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1 Introduction
Gottfried Leibniz had a dream, long before the formalization of predicate logic, that some
day the rigor of mathematics would find much broader use.

“It is true that in the past I planned a new way of calculating suitable for matters
which have nothing in common with mathematics, and if this kind of logic were
put into practice, every reasoning, even probabilistic ones, would be like that of
the mathematician: if need be, the lesser minds which had application and good
will could, if not accompany the greatest minds, then at least follow them. For
one could always say: let us calculate, and judge correctly through this, as much
as the data and reason can provide us with the means for it. But I do not know if
I will ever be in a position to carry out such a project, which requires more than
one hand; and it even seems that mankind is still not mature enough to lay claim
to the advantages which this method could provide.”

(Gottfried Leibniz, 17061)

Unfortunately he was right about the maturity of mankind, and probably still is. But
whether or not it is futile to hope that such a dream might one day materialize, there is still
the unanswered question of whether it ought to be possible.

What is clear to many logicians, mathematicians, and philosophers –that formal logic is
in principle applicable to arguments about social, contentious, emotionally charged issues–
sounds absurd to most people, even highly educated people. The first, rather unambitious
goal of my project, is to illustrate this understanding. The second goal, a very difficult
and lonely one, is to investigate whether such use of rigorous deduction could ever be cost
effective, which involves both making such work easier, and explicating its benefits.

There are thousands and thousands of pages by hundreds of scholars that are tangentially
related to this work; papers about vagueness in the abstract,2 the theoretical foundations
of Bayesian reasoning,3 abstract dialog systems [Pra10], etc. There is a huge amount of
scholarly work on systems and tools and consideration of the theoretically-interesting corner
cases, but too little serious work in which the problems take precedence over the tools used
to work on them. My project is of the latter kind; I work on important specific problems,
attacking general theoretical problems only as-necessary.

Surprisingly, it is the (normative side of the) field of Informal Logic that is probably
most related to my project [Wal08][WK95]. For a long time now they have understood that
dialogue-like interactions, or something similar, are essential for arguing about the problems
we are concerned with here (Section 1.1). But I think formal logic has something to contribute
here; there are too many examples where good, intelligent scientists and statisticians are
given a voice on such problems, only to fail to adhere to the same standards of rigor that

1From translation of a letter to Sophia of Hanover [LCS11]
2See [Sor13], where the approach I take to reasoning in the presence of vagueness does not appear to be

covered. It could be called vagueness as plurality of standard models.
3I recommend [Pea09].
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they usually follow in their professional work.4

Regarding the title of this thesis: there are three aspects of contentious socially-relevant
questions that distinguish them from typical mathematics problems: vagueness, subjective-
ness, and uncertainty.

Vagueness is not a problem once you become comfortable with the understanding that
definitions need to be precisified gradually as an argument5 proceeds. With mathematics
problems we can usually axiomatize structures sufficiently-precisely at the beginning of our
reasoning. The commonality between proofs in mathematics and the sort of proofs I do in
this thesis is that we only need to axiomatize the structures we are thinking about precisely
enough for the proofs to go through. Of course, when I say vagueness is not a problem, I
do not mean that vague questions can always be answered in a particular way. What may
happen is that the question has different answers depending on how it is precisified, which is
up to the author. An illustrative example of this can be made with Newcomb’s Paradox6; it
is not hard to give two reasonable formalizations of the problem that yield opposite answers.

Subjectiveness just demands some system of interaction between people on the two sides
of an argument. Initially I thought that a dialogue system, with rules designed to enforce
progress as much as possible, would be appropriate. I have since backed off that idea some-
what, because (1) my progress so far gives a system that is too complicated to be useful in
practice (see Section 3.3), and (2) I’m concerned that, even if a simpler system was devised,
asking people to commit to a dialogue is asking too much. So I have shifted to an infor-
mal and lax model of interaction where (a) each proof is owned by an author, and can be
critiqued by others; and (b) the author, or a new author, may respond to a critique with
a new proof. As with vagueness, of course I do not mean to suggest that formal logic can
help two parties with conflicting beliefs come to the same answer on, say, questions of ethics.
However, where formal logic can help is to suss out fundamental sources of disagreement
starting from disagreement on some complex question (which is progress!).

