
δ√
n

f ′n(α) ((1− α)fn(α) + αfn(1− α)) = f ′n(α)

 (1− α) arctan
√

α
1−α

π
+
α arctan

√
1−α
α

π
+

δ√
πn


≤

(1− α) arctan
√

α
1−α + α arctan

√
1−α
α

2π2
√
α(1− α)

+
δ√
πn
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since 1

2π
√
α(1−α)

< 1 for α ∈ (0.1, αmax − ξ]. Thus by observing that the function

E(α) =
2

π2
arctan

√
α

1− α
· arctan

√
1− α
α
−

(1− α) arctan
√

α
1−α + α arctan

√
1−α
α

2π2
√
α(1− α)

is positive for α ∈ (0.1, αmax − ξ], we have that g′n is monotonically increasing. See Figure 5.5.

Figure 5.5: Graph of E(α) = 2
π2 arctan

√
α

1−α · arctan
√

1−α
α −

(1−α) arctan
√

α
1−α+α arctan

√
1−α
α

2π2
√
α(1−α)

.

To see that (1− α)fn(α) ≥ αfn(1− α), define t(α) = α/fn(α) and show that t(α) is monotonically

increasing by considering its derivative.

t′(α) =
1

fn(α)

(
1− αf ′n(α)

fn(α)

)

=
1

fn(α)

1−
(

1

2π

√
α

1− α

)
·

arctan
(√

α
1−α

)
π

+
δ√
πn


−1

≥ 1

fn(α)

(
1− 1

2

(
1− a

3(1− α)

)−1
)
≥ 0.

for α ∈ (0.1, αmax − ξ], since arctan(x) ≥ x− x3/3.

5.6 Binomial Distribution Computations

5.6.1 Bisection

The follows are corollaries of lemmas of [MSS23] which approximate the difference of binomials by

standard Gaussians.

Lemma 82 (A.1, [MSS23]). Let X1 ∼ Bin(n, 1/2) and X2 ∼ Bin(n− ℓ, 1/2) for 0 ≤ ℓ ≤ n. For n



CHAPTER 5. BALANCED FRIENDLY PARTITIONS IN RANDOM GRAPHS 99

large,

P [X1 −X2 = t] =
1√
πn

exp

(
−
(
t− ℓ/2√

n

)2

+O

(
1

n

))
± exp

(
Ω(log n)2

)
(5.92)

Lemma 83 (A.2, [MSS23]).

P [Bin (n− 1, 1/2)− Bin (n, 1/2) ≥ t] = PZ∼N (0,1)

[
Z ≥ t

√
2√
n

]
+O

(
1

n

)
.

Lemma 84 (A.4, [MSS23]). Given a ∈ (0, 1), define

gγ(a) := PZi∼N (0,1)

[√
aZ1 +

√
1− aZ2 ≥ γ ∧

√
aZ1 −

√
1− aZ2 ≥ γ

]
.

Let X1 ∼ Bin(k− 1, 1/2), X2 ∼ Bin(n− k, 1/2), X3 ∼ Bin(k, 1/2), and X4 ∼ Bin(n− k, 1/2). Then

for any integer Γ and γ = Γ/
√
n, we have the following approximation,

P [X1 −X3 +X2 −X4 ≥ Γ ∧X1 −X3 −X2 +X4 ≥ Γ] = gγ(a) +O

(
1

n

)
.

5.6.2 Balanced k-Partition

We need probabilities similar to the above in order to translate our balanced k-part γ friendly results

for GN into the same results for GB.

Lemma 85 (Binomal Local Limit). For non-negative integer ℓ ≤ n,

P

[
Bin((k − 1)n, 1/2)

k − 1
− Bin(n− ℓ, 1/2) ∈ (t− 1, t]

]
=√

2(k − 1)

πkn
exp

(
−2(k − 1)

nk

(
t− ℓ

2

)2

+O

(
1

n

))
± exp

(
−Ω(log n)2

)
(5.93)
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Proof. It suffices to consider the case where |t| ≥
√
n log n/4. In the following, let τ = i

k−1 −
n
2 ,

P

[
Bin((k − 1)n, 1/2)

k − 1
− Bin(n− ℓ, 1/2) ∈ (t− 1, t]

