
Exact size of the smallest min-depth branching
programs solving the Tree Evaluation Problem

Dustin Wehr

January 21, 2012

All the definitions needed to read this document are in the paper Pebbles and Branching Pro-
grams for Tree Evaluation, ACM Transactions on Computation Theory, Vol. 3, No. 2, Article 4,
Publication date: January 2012.
You can find it here: http://www.cs.toronto.edu/˜wehr/research_docs/TCT_
2012_Pebbles_and_Branching_Programs_for_the_Tree_Evaluation_Problem.
pdf

We write TEh(k) as an abbreviation for “BTh
2(k) or FTh

2(k)”. We show that a BP solving
TEh(k) has minimum depth (defined below) if and only if it is both thrifty and read-once (Fact 3),
and that the upper bound of (k + 1)h − k non-output states for FTh

2(k) is the exact minimum for
these (very restricted) BPs (Theorem 4).

Define the depth of a deterministic BP to be the maximum number of states visited by any
input, with the output state included. It is easy to prove that depth 2h is required to solve TEh(k)
by considering those inputs all of whose internal node functions are quasigroups (see [Weh10] for
a proof). Let us say a BP solving TEh(k) is min-depth if it has depth 2h. We will use the following
results from [Weh10]:

Lemma 1 Every min-depth BP solving TEh(k) is thrifty. 1

Lemma 2 For every input I to a min-depth BP solving TEh(k), the 2h− 1 input variables queried
by I are exactly the 2h − 1 distinct thrifty input variables of I . Hence such a BP is read-once.

Theorem 4 is the goal. We will not use the next fact in the proof, but it may be worth noting:
Lemmas 1 and 2 charaterize the min-depth BPs solving TEh(k), in the following sense:

Fact 3 A BP solving TEh(k) is min-depth iff it is both thrifty and read-once.

Proof: The left-to-right direction follows from Lemmas 1 and 2. For the right-to-left direction,
we use the fact from [Weh10] (page 10, second paragraph and lemma 4) that in a thrifty BP, every
input must query all and only its 2h − 1 thrifty variables. Since the BP is also read-once, every
input visits exactly 2h − 1 states (including an output state). �

1Hence from the lower bound on thrifty programs in [Weh10], we get that every min-depth BP solving TEh(k) has
at least kh non-output states. This is the bound that we are slightly improving on here.

1

http://www.cs.toronto.edu/~wehr/research_docs/TCT_2012_Pebbles_and_Branching_Programs_for_the_Tree_Evaluation_Problem.pdf
http://www.cs.toronto.edu/~wehr/research_docs/TCT_2012_Pebbles_and_Branching_Programs_for_the_Tree_Evaluation_Problem.pdf
http://www.cs.toronto.edu/~wehr/research_docs/TCT_2012_Pebbles_and_Branching_Programs_for_the_Tree_Evaluation_Problem.pdf

Theorem 4 Every min-depth BP solving TEh(k) has at least (k + 1)h − k non-output states.

Proof: For B a min-depth BP that solves TEh(k) and for each l ≤ h let States(B,l) be the
states of B that query a height-l node variable. By Lemma 5 the theorem follows if we can show
for arbitrary such B that:

|States(B,1)| ≥ (k + 1)h−1

and |States(B,l)| ≥ k2(k + 1)h−l for 2 ≤ l ≤ h
(1)

Lemma 5

(k + 1)h − k = (k + 1)h−1 + k2

h∑
l=2

(k + 1)h−l

Proof: Since (k+ 1)h− (k+ 1)h−1 = k(k+ 1)h−1, after subtracting (k+ 1)h−1 from both sides
we can write the equations as:

k(k + 1)h−1 − k = k2

h∑
l=2

(k + 1)h−l

We add k to both sides, divide both sides by k, and then prove the resulting family of equations

(k + 1)h−1 = 1 + k
h∑

l=2

(k + 1)h−l

by induction on h ≥ 2. For h = 2 it is clear. Now let h ≥ 3 be arbitrary and assume the equation
holds for h− 1.

1 + k
∑h

l=2(k + 1)h−l = 1 + k(k + 1)h−2 + . . .+ k(k + 1) + k
= (k + 1) + k(k + 1)h−2 + . . .+ k(k + 1)
= (k + 1)[1 + k(k + 1)h−3 + . . .+ k]

= (k + 1)[1 + k
∑h−1

l=2 (k + 1)(h−1)−l]
= (k + 1)(k + 1)h−2 by I.H.

�

The next lemma shows that it suffices to prove the lower bound on the number of states that
query height-2 variables.

Lemma 6 If |States(B,2)| ≥ k2(k + 1)h−2 for every h and B, then (1) holds for every h and B.