Uncertainty is the most difficult of the three complications. Sparsity of information can
easily make it impossible to give an absolutely-strong deductive argument for or against
a given proposition. But interaction is useful here, too. For example, I give a proof in
Section 5 that a key piece of evidence that was used to convict a man of murder has no
inculpatory value. Now, I cannot say that the assumptions from which that conclusion
(〈the newspaper hair evidence is neutral or exculpatory〉) follows are absolutely easy to ac-
cept, but I confidently challenge anyone to come up with a proof of a strong negation of
that conclusion7 from equally-easy-to-accept assumptions. Hence, I am claiming that my
assumptions are easy to accept relative to what my opponents could come up with.

4[Ses07] provides a good example. There Sesardic, a philosopher, contradicts the hasty conclusions of
some very reputable statisticians, essentially by applying the same Bayesian quantitative argument, but with
much more care taken in constraining the values of the prior probabilities.

5A sequence of proofs and critiques, as described in Section 3.2.
6Start at the Wikipedia page if you haven’t heard of this and are curious.
7i.e. that the likelihood ratio is much larger than 1.
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1.1 Problem Domain / Scope

Provided the uncertainty involved in a problem is not too great, or that it is too great but one
side of the argument has the burden of proof, it is my view that the only major impediment to
rigorous deductive reasoning about socially relevant issues is basically conventional problem-
solving difficulty8. Of course, it is a strong impediment. For that reason, I think it is
worthwhile to describe the questions that I think are best suited for rigorous deductive
reasoning. These are contentious questions with ample time available. Typical sources of
such problems are public policy and law.

Without ample time, it may be detrimental to insist on deductive reasoning. As pointed
out in many places, when one’s options are finished heuristic reasoning or unfinished deduc-
tive reasoning, it is probably best to go with the former.

Without contentiousness, there is little motive for employing rhetoric to advance one’s
position, and this, I think, defeats much of the benefit of using formal logic (or some approx-
imation of it, as appears in mathematics journals). At the same time, lack of contentiousness
does not proportionally reduce the work required for rigor, so we are left with less expected
benefit relative to cost. Leibniz was conscious of this point:

I certainly believe that it is useful to depart from rigorous demonstration in ge-
ometry because errors are easily avoided there, but in metaphysical and ethical
matters I think we should follow the greatest rigor, since error is very easy here.
Yet if we had an established characteristic9 we might reason as safely in meta-
physics as in mathematics.

(Gottfried Leibniz, 1678, Letter to Walter von Tschirnhaus[LL76])

In contrast, some prominent Logical Positivists seem to have thought that this is not a
crucial constraint (e.g. Hans Reichenbach’s work on axiomatizing the theory of relativity).

1.2 About the HTML versions of proofs

I have been experimenting with outputting formal proofs to HTML rather than LaTeX, in
an effort to make reading them less effortful and tedious. The main benefits are these:

• Collapsible sections of text. This is helpful if you want to hide nasty parts of the proof
by default, and for readers it is helpful for decluttering the screen once they are satisfied
with the proof/justification of some lemma/claim, or once they have memorized the
definition of a symbol.
• Pop-up references on cursor hover. This is more useful for the proofs that I do in this

thesis than it usually is for proofs in mathematics, because of the much higher ratio of
<# of fundamental symbols with no standard meaning> to <length of proof>.

The following features are planned, but may not be implemented until after my thesis is
turned in.

8But see Section 3.5.1, for what I hope is only a temporary impediment
9Leibniz is referring to the practical system/method that he envisioned, but was unable to devise.
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• Online multi-collaborator editing of proofs using the Google Realtime API.
• Maybe: option of using a completely-machine-readable language, hooked up to a first-

order resolution theorem prover. I’m uncertain if anything besides satisfaction is gained
by this.