]
=

1

2nk−ℓ

∑
|i/(k−1)−n/2|≤

√
n logn

(
n(k − 1)

i

)(
n− ℓ
⌊ i
k−1⌋ − t

)
± exp

(
−Ω(log n)2

)
=

1

2nk−ℓ

∑
|τ |≤

√
n logn

(
n(k − 1)

n(k−1)
2 + τ(k − 1)

)(
n− ℓ

n
2 + (⌊ i

k−1⌋ −
n
2 )− t

)
± exp

(
−Ω(log n)2

)

=
2√

π2(k − 1)n2

∑
|τ |≤

√
n logn

exp

(
−2τ2(k − 1)

n

)
exp

−2
(
⌊ i
k−1⌋ − n/2− t+ ℓ/2

)2
n


·
(
1 +O

(
1

n

))
± exp

(
−Ω(log n)2

)
≈

exp
(
− 2(k−1)

nk

(
t− ℓ

2

)2)√
πkn/(2(k − 1))

·
∑

|τ |≤
√
n logn

√
2k

πn(k − 1)2
exp

(
− 2k

n(k − 1)2

(
τ(k − 1)− t(k − 1)

k
+
ℓ(k − 1)

2k

)2
)

·
(
1 +O

(
1

n

))
± exp

(
−Ω(log n)2

)
=

√
2(k − 1)

πkn
exp

(
−2(k − 1)

nk

(
t− ℓ

2

)2

+O

(
1

n

))
± exp

(
−Ω(log n)2

)
where we use the approximation i− (k− 1) ≤ ⌊ i

k−1⌋(k− 1) ≤ i for the second to last inequality, and

the sum via a Riemann integral to obtain the last equality.

Lemma 86 (Binomial Local Limit Difference). For constant non-negative integer ℓ ≤ n and constant

k,

P

[
Bin(n− 1, 1/2)− Bin((k − 1)n, 1/2)

k − 1
≥ t
]
= P

[
Z ≥ t

√
4(k − 1)

kn

]
+Ok

(
1

n

)
.
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Proof. Using Lemma 85, we have that

P

[
Bin(n− 1, 1/2)− Bin((k − 1)n, 1/2)

k − 1
≥ t
]
= P

[
Bin((k − 1)n, 1/2)

k − 1
− Bin(n− 1, 1/2) ≤ −t

]
=

∑
−
√
n logn≤x≤−t

√
2(k − 1)

πkn
exp

(
−2(k − 1)

nk

(
x− 1

2

)2

+Ok

(
1

n

))
± exp

(
−Ω(log n)2

)
.

=
∑

−
√
n logn≤x≤−t

√
2(k − 1)

πkn
exp

(
−2(k − 1)

nk

(
x− 1

2

)2
)

+Ok

(
1

n

)

=

∫ −t+1/2

−∞

√
2(k − 1)

πkn
exp

(
−2(k − 1)

nk

(
x− 1

2

)2
)
dx+Ok

(
1

n

)

=

∫ −t

−∞

√
2(k − 1)

πkn
exp

−(x√2(k − 1)

nk

)2
 dx+Ok

(
1

n

)

≈
∫ −t

√
4(k−1)

kn

−∞

1√
2π

exp

(
−x

2

2

)
dx+Ok

(
1

n

)
= PZ∼N (0,1)

[
Z ≥ t

√
4(k − 1)

kn

]
+Ok

(
1

n

)

Using the midpoint rule when approximating the sum with the integral.

Lemma 87 (Correlated Binomial Local Limit). Let an be an integer. Define X1 ∼ Bin(an, 1/2),

X3 ∼ Bin((k − 1)n− (1− a)n, 1/2), and X2, X4 ∼ Bin((1− a)n, 1/2). Then, for γ,

P

[
X1 −

X3

k − 1
+X2 −

X4

k − 1
≥ γ ∧X1 −

X3

k − 1
− X2

k − 1
+X4 ≥ γ

]
= PZi∼N (0,1) [σ1Z1 + σ2Z2 ≥ γ ∧ σ1Z1 − σ2Z2 ≥ γ] +Ok

(
1

n

)
(5.94)

where σ1 =

√
nk2(a+ k−2

k )
8(k−1)2 and σ2 =

√
nk2(1−a)
8(k−1)2 .

Proof. We sum over all possible values of X1− X3

k−1 +X2− X4

k−1 and X1− X3

k−1 −
X2

k−1 +X4 which are

greater than or equal to γ. In particular, let X1 − X3

k−1 = γ − t, X2 − X4

k−1 = t1 and X4 − X2

k−1 = t2
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such that t1, t2 ≥ t. We will sum over all possible values of t, t1, and t2.

P

[
X1 −

X3

k − 1
+X2 −

X4

k − 1
≥ γ ∧X1 −

X3

k − 1
− X2

k − 1
+X4 ≥ γ

]
=
∑
t

P

[
X1 −

X3

k − 1
= γ − t

] ∑
t1≥t, t2≥t

P

[
X2 −

X4

k − 1
= t1 ∧X4 −

X2

k − 1
= t2

]

=
∑
t

P

[
X1 −

X3

k − 1
= γ − t

]
·

∑
t1≥t, t2≥t

P

[
X2 =

(t1(k − 1) + t2) (k − 1)

k(k − 2)
∧X4 =

(t2(k − 1) + t1) (k − 1)

k(k − 2)

]

=
∑
t

P

[
X1 −

X3

k − 1
= γ − t

]
·

∑
t1≥t, t2≥t

P

[
X2 =

(t1(k − 1) + t2) (k − 1)

k(k − 2)

]
· P
[
X4 =

(t2(k − 1) + t1) (k − 1)

k(k − 2)

]

We approximate the inner sum up to a multiplicative error of 1 + Ok (1/n) using Stirling’s ap-

proximation. Let N = (1 − a)n, r1 = (t1(k−1)+t2)(k−1)
k(k−2) , r2 = (t2(k−1)+t1)(k−1)

k(k−2) , τ1 = N
2 − r1, and

τ2 = N
2 − r2.∑
t1≥t, t2≥t

P [X2 = r1] · P [X4 = r2] =
∑

t1≥t, t2≥t

(
N

N
2 − τ1

)(
N

N
2 − τ2

)
1

22N

=

(
1 +Ok

(
1

n

)) ∑
t1≥t,t2≥t

2

πN
exp

−2
((

N
2 − r1

)2
+
(
N
2 − r2

)2)
N


=

(
1 +Ok

(
1

n

))
2

πN

∫ ∞

t

∫ ∞

t

exp

−2
((

N
2 − r1

)2
+
(
N
2 − r2

)2)
N

 dt1dt2

=

(
1 +Ok

(
1

n

))
2k(k − 2)

πN(k − 1)2

·
∫ ∞

t(k−1)2

k(k−2)

∫ ∞

t(k−1)2

k(k−2)

exp

−2
((

N
2 − r1

)2
+
(
N
2 − r2

)2)
N

 dr1dr2

where the last line follows by transforming the equation in-terms of t1 and t2 — remember r1

and r2 are functions of t1 and t2 — into functions of r1 and r2. Notice that the Jacobian of the

transformation is ∣∣∣∣∣ ∂t1∂r1
∂t1
∂r2

∂t2
∂r1

∂t2
∂r2

∣∣∣∣∣ =
∣∣∣∣∣ 1 −1

k−1
−1
k−1 1

∣∣∣∣∣ = k(k − 2)

(k − 1)2
.

Next consider P
[
X1 − X3

k−1 = γ − t
]
for some fixed t. Again, using Stirling’s approximation, we let
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τ1 = N1

2 − ℓ and τ2 = N3

2 − (ℓ− t)(k − 1) in the sum to obtain,

P

[
X1 −

X3

k − 1
= γ − t

]
=
∑
ℓ

(
N1

N1

2 − τ1

)(
N3

N3

2 − τ2

)
2−(N1+N3)

=
∑
ℓ

2

π
√
N1N3

exp

(
−2τ21
N1
− 2τ22
N3

)(
1 +Ok

(
1

n

))

=
2

π
√
N1N3

(
1 +Ok

(
1

n

))∫
exp

(
−
2
(
N1

2 − ℓ
)2

N1
−

2
(
N3

2 − (ℓ− t)(k − 1)
)2

N3

)
dℓ

=
2

π
√
N1N3

(
1 +Ok

(
1

n

))
exp

−N1N3 + (N3 + 2(k − 1)t)
2
+

4((k−1)2N1+N3)
2

N2
1 (kN3+2(k−1)2t)

2N3


where the last line follows by completing the square with respect to ℓ.