Proof: Assume the hypothesis holds. Let B be a min-depth BP that solves BTh
2(k) (the proof is

the same for FTh
2(k)).

To show |States(B,1)| ≥ (k + 1)h−1, we transform B into a min-depth BP B′ that solves
BTh+1

2 (k). Replace each state that queries a leaf variable with a copy of the BP for FT2
2(k) in the

obvious way. Each such replacement involves adding k2 height-2 querying states. Hence if B has

2

less than (k + 1)h−1 leaf-querying states then B′ has less than k2(k + 1)h−1 = k2(k + 1)(h+1)−2

height-2 querying states, which contradicts the hypothesis. We still need to argue that we haven’t
increased the depth by too much. Since every input to B visits exactly 2h−1 leaf-querying states,
and B has depth 2h, it is not hard to see that every computation path in B′ has length 2h+2 ·2h−1 =
2h+1.

Now we assume h ≥ 3 and give the argument for |States(B,3)| ≥ k2(k+1)h−3. It will be clear
how to generalize it to get |States(B,l)| ≥ k2(k + 1)h−l for all 3 ≤ l ≤ h. We transform B into a
min-depth BP B′ that solves BTh−1

2 (k). The height-3 querying states of B will become the height-
2 querying states for B′. Hence B must have at least k2(k + 1)h−3 height-3 querying states, since
otherwise B′ would have fewer than k2(k + 1)(h−1)−2 height-2 querying states, which contradicts
the hypothesis. Let E1 be the inputs to B all of whose leaf values are 1. The computation path of
each input I ′ to B′ will be derived in a simple way from the computation path of some I ∈ E1.
First, remove every state in B that queries a variable in

{fu(a, b) | u is a height-2 node and 〈a, b〉 6= 〈1, 1〉}

Also, for every leaf-querying state q, remove the k − 1 out-edges of q labeled 2, . . . , k. Removing
those states and edges does not break the path of any input in E1; this is clear for the edges, and
for the states it follows from the thrifty property (Lemma 1). We need to be a bit more careful
about removing the leaf-querying states, since they are visited by inputs in E1. Place a token on
the start state, which must be a leaf state by thriftiness. Repeat the following while there remains
some leaf-querying state q. We know q has a single out-edge labeled 1; let q′ be the state that edge
points to. Redirect all the edges going into q so that they go into q′ instead. If the token is on q
then move it to q′. Finally remove q. When this process finishes, the token will be resting on a
height-2 querying state q∗ with no in-edges; specifically some state that queries a variable in the set
V = {fu(1, 1) | u is a height-2 node}. The last step is just to relabel the states that query variables
in V : for each height-2 node u, change every occurrence of the state label fu(1, 1) to lbu/2c. The
start state of the resulting BP B′ is q∗.

Now we need to argue that we have decreased the depth enough. Consider an input I ∈ E1 to
B. The construction above determines the input I ′ to B′ that I gets mapped to. Since I is thrifty,
it does not visit any of the height-2 querying states in B that were removed. We also know that I
visits exactly 2h−1 states in B that query leaf variables. It follows that the computation path of I ′

is shorter than that of I by exactly 2h−1, and so it has length 2h−1. �

Fix h, k and a depth 2h BP B that solves TEh(k). Let E be the set of inputs to B. We want to
show B has at least k2(k + 1)h−2 height-2 querying states. Let Q2 be the states of B that query a
height-2 variable. For t ≤ 2h−2 let Q2

t be the states q ∈ Q2 such that q is the t-th Q2-state visited
by some input to B.

Lemma 7 Q2
t1
∩Q2

t2
= ∅ for distinct t1, t2 ≤ 2h−2.

Proof: Otherwise, there are t1, t2 with t2 < t1 such that there is a state q that is the t1-th state
visited by some input I1 and the t2-th state visited by some other input I2 6= I1. Since B has
depth 2h, by Lemma 2 we get that I1 visits 2h − t1 states after q and I2 visits 2h − t2 states after
q. However, since B is read-once, every syntactic computation path is a semantic (i.e. consistent)

3

computation path, so there must be some input I3 whose computation path is the same as that of I1
up to q, and then the same as that of I2 from q until the output. But then the computation path of
I3 has length t1 + 2h − t2 > 2h, a contradiction. �

Next, for 2 ≤ l ≤ h we will define a sequence ~zl of positive integers of length 2h−l. To see
the purpose of ~zl, consider the min-depth BP B∗ for FT4

2(k) that we get from the optimal black
pebbling that always pebbles the left subtree before the right subtree. If you draw the tree minus
the leaves, and label each node u with the number of states in B∗ that query a u-node, then your
picture should look like this:

k2

k2 k3

k2 k3 k3 k4

~zl gives the exponents of the height l nodes in such a picture, read from left to right. So for h = 4,
we have ~z2 = 2, 3, 3, 4. Formally: ~zh = 2, and for 2 ≤ l ≤ h − 1, ~zl is ~zl+1 followed by the
sequence obtained by adding 1 to each element of ~zl+1. We write ~zl(t) for the t-th element of ~zl.
Later we will appeal to the following equivalent definition of ~z2.

Fact 8 Let #ones(t) be the number of 1s in the binary representation of t ≥ 0. Then ~z2(t) =
2 + #ones(t− 1) for t ≥ 1.

Eventually we will get the quantity k2(k + 1)h−2 using the following simple lemma:

Lemma 9
∑2h−l

t=1 k~zl(t) = k2(k + 1)h−l for every 2 ≤ l ≤ h

Proof: Easy by induction on h− l. �

We assign to each input I a pebbling sequence CI of length exactly 2h such that the following
Property 1 holds. Because of the depth restriction, which implies B is thrifty (Lemma 1), there is
exactly one way to do this. The definition follows the statement of Property 1.

Property 1 For each pair of adjacent states q1, q2 on the computation path of I , if CI
1 and CI

2 are
the associated pebbling configurations, then a pebble is added to a node u in the move CI

1 → CI
2 iff

q1 queries u, and a pebble is removed from a non-root node u in the move CI
1 → CI

2 iff q1 queries
the parent of u.

Fix I and let P be the computation path of I . The pebbling sequence assignment can be described
inductively by starting with the last state on P and working backwards. The pebbling configuration
for the last state in P (i.e. the output state) has just a black pebble on the root. Assume we have
defined the pebbling configurations for q and every state following q on P , and let q′ be the state
before q on P . This inductive construction, together with Lemmas 1 and 2, ensures that q′ queries
some node u that is pebbled in q (see page 10 of [Weh10] for a more-detailed argument). The
pebbling configuration for q′ is obtained from the configuration for q by removing the pebble from
u and adding pebbles to both children of u (if u is an internal node - otherwise you only remove
the pebble from u).

We will use the next lemma in the proof of Lemma 11.

4

Lemma 10 For every input I and t ≤ 2h−2, if C is the pebbling configuration associated with the
t-th Q2-state visited by I , then there are at least ~z2(t) pebbled nodes in C.

Proof:
Let C and t be as in the statement of the Lemma, and let u be the height 2 node that gets pebbled

in the next configuration after C. By Property 1, the two children of u are pebbled in C. Also by
Property 1, there are exactly t− 1 height 2 nodes –namely, the height 2 nodes pebbled earlier– that
are “covered” by a pebbled node in C, meaning either v or some ancestor of v is pebbled in C.
Recall #ones from Fact 8. It is not hard to see that #ones(t − 1) is the smallest number m such
that there exists a set of m nodes U which, if pebbled, would cover exactly t − 1 height 2 nodes;
#ones(t− 1) is the number of terms needed to represent t− 1 as a sum of distinct powers of 2, and
the presence of the term 2i corresponds to a node in U at height 2+ i. Now, since the children of u
are pebbled in C, and cannot cover a height 2 node, C must have a total of at least 2+#ones(t−1)
pebbled nodes. Then by Fact 8 we conclude C has at least ~z2(t) pebbled nodes. �

Recall E is the set of all inputs to the BP B. Let Eq be the inputs that visit state q.

Lemma 11 For all t ≤ 2h−2 and q in Q2
t : |Eq| ≤ |E|/k~z2(t).

Proof: (sketch)
Here is the idea. Given Lemma 10, this proof is an easy adaptation of the thrifty lower bound
proof from [Weh10]. In fact, for t = 2h−2 it is exactly the same proof, since ~z2(2

h−2) = h and
for t = 2h−2 we are counting the states q such that q is the last height-2 querying state visited
by some input. Note it is necessary to use the fact that for every input I and all of the pebbling
configurations C that we assigned to I , there is at most one pebbled node in C on any path from
the root to a leaf in Th. �

Using Lemma 7, we have:

|Q2| =
2h−2∑
t=1

|Q2
t |

Clearly {Eq}q∈Q2
t

is a partition of E for every t ≤ 2h−2. So from Lemma 11 we get that |Q2
t | ≥

k~z2(t) for every t ≤ 2h−2. Combining this with the previous equation we have:

|Q2| ≥
2h−2∑
t=1

k~z2(t)

Finally, combining the previous equation with Lemma 9 (for l = 2), we finish the proof:

|Q2| ≥ k2(k + 1)h−2

�

References
[Weh10] Dustin Wehr. Pebbling and branching programs solving the tree evaluation problem,

2010. arXiv:1002.4676.

5