2 Comparison to Related Work

2.1 Bayesian Reasoning

Bayesian reasoning and statistics feature prominently in most of my major examples. The
Bayesian vs Frequentist debate is relevant here, and I recommend [Efr05] even for readers
who are already familiar with it. What I plan to do with this section is explain how I
formalize subjective probabilities, and compare my approach to others mentioned in the
literature. I will introduce the problem of the interpretation of subjective probabilities, and
explain why I cannot easily dismiss it, though I would like to. The purpose of this section is
mainly to answer certain philosophical objections against the foundations of my work.

There are subjective assumptions that seem normal and obviously necessary, such as
some of the assumptions I make in my arguments about assisted suicide, and more generally
the kind assumptions one must make in order to derive anything with nontrivial ethical
ramifications. And then there are subjective probabilities, which make most of us at least a
little uneasy. I will argue that the origin of that uneasiness is the same as the origin of the
uneasiness caused by adopting real-valued utility functions in utility theory, and then I will
explain how I handle the two issues in the same way. The issue in both cases, I claim, is
with the mixture of “qualitative” and “quantitative” subjective assumptions. My approach
is to separate subjective probability assumptions into two parts: (1) a simple, subjective,
qualitative part, and (2) a complex, objective, quantitative part. Doing that separation
often requires the description of elaborate (but effectively-objective) hypotheticals, and ex-
periments that will never be carried out, so I should reiterate that this is only a solution to
the philosophical problem.

2.2 Truth in Mathematics / Intersubjective Agreement

This section will be about subjectiveness and vagueness in pure mathematics. I’ll discuss
some papers about the Continuum Hypothesis that I particularly like: Feferman’s Is the
Continuum Hypothesis a Definite Mathematical Problem? [Fef] and Koellner’s response Fe-
ferman on the Indefiniteness of CH.

2.3 Coping with Vagueness

This will be a short section about some of the work on vagueness in philosophy, e.g. by Delia
Fara. They like to talk about the Sorites Paradox. I’ll show the vaguely-interpreted formal
proofs way of handling it.
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2.4 Logical Positivists

The logical positivists worked to varying degrees to expand the applications of formal logic
to areas outside traditional mathematics. According to the most vocal of modern commen-
tators, they were largely unsuccessful. It seems that the creation of a Leibnitzian dialog
system (see Section 2.5) would have been considered very worthwhile among the logical pos-
itivists, and unlike Leibniz, they did have modern formal logic at their disposal. Given that,
I attribute their lack of progress to two main factors:

1. Preoccupation with constructing elegant, widely-applicable theories. A premise of
my approach is that an informal yes/no question must be fixed before formalization
begins. Hence, the development of general theories about subjective and vague matters
is explicitly not a goal; only making progress on the question matters. Of course,
abstracting out common axiomatizations for reuse is still a good idea, but as with
writing software libraries, it should not be done preemptively.

2. Working with examples outside of the problem domain I outlined in Section 1.1. Be-
cause there is no promise of discovering mathematically interesting material in the
formal investigation of a question about a vague and subjective issue, the motivation
for the very difficult work involved in rigorous reasoning must come entirely from else-
where, namely from the question itself; we must be convinced that there is no easier
way to make progress on the question, and that making progress on the question is
indeed worth the work. Leibniz knew the danger of being insufficiently conscious of
this point; speculating about why the project he envisioned had not been taken up by
others earlier, like Descartes, he wrote:

The true reason for this straying from the portal of knowledge is, I believe,
that principles usually seem dry and not very attractive and are therefore
dismissed with a mere taste.

(Gottfried Leibniz, 1679, “On the General Characteristic”[LL76])

Also, the stigma in mathematics and science against working toward progress on value-
laden issues has grown over time. Doing so gets one’s work labeled as philosophy.
The stigma is not surprising, given what has passed as good work in contemporary
philosophy, but on the other hand, it is a clear fallacy of association to condemn a
subject of study on account of the people who have managed, so far, to get payed to
work on it.

2.5 Dialog Systems

A dialog system is a system of rules that two or more people/parties use to discuss or have
some form of argument about a particular question. The following categories will help to
convey the kind of dialog systems that I am interested in.