P

[
X1 −

X3

k − 1
+X2 −

X4

k − 1
≥ γ ∧X1 −

X3

k − 1
− X2

k − 1
+X4 ≥ γ

]
=

(
1 +Ok

(
1

n

))
·
(

4k(k − 2)

π2
√
N1N3N(k − 1)2

)

·
∫

exp

−N1N3 + (N3 + 2(k − 1)t)
2
+

4((k−1)2N1+N3)
2

N2
1 (kN3+2(k−1)2t)

2N3


·

∫ ∞

t(k−1)2

k(k−2)

∫ ∞

t(k−1)2

k(k−2)

exp

−2
((

N
2 − r1

)2
+
(
N
2 − r2

)2)
N

 dr1dr2

 dt

Compare the above integral with one which we would have gotten if instead of the Binomial random

variables, we instead had Gaussian random variables with the same mean and variance. In particular,

let Y1, Y2, Y3, and Y4 correspond to X1, X2, X3, and X4 respectively. Then we have

P

[
Y1 −

Y3
k − 1

+ Y2 −
Y4
k − 1

≥ γ ∧ Y1 −
Y3
k − 1

− Y2
k − 1

+ Y4 ≥ γ
]

=

∫
P

[
Y1 −

Y3
k − 1

= γ − t
](∫ ∞

t

∫ ∞

t

P

[
Y2 −

Y4
k − 1

≥ γ ∧ Y2 −
Y4
k − 1

≥ γ
]
dt1dt2

)
dt.

Again, we consider two parts. In particular, for the inner integral, we have∫ ∞

t

∫ ∞

t

P

[
Y2 −

Y4
k − 1

≥ t1 ∧ Y2 −
Y4
k − 1

≥ t2
]
dt1dt2

=

∫ ∞

t

∫ ∞

t

P

[
Y2 =

(t1(k − 1) + t2) (k − 1)

k(k − 2)

]
· P
[
Y4 =

(t2(k − 1) + t1) (k − 1)

k(k − 2)

]
dt1dt2

=
1

2πσ2

∫ ∞

t

∫ ∞

t

exp

(
− (µ− r1)2

2σ2
− (µ− r2)2

2σ2

)
dt1dt2

=
2k(k − 2)

πN(k − 1)2

∫ ∞

t(k−1)2

k(k−2)

∫ ∞

t(k−1)2

k(k−2)

exp

−2
((

N
2 − r1

)2
+
(
N
2 − r2

)2)
N

 dr1dr2
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by a change of variables where µ = N
2 and σ =

√
N
2 are the mean and standard deviation of both Y2

and Y4. For the outer probability we have,

P

[
Y1 −

Y3
k − 1

= γ − t
]
=

∫
P [Y1 = ℓ]P [Y3 = (t− ℓ)(k − 1)] dt

=

∫
1

2π
√
σY1

σY3

exp

(
− (µY1

− ℓ)2

2σ2
Y3

− (µY3
− (t− ℓ)(k − 1))

2

2σ2
Y3

)

=
2

π
√
N1N3

exp

−N1N3 + (N3 + 2(k − 1)t)
2
+

4((k−1)2N1+N3)
2

N2
1 (kN3+2(k−1)2t)

2N3


by completing the square as before where µY1 , µY3 , σY1 , and σY3 are the mean and variance of Y1

and Y3 respectively. In both cases, we see that the bound on the Binomial random variables is the

same as the bound on Gaussian random variables up to Ok
(
1
n

)
error. We know from the proof

of lemma 79, that

P

[
Y1 −

Y3
k − 1

+ Y2 −
Y4
k − 1

≥ γ ∧ Y1 −
Y3
k − 1

− Y2
k − 1

+ Y4 ≥ γ
]

= PZi∼N (0,1) [σ1Z1 + σ2Z2 ≥ γ ∧ σ1Z1 − σ2Z2 ≥ γ] +Ok

(
1

n

)
,

so our desired equality must hold.
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Glossary

covering radius The covering radius of a lattice Λ with Lp norm is

ρ(Λ) = max
w∈Rn

min
x∈Λ
∥w − x∥p

. 38

determinant lower bound For a matrix A, let its — be defined as

detlb(A) := max
k∈min(m,n)

max
B
|det(B)|1/k

where B is a k × k submatrix of A. 6

discrepancy Let S be a subset of the power set of X. The discrepancy of a set S ∈ S with respect

to a colouring χ : X → {−1, 1} is defined as

disc(S, χ) =

∣∣∣∣∣∑
s∈S

χ(s)

∣∣∣∣∣ .
The discrepancy of set system (X,S) is

disc(S) = min
χ

max
S∈S

disc(S, χ)

. 1

envy-free For r ≥ 0, a k-partition X of a graph G is — up to r, denoted EF-r, if, for every pair of

agents i, i′ ∈ V , ui(X(i)) ≥ ui(X(i′) ∪ {i} \ {i′})− r. When r = 0, we simply refer to this as

envy-freeness (EF). 13

envy-free up to one For each agent ai, let vi : P(R) → R be their valuation function for the

utility of each subset of the resources. Let π : R → A be a partition of the resources into

bundles for each agent. We say that π is — if for every agent ai with bundle bi, after removing

the most valuable items from the bundle of some agent aj to obtain bundle b′j , vi(bi) ≥ vi(b′j).
13

fundamental parallelepiped Given a matrix A with n columns, its — is PA = {x ∈ [−1, 1]n :

∥Ax∥∞ ≤ 1}. 5, 11
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hedonic games Hedonic games are coalition formation games with hedonic preferences. Here,

coalition formation games is a partition of agents into disjoint coalitions and hedonic prefer-

ences are those which an agent derives value only from the other agents in its own coalition

and not on how agents in other coalitions are grouped. 13, 53

hereditary discrepancy Given A ∈ Rm×n, the hereditary discrepancy of A is the maximum

discrepancy over all sub-matrices of A. Formally, if B is a sub-matrix of A, then

herdisc(A) = max
B

min
x∈{−1,1}n

∥Bx∥∞

. 4

hereditary partial vector discrepancy The — for matrix A ∈ Rm×n is hpartvdisc(A) = minλ

such that for every S ⊆ [n] there exist vectors v1, ...,vn ∈ Rn satisfying ∥
∑
j∈S ai,jvj∥22 ≤ λ2

for all i ∈ [m] and the following SDP constraints:

∑
j∈[n]

∥vj∥22 ≥
|S|
2

∥vj∥22 ≤ 1 ∀j ∈ S,

∥vj∥22 = 0 ∀j ∈ [n]\S

. 9

incidence matrix For a set system (S, X) where |S| = m and |X| = n, its — is the matrix

A ∈ {0, 1}m×n where each row cooresponds to a S ∈ S and for that row, the entry in column

i is equal to one if and only if i ∈ S. 3

linear discrepancy For A ∈ Rm×n, the — of A is lindisc(A) = maxw∈[0,1]n minx∈{0,1}n∥A(w −
x)∥∞. 5

one-sided discrepancy For set-system S on universe X, the — of S is

sdisc(S, X) := min
χ:X→{−1,1}

max
Si∈S

χi · χ(Si).

Using matrix notation with incidence matrix A of S — can also be defined as

sdisc(A) = min
t
∃χ ∈ {−1, 1}n : χi · ⟨ai, χ⟩ ≤ t for all i ∈ [m]

where a⊤1 , ...,a
⊤
m are the rows of A. 14

totally unimodular An integer valued matrix where every sub-determinant is in {−1, 0, 1}. 24,

25

vector discrepancy For A ∈ Rm×n, the — of A is vecdisc(A) = minλ such that there exists unit
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vectors v1, ...,vn which satisfies the SDP∥∥∥∥∥∥
∑
i∈[n]

viAj,i

∥∥∥∥∥∥
2

≤ λ for each set j ∈ [m].

Note that vecdisc(A) ≤ disc(A) ≤ herdisc(A). 9



Acronyms

CRP covering radius problem. 51

LEB largest empty ball. 49

LEC largest empty circle. 49

TUM totally unimodular. 9, 24, 25
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