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Abstract: In order to plan a safe maneuver, self-driving vehicles need to under-
stand the intent of other traffic participants. We define intent as a combination of
discrete high level behaviors as well as continuous trajectories describing future
motion. In this paper we develop a one-stage detector and forecaster that exploits
both 3D point clouds produced by a LiDAR sensor as well as dynamic maps of the
environment. Our multi-task model achieves better accuracy than the respective
separate modules while saving computation, which is critical to reduce reaction
time in self-driving applications.
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1 Introduction

Autonomous driving is one of the most exciting problems of modern artificial intelligence. Self-
driving vehicles have the potential to revolutionize the way people and freight move. While a
plethora of systems have been built in the past few decades, many challenges still remain. One of
the fundamental difficulties is that self driving vehicles have to share the roads with human drivers,
which can perform maneuvers that are difficult to predict.

Human drivers understand intention by exploiting the actors’ past motion as well as prior knowledge
about the scene (e.g. the location of lanes, direction of driving). Previous work [1, 2, 3] attempted to
solve this problem by first performing vehicle detection and then extracting intent from the position
and motion of detected bounding boxes. This, however, restricts the information that the intent
estimation module has access to, resulting in suboptimal estimates. Very recently, FaF [4] directly
exploited LiDAR sensor data to predict the future trajectories of vehicles. However, the trajectories
were only predicted for 1 second into the future and no intent prediction was done beyond motion
estimation.

In this paper, we take this approach one step further and propose a novel deep neural network that
reasons about both high level behavior and long term trajectories. Inspired by how humans perform
this task, we design a network that exploits motion and prior knowledge about the road topology
in the form of maps containing semantic elements such as lanes, intersections and traffic lights. In
particular, our IntentNet is a fully-convolutional neural network that outputs three types of variables
in a single forward pass corresponding to: detection scores for vehicle and background classes,
high level action probabilities corresponding to discrete intention, and bounding box regressions in
the current and future time steps to represent the intended trajectory. Our architecture allows us
to jointly optimize all tasks, fixing the distribution mismatch problem between tasks when solving
them separately. Importantly, our design also enables the system to propagate uncertainty through
the different components. In addition, our approach is computationally efficient by design as all
tasks share the heavy neural network feature computation.

We demonstrate the effectiveness of our approach in the tasks of detection and intent prediction
by showing that our system surpasses other real-time, state-of-the art detectors while outperform-
ing previous intent prediction approaches, both in its continuous and discrete counterparts. In the
remainder of the paper, we first discuss related work and then present our model followed by exper-
imental evaluation and conclusion.
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2 Related Work

In this section we first review recent advances in object detection, focusing on single-stage and 3D
object detection. We then discuss motion and intent prediction approaches.

Object detection: Many proposal based approaches [5, 6] have been developed after the seminal
work of RCNN [7]. While these methods perform really well, they are typically not suitable for real-
time applications as they are computationally demanding. In contrast, single stage detectors [8, 9]
provide a more efficient solution. YOLO [8] breaks down the image into grids and makes multi-
class and multi-scale predictions at each cell. SSD [9] added the notion of anchor boxes, which
reduces object variance in size and pose. RetinaNet [10] showed that single-stage detectors can
outperform two-stage detectors in both speed and accuracy. Geiger et al. [11] improved the ability
to estimate object orientation by jointly reasoning about the scene layout. More recently, Vote3Deep
[12] proposed to voxelize point clouds and exploit 3D CNNs [13]. Subsequently, FaF [4] and PIXOR
[14] exhibited superior performance in terms of speed and accuracy by exploiting a bird’s eye view
representation. Additionally, [4] aggregated several point clouds from the past. Approaches that use
the projection representation (VeloFCN [15], MV3D [16]) or handle point clouds directly (PointNet
[17]) have also been proposed. However, these methods suffer from either limited performance or
heavy computation and thus are not suitable for self driving [18]. Liang et al. [19] proposed a real
time 3D detector that exploits multiple sensors (i.e., camera and LiDAR).

Motion Forecasting: This refers to the task of predicting future locations of an actor given current
and past information. DESIRE [20] introduced an RNN encoder-decoder framework in the setting
of multiple interacting agents in dynamic scenes. Ma et al. [21] proposed to couple game theory and
deep learning to model pedestrians interactions and estimate person-specific behavior parameters.
Ballan et al. [22] exploited the interplay between the dynamics of moving agents and the semantics
of the scene for scene-specific motion prediction. Soo et al. [23] created an EgoRetinal map to
predict plausible future ego-motion trajectories in egocentric stereo images. Hoermann et al. [24]
utilized a dynamic occupancy grid map as input to a deep convolutional neural network to perform
long-term situation prediction in autonomous driving. SIMP [3] parametrized the output space as
insertion areas where the vehicle of interest could go, predicting an estimated time of arrival and a
spatial offset. Djuric et al. [25] rasterized representations of each actor’s vicinity in order to predict
their future motion. FaF [4] pioneered the unification of detection and short term motion forecasting
from LiDAR point clouds in driving scenarios.

Intention Prediction: The intention of an actor can be seen as the sequence of actions it will take
in order to achieve an objective. Fathi et al. [26] developed a probabilistic generative model to
predict daily actions using gaze. In the context of intelligent vehicles, Zhang et al. [27] proposed
to model high level semantics in the form of traffic patterns through a generative model that
also reasons about the geometry and objects present in the scene. Jain et al. [28] proposed an
autoregressive HMM to anticipate driving maneuvers a few seconds before they occur by exploiting
video from a face and a rear camera together with features from the map. Streubel et al. [1]
utilized HMMs to estimate the direction of travel while approaching a 4-way intersection. Kim et
al. [29] predicted egocentric intention of lane changes. Recently, Phillips et al. [2] utilized LSTMs
to predict cars’ intention at generalizable intersections. SIMP [3] suggested to model intention
implicitly by defining a discrete set of insertion areas belonging to particular lanes. Unfortunately,
most of the work in this area lacks solid evaluation. For instance, [2] used 1 hour of driving data
across only 9 intersections for both training and evaluation (cross-validated), while [3] apply the
SIMP framework to only 640 meters of highway.

IntentNet is inspired by FaF [4], which performs joint detection and future prediction. IntentNet
achieves a more accurate vehicle detection and trajectory forecasting, enlarges the prediction horizon
and estimates future high-level driver’s behavior. The key contributions to the performance gain are
(i) a more suitable architecture based on an early fusion of a larger number of previous LiDAR
sweeps, (ii) a parametrization of the map that allows our model to understand traffic constraints for
all vehicles at once and (iii) an improved loss function that includes a temporal discount factor to
account for the inherent ambiguity of the future.
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Figure 1: Input parametrization. Left: Voxelized LiDAR in BEV (height aggregated in a single
channel for visualization purposes). Right: Rasterized map (in RGB for visualization purposes)

3 Learning to Predict Intention

In this section, we present our approach to jointly detect vehicles and predict their intention directly
from raw sensor data. Towards this goal, we exploit 3D LiDAR point clouds and dynamic HD maps
containing semantic elements such as lanes, intersections and traffic lights. In the following, we
describe our parametrization, network architecture, learning objective and inference procedure.

3.1 Input parametrization

3D point cloud: Standard convolutional neural networks (CNNs) perform discrete convolutions,
assuming a grid structured input. Following [16, 4, 14], we represent point clouds in bird’s eye view
(BEV) as a 3D tensor, treating height as our channel dimension. This input parametrization has
several key advantages: (i) computation efficiency due to dimensionality reduction (made possible
as vehicles drive on the ground), (ii) non-overlapping targets (contrary to camera-view representa-
tions, where objects can overlap), (iii) preservation of the metric space (undistorted view) that eases
the creation of priors regarding vehicle sizes, and (iv) this representation also makes the fusion of
LiDAR and map features trivial as both are defined in bird’s eye view. We utilize multiple consecu-
tive LiDAR sweeps (corrected by ego-motion) as the past is fundamental to accurately estimate both
intention and motion forecasting. We diverge from previous work and stack together height and time
dimensions into the channel dimension as this allows us to use 2D convolutions to fuse time infor-
mation. As shown in our experiments, this is more effective than the non-padded 3D convolutions
proposed in [4]. This gives us a tensor of size: ( L

∆L ,
W

∆W , H
∆H · T ), where L, W and H are the

longitudinal, transversal and normal physical dimensions of the scene; ∆L, ∆W and ∆H are the
voxel sizes in the corresponding directions and T is the number of LiDAR sweeps.

Dynamic maps: We form a BEV representation of our maps by rasterization. We exploit static in-
formation including roads, lanes, intersections, crossings and traffic signs, in conjunction with traffic
lights, which contain dynamic information that changes over time (i.e., traffic light state changes be-
tween green, yellow and red). We represent each semantic component in the map with a binary map
(i.e., 1 or -1). Roads and intersections are represented as filled polygons covering the whole drivable
surface. Lane boundaries are parametrized as poly-lines representing the left and right boundaries
of lane segments. Note that we use three binary masks to distinguish lane types, as lane boundaries
can be crossed or not, or only in certain situations. Lane surfaces are rasterized to distinguish be-
tween straight, left and right turns, as this information is helpful for intention prediction. We also
use two extra binary masks for bike and bus lanes as a way to input a prior of non-drivable road
areas. Furthermore, traffic lights can change the drivable region dynamically. We encode the state
of the traffic light into the lanes they govern. We rasterize the surface of the lane succeeding the
traffic light in one out of three binary masks depending on its state: green, yellow or red. One extra
layer is used to indicate whether those lanes are protected by its governing traffic light, i.e. cars in
other lanes must yield. This situation happens in turns when the arrow section of the traffic light is
illuminated. We estimate the traffic light states using cameras in our self-driving vehicle. We also
infer the state of some unobserved traffic lights that directly interact with known traffic light states.
For example, a straight lane with unknown traffic light state that collides with a protected turn with
green traffic light state can be safely classified as being red. Lastly, traffic signs are also encoded
into their governed lane segments, using two binary masks to distinguish between yields and stops.
In total, there are 17 binary masks used as map features, resulting in a 3D tensor that represents the
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Figure 2a: Output parametrization Figure 2b: Architecture overview Figure 2c: Layer details

map. Fig. 1 shows an example, where different elements (e.g., lane markers in cyan, crossings in
magenta, alpha blended traffic lights with their state colored) are depicted.

3.2 Output parametrization

Our model predicts drivers’ intentions in both discrete and continuous form.

Trajectory regression: For each detected vehicle, we parametrize its trajectory as a sequence of
bounding boxes, including current and future locations. Assuming cars are non-deformable objects,
we treat their size (w, h) as a constant estimated by the detector. The pose in each time stamp is 3D
and contains the bounding box center (ctx, cty) and heading φt of the vehicle in BEV coordinates (see
Fig. 2a).

High level actions: We frame the discrete intention prediction problem as a multi-class classi-
fication with 8 classes: keep lane, turn left, turn right, left change lane, right change lane, stop-
ping/stopped, parked and other, where other can be any other action such as reversed driving.

3.3 Network architecture

Work across different domains [30, 31, 32] has shown that late fusion delivers stronger performance
than early fusion. IntentNet exploits a late fusion of LiDAR and map information through an archi-
tecture consisting of a two-stream backbone network and three task-specific branches on top (see
Figs. 2b and 2c).

Backbone network: Our single-stage model takes two 3D tensors as input: the voxelized BEV
LiDAR and the rasterization of our dynamic maps. We utilize a two-stream backbone network,
where two different 2D CNNs process each data stream separately. The feature maps obtained
from those subcomponents are then concatenated along the depth dimension and fed to the fusion
subnetwork. We use a small downsampling coefficient in our network of 8x since each vehicle
represents a small set of pixels in BEV, e.g., when using a resolution of 0.2 m/pixel, a car on average
occupies 18 x 8 pixels. To provide accurate long term intention prediction and motion forecasting,
the network needs to extract rich motion information from the past and geometric details of the
scene together with traffic rule information. Note that vehicles typically drive at 50 km/h in urban
scenes, traversing 42 meters in only 3 seconds. Thus we need our network to have a sufficiently
large effective receptive field [33] to extract the desired information. To keep both coarse and fine
grained features, we exploit residual connections [34]. We refer the reader to Fig. 2b for more details
of our network architecture.

Header network: The header network is composed of three task specific branches that take as
input the shared features from the backbone network. The detection branch outputs two scores
for each anchor box at each feature map location, one for vehicle and one for background. An
anchor is a predefined bounding box with orientation that serves as a prior for detection. Similar to
[4, 5, 9], we use multiple anchors for each feature map location. The intention network performs
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a multi-class classification over the set of high level actions, assigning a calibrated probability to
the 8 possible behaviors at each feature map location. The discrete intention scores are in turn fed
into an embedding convolutional layer to provide extra features to condition the motion estimation.
The motion estimation branch receives the concatenation of the shared features and the embedding
from the high level action scores, and outputs the predicted trajectories for each anchor box at each
feature map location.

3.4 Learning

Our model is fully differentiable and thus can be trained end-to-end through back-propagation. In
particular, we minimize a multi-task loss containing a regression term for the trajectory prediction
over T time steps, a binary classification term for the detection (background vs vehicle) and a multi-
class classification for discrete intention. Thus

L(θ) = Lcla(θ) + α ·
T∑
t=0

λt · Ltint(θ) + β ·
T∑
t=0

λt · Ltreg(θ)

where t = 0 is the current frame and t > 0 the future, θ the model parameters and λ a temporal
discount factor to ensure distance times into the future do not dominate the loss as they are more
difficult to predict. We mow define the loss functions we employ in more details.

Detection: We define a binary focal loss [10], computed over all feature map locations and prede-
fined anchor boxes, assigned using the matching strategy proposed in [9]:

Lcla(θ) =
∑
i,j,k −(1− pi,j,k;θ) · log pi,j,k;θ, pi,j,k;θ =

{
pi,j,k;θ if qi,j,k = 1,

1− pi,j,k;θ otherwise

where i, j are the location indices on the feature map and k is the index over the predefined set
of anchor boxes; qi,j,k is the class true label and pi,j,k;θ the predicted probability. We define as
positive samples, i.e. qi,j,k = 1, those predefined anchor boxes having an associated ground truth
box. In particular, for each anchor box, we find the ground truth box with the biggest intersection
over union (IoU). If the IoU is bigger than a threshold of 0.5, we assign 1 to its corresponding label
qi,j,k. In case there is a ground truth box that has not been assigned to any anchor box, we assign it
to the highest overlapping anchor box ignoring the threshold. Due to the imbalance of positive and
negative samples we have found it helpful to not only use focal loss but also to apply hard negative
mining during training. Thus, we rank all negative samples by their predicted score pi,j,k and take
the top negative samples with a ratio of 3:1 with respect to the number of positive samples.

Trajectory regression: We frame the detector regression targets as a function of the dimensions of
their associated anchor boxes. As we reason in BEV, all objects have similar size as no perspective
effect is involved. Thus, we can exploit object shape priors and make anchor boxes similar to real
object sizes. This helps reduce the variance of the regression targets, leading to better training. In
particular, we define

ctx =
ctx−c

anchor
x

wanchor φtsin = sinφt w = log w
wanchor

cty =
cty−c

anchor
y

hanchor φtcos = cosφt h = log h
hanchor

We apply a weighted smooth L1 loss to the regression targets associated to the positive samples only.
Note that for the future time steps (t ε [1, T − 1]), the target set Rt does not include the bounding
box size (w, h), which are only predicted at the current time step (t = 0).

Ltreg(θ) =
∑
rεRt

χr · ltr;θ, ltr;θ =

{
0.5 · (xtr;θ − ytr)2, if |xtr;θ − ytr| < 1

|xtr;θ − ytr| − 0.5, otherwise

where t is the prediction time step, xtr;θ refers to the predicted value of the r-th regression target, ytr
is the ground truth value of such regression target, and χr is the weight assigned to the r-th regression
target.
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Model Detection mAP @ IOU
0.5 0.6 0.7 0.8 0.9

SqueezeNet 74.0 62.3 41.9 13.8 0.2
SSD 84.0 75.1 58.2 26.0 1.0

MobileNet 86.1 78.3 60.4 27.5 1.1
FaF 89.8 82.5 68.1 35.8 2.5
FaF’ 88.4 80.1 64.1 30.9 1.6

IntentNet 94.4 89.4 75.4 43.5 3.9

Table 1: Detection performance with objects
containing p ≥ 1 LiDAR points

Figure 3: L1 error along and across track and L2
error split by ground truth discrete intention

Intention prediction: We employ a cross entropy loss over the set of high level actions. To address
the high imbalance in the intention distribution, we downsample the dominant classes

{
keep lane,

stopping/stopped and parked
}

by 95%. We found this strategy to work better than re-weighting the
loss by the inverse frequency in the training set. Note that we do not discard those examples for
detection and trajectory regression.

3.5 Inference

During inference, IntentNet produces 3D detections with their respective continuous and discrete
intentions for all vehicles in the scene in a single forward pass. Preliminary detections are extracted
by applying a threshold of 0.1 to the classification probabilities, with the intention of achieving
high recall. From these feature map locations, we examine the regression targets and anchor boxes,
and use NMS to de-duplicate detections. Since our model can predict future waypoints for each
vehicle, it provides a strong prior for associating detections among different time steps. At any time
step, we have a detection from the current forward pass and predictions produced at previous time
steps. Therefore, by comparing the current location against past predictions of the future, we decode
tracklets for each vehicle in the scene. This simple tracking system proposed in FaF [4] also allows
us to recover missing false negatives and discard false positives by updating the classification scores
based on previous predictions.

4 Experimental Evaluation

We evaluate our approach in the tasks of detection, intention prediction and motion forecasting. To
enable this, we collected a large scale dataset from a roof-mounted LiDAR on top of a self-driving
vehicle driving around several cities in North America. It contains over 1 million frames collected
from over 5,000 different scenarios, which are sequences of 250 frames captured sequentially at 10
Hz. Our labels are tracklets of 3D non-axis align bounding boxes. The dataset is highly imbal-
anced and thus challenging, containing the following number of examples of each behavior; keep
lane: 10805k, turn left: 546k, turn right: 483k, left change lane: 290k, right change lane: 224k,
stopping/stopped: 12766k, parked: 29110k and others: 100k.

Implementation details: We use a birds eye view (BEV) region with L = 144, W = 80 meters
from the center of the autonomous vehicle and H = 5.8 meters from the ground, for both training
and evaluation. We set the resolution to be ∆L = ∆W = ∆H = 0.2 meters. We use T = 10
past LiDAR sweeps to provide enough context in order to perform accurate long term prediction of
3 seconds. Thus, our input is a 3D tensor of shape (29 · 10, 720, 400). We use 5 predefined anchor
boxes of size 3.2 meters and 1 : 1, 1 : 2, 2 : 1, 1 : 6, 6 : 1, and a threshold of 0.1 for the classification
score to consider a detection positive during inference. We train our model from scratch using Adam
optimizer [35], a learning rate of 1e-4 and a weight decay of 1e-4. We employ a temporal discount
factor λ = 0.97 for our future predictions. We used a batch of size 6 for each GPU and perform
distributed training on 8 Nvidia 1080 GPUs for around 24h.

6



Model L1 error along track (m) L1 error across track (m) L1 error heading (deg)
0s 1s 2s 3s 0s 1s 2s 3s 0s 1s 2s 3s

FaF 0.28 0.53 - - 0.17 0.26 - - 6.06 6.47 - -
FaF’ 0.29 0.49 0.95 1.67 0.21 0.29 0.45 0.69 6.35 6.57 7.16 8.02

IntentNet* 0.27 0.47 0.92 1.64 0.18 0.27 0.43 0.65 5.81 6.09 6.69 7.62
IntentNet 0.26 0.46 0.91 1.61 0.15 0.21 0.34 0.53 5.14 5.35 5.83 6.54

Table 2: Regression error computed over the intersection of true positive detections from the four
models. IntentNet* is our model without map and without high level actions

Model Metric P S LK TR TL LCR LCL Others Mean

MLP Acc 63.4 68.5 79.4 98.8 98.6 100 100 100 88.6
F1 67.2 39.0 32.5 00.0 00.0 00.0 00.0 00.0 17.3

LSTM Acc 66.9 69.2 79.9 99.2 98.7 100 100 100 89.3
F1 69.8 48.1 37.8 00.0 00.0 00.0 00.0 00.0 19.5

IntentNet Acc 93.9 89.5 89.5 97.5 96.6 98.3 97.9 97.5 95.1
w/o map F1 98.7 80.4 80.4 51.9 52.1 18.2 24.1 21.6 53.4

IntentNet Acc 99.2 94.9 93.5 98.6 98.6 99.2 99.1 98.5 97.7
F1 98.8 91.0 88.7 66.4 73.1 50.3 55.5 45.2 71.1

Table 3: Average intention prediction performance at the current timestep

Detection results: We compare mean average precision (mAP) at different IoU levels with other
object detectors that can also run inference in real-time (i.e., less than 100ms) including SqueezeNet
[36], SSD [9], MobileNet [37], FaF [4] and FaF’ (adaptation of FaF where the motion forecasting
header is trivially extended to predict 3 seconds). As shown in Table 1, our model is clearly superior
across all IoU levels. Note that all models use the same anchor boxes and downsampling factor for
the comparison to be consistent.

Trajectory regression results: To the best of our knowledge, FaF [4] is the only previous work
that performs joint detection and motion forecasting from LiDAR. As shown in Table 2 IntentNet
outperforms both FaF and FaF’ in both along and across track errors as well as heading. The perfor-
mance leap is a combination of network architecture improvements and the usage of prior knowledge
in the form of maps. To be fair, the metrics are reported over the intersection of true positives of
all the four models, which represents over 90 % of the validation set. In addition, Fig. 3 depicts
regression metrics split by high level action. We highlight that IntentNet is able to learn complex
velocity profiles such as the ones in turns and lane changes, keeping the along track error almost as
low as in lane keeping.

Intention prediction: We compare our approach with the models proposed in [2], adapting their
classifiers to perform our task, which is a generalization of theirs. Phillips et al. extract several
handcrafted features including base features such as velocity, acceleration, number of lanes to the
curb and the median and headway distance to preceding vehicle, at the current time step; history
features containing such information for previous time steps; traffic features containing up to six
neighbours base features and rule features such as whether the car can turn left/right from its lane.
We then train their model in our dataset. Table 3 shows the results of their two best performers
models: an MLP and an LSTM. Our model clearly outperforms the baselines, especially on the less
represented high level actions where the baselines are unable to recognize turns or lane changes.
Note that we also tried applying the same downsampling method we use to the baselines but it
resulted in worse overall performance and therefore was omitted here. As shown, IntentNet is able
to generalize despite the extreme imbalance in the behavior distribution.

Ablation study: We conducted an ablation study in order to evaluate how much each of the contri-
butions proposed in this paper helped towards achieving the final results, which is shown in Table 4.
Using a 2D CNN with early fusion of the different LiDAR sweeps delivers a much robust detector,
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Conv type Context M I mAP@0.5 mAP@0.7 Recall L2@0s L2@3s
3D 2D 0.5s 1.0s p ≥ 1 p ≥ 5 p ≥ 1 p ≥ 5 (m) (m)

3 3 88.2 92.0 62.9 68.3 91.3 0.37 2.16
3 3 91.9 94.8 71.7 76.8 93.7 0.33 1.90
3 3 92.4 95.0 72.8 77.5 94.1 0.33 1.85
3 3 3 90.1 92.5 69.8 74.4 93.8 0.34 1.84
3 3 3 94.3 96.3 75.5 79.6 95.8 0.33 1.80
3 3 3 3 94.4 96.2 75.4 79.6 95.9 0.33 1.79

Table 4: Ablation study of IntentNet different contributions. M column states whether the model
uses the map or not. I column states if discrete intention is being predicted.

Figure 4: Qualitative results. Ground truth is displayed in white (grey if the ground truth did not
have LiDAR points) and predictions in color. Legend for high level actions - parked: purple box,
stopping/stopped: red box, keep lane: straight arrow, turns: 90 ◦ arrow, lane changes: 30 ◦ arrow.
For the arrows, the longer the higher the probability. Others class is not shown for simplicity.

being able to understand the time dimension better than a 3D CNN as proposed in [4]. Increasing the
context from 0.5 seconds to 1 second (5 to 10 input LiDAR sweeps) gives us a small gain, decreasing
the long term L2 error. Notice that even though the detector is able to have higher recall while using
the same confidence threshold (0.1), the regressions become better in average (even when taking into
account those harder examples). Adding the loss for the discrete intention estimation degrades the
detector/regressor performance due to the fact that it is very hard to predict behavior purely based
on motion. However, after adding the map, the system is able to predict the high level behavior of
vehicles and thus adding the loss improves general performance. For a direct comparison to FaF [4],
its detection results (mAP) are 89.8 (IOU=0.5,p≥1), 93.3 (IOU=0.5,p≥5), 68.1 (IOU=0.7,p≥1) and
73.4 (IOU=0.7,p≥5); its recall is 92.9% and its L2@0s is 0.36 meters.

Qualitative results: Fig. 4 shows our results in the 144 x 80 meters region. We can see 3 pairs
of frames belonging to different scenarios. We display the detections and continuous intent predic-
tion in the top row and discrete intent prediction in the bottom row. Our model is able to predict
lane changes and detect big size vehicles (left), have a high precision and recall in cluttered scenes
(center) and predict turns (right).

5 Conclusion

In this paper we introduce IntentNet, a learnable end-to-end model that is able to tackle the tasks
of detection and intent prediction of vehicles in the context of self-driving cars. By exploiting 3D
point clouds produced by a LiDAR sensor and prior knowledge of the scene coming from an HD
map, we are able to achieve higher performance than previous work across all tasks, with a single
neural network. In the future, we plan to investigate how more sophisticated algorithms can model
the statistical dependencies between discrete and continuous intention. We also plan to extend our
approach to handle pedestrians and bicyclists.
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