Terminology 1 (Practical dialog system). In contrast to the work on abstract argumentation
frameworks, which was popularized among computer scientists in [Dun95] and has sense
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spawned hundreds of publications10 by nonmonotonic logic researchers, a practical dialog
system is a dialog system that comes with non-trivial examples and guidelines for use, and
which is not motivated by appeal to its generality or elegance. This is exemplified in the
work of Douglas Walton and his colleagues (e.g [GW12], for a recent example) in the field
of Informal Logic.

Terminology 2 (Leibnitzian dialog system). A Leibnitzian dialog system is a practical
dialog system whose purpose, above all else, is to provide a framework that suffices for
rigorous, sound argumentation on an issue, to the fullest extent that such is possible, without
being vulnerable to manipulation by fallacious reasoning or tactics of rhetoric. A Leibnitzian
dialog system is fundamentally prescriptive, in contrast to the work of Walton and others,
where the goal is to facilitate the construction of persuasive, defeasible reasoning arguments
in a form that is (hopefully) more amenable to criticism.

I’ve chosen that tentative name due to writings by Leibniz, an idealist, who had a strong
lifelong vision of such a system, but without the prerequisite of modern formal logic that is
needed to concretely describe one. Writings like this:

For men can be debased by all other gifts; only right reason can be nothing but
wholesome. But reason will be right beyond all doubt only when it is everywhere
as clear and certain as only arithmetic has been until now. Then there will be
an end to that burdensome raising of objections by which one person now usually
plagues another and which turns so many away from the desire to reason. When
one person argues, namely, his opponent, instead of examining his argument,
answers generally, thus, ’How do you know that your reason is any truer than
mine? What criterion of truth have you?’ And if the first person persists in his
argument, his hearers lack the patience to examine it. For usually many other
problems have to be investigated first, and this would be the work of several weeks,
following the laws of thought accepted until now. And so after much agitation,
the emotions usually win out instead of reason, and we end the controversy by
cutting the Gordian knot rather than untying it.

(Gottfried Leibniz, 1679, “On the General Characteristic”[LL76])

2.5.1 Abstract Argumentation Systems and Informal Logic Dialogue Systems

As I noted at the beginning of this section, there are two tracks of current work on dialog
systems. The goal of the research in the first, which contains abstract argumentation frame-
works, appears to be the development of descriptive mathematical models of (unrigorous)
human argumentation, with the major motivation being to provide a theoretical framework
for the academic analysis of natural language arguments. In the other, more-applied track,
in which Douglas Walton does much of his work, the major motivation is the development
of implementable computer tools to help people more-efficiently construct better and easier-
to-criticize defeasible arguments.

10Google reports 1701 citations of that paper, as of 11 Aug 2012.
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The goal of my work is closer to the second track, but more-prescriptive. I wish to develop
a mathematical model for the informal concept of rigorous reasoning about subjective and
vague questions (of the sort that I described in Section 1.1), where I mean “rigorous” to imply
exceptional internal consistency, transparency, and clarity – properties viewed as virtuous
among sober and unattached intellectuals.

2.6 Defeasible, Nonclassical, and Intensional Logics

The main purpose of this section is to explain why I stick to a version of classical FOL.
Let L be a nonclassical logic or intensional logic. I claim that the ease of converting

proofs in L to equally-readable proofs in a user-friendly version of FOL (Section 3.1), or of
extending the definition of user-friendly FOL to accommodate the useful features of L (which
I’ve already done several times), is inversely proportional to the difficulty (relative to FOL)
of interpreting L-sentences. Furthermore, when there is no added difficulty of interpreting
sentences, or when the features of L allow us to write easier to interpret sentences (and
without making it too much easier to write deceptively-simple sentences whose meaning is
complex), then we can either already simulate those features with low overhead in user-
friendly FOL, or else we can extend our definition of user-friendly FOL to accommodate
those features.

This will not be an argument against the study of defeasible, nonclassical, and inten-
tional logics in general, because its force depends on two uncommon aspects of my project:
(1) sentences about vague, subjective concepts and uncertain knowledge are already more-
difficult to interpret than sentences about traditional mathematical concepts and certain
knowledge, and (2) with the minimally-reductionist approach to proofs that I advocate, ease
of interpretation is more important than it usually is in applications of formal logic.

Also see Section 3.4.

3 Framework

3.1 Logic Definitions

This section gives a version of sorted first-order logic with subtyping, partial functions/undefinedeness,
variable arity overloading, and sort operators, which I’ll refer to as MSFOLĎ,K (many-sorted
FOL with subtyping and undefinedness). The partial functions feature is based on [Far93].

Definition 1 (S-type, S-sort, S-predicate type, etc). When S is a set of symbols, each of
which is designated a sort symbol or sort-operator symbol, and such that S is equipped with
a function that assigns a fixed arity ě 1 to each sort operator symbol, then the S-types are
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defined by the following grammar:11

sort S – xsort-symbol in Sy | xsort-operator symbol in SypS`q |
S X S | SzS | S Y S

domain type D – S`

simple total function type – D Ñ S
simple predicate type – D Ñ B
simple partial function type – D Ñ? S
function type – nonempty set of simple total function types
partial function type – nonempty set of simple total and partial function types
predicate type – nonempty set of simple predicate types, or B

Definition 2 (arity). The arity of a domain type S1 ˆ ¨ ¨ ¨ ˆ Sk is k. The arity of a simple
(total or partial) function type or simple predicate type is the arity of its domain type.

Definition 3 (signature). A MSFOLĎ,K signature Σ is given by:

• A set S of sort symbols and sort operator symbols . A nonempty subset of the sort
symbols are designated top-level sort symbols, and each sort operator symbol has a
fixed arity ě 1.

• A set of term symbols, each of which is assigned an S-type. The term symbols are
partitioned into three sets:
– Constant symbols, which are assigned sorts.

– Function symbols, which are assigned partial function types.

– Predicate symbols, which are assigned predicate types.

• A set of sort constraints each of the form S1 Ď S2 where S1, S2 are S-sorts.

Definition 4 (Σ-structure). A Σ-structure M for a signature Σ consists of a set M called
the universe of M and a mapping from various pieces of syntax Λ to elements of M ` K,
subsets of M, partial functions from M˚ to M, relations on M˚, or truth values, that meets
the following constraints, where regardless of the kind of syntax that Λ is, we write ΛM for
the object that M assigns to Λ. Partial functions on M are total functions on M`K, where
K is a new object not in M.

• For each sort symbol s, sM is a nonempty subset of the universe M, and if s1, . . . , sk
are the top-level sort symbols then sM1 , . . . , sMk is a partition of the universe.

• For each sort operator symbol F with arity n, FM is a function from p2Mqn to 2M.

• If S “ S1zS2 then SM is the set difference of SM
1 and SM

2 , i.e. the elements of S1 that
are not in S2. Likewise X and Y have their expected meanings.

11I write X` to mean a nonempty list of Xs, and alternation | has the same meaning as in regular expres-
sions. When I write xsort-operator symbol in SypS`q, I of course mean that the number of sort arguments
should match the arity of the sort-operator symbol.
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• If S “ F pS1, . . . , Snq for F a sort-operator symbol of arity n then SM “ FMpSM
1 , . . . , S

M
n q.

• If S1 Ď S2 is a sort constraint then SM
1 is a subset of SM

2 .

• If D “ X1, . . . , Xk is a domain type, then DM is the set XM
1 ˆ ¨ ¨ ¨ ˆXM

k . Also DM`K

is the set pXM
1 ` Kq ˆ ¨ ¨ ¨ ˆ pX

M
k ` Kq.

• If c is a constant with type S then cM P SM.

• If f is a function symbol with the following partial function type

t D1 Ñ S1, . . . , Dk Ñ Sk,
Dk`1 Ñ? Sk`1, . . . , Dn Ñ? Sn u

then fM is a function with domain DM`K
1 Y . . .YDM`K

n such that

– for each i P t1, . . . , ku if ~a P DM
i (so no component is K) then fMp~aq P SM

i .

– for each i P tk`1, . . . , nu if ~a P DM
i (so no component is K) then fMp~aq P SM

i `K.

– if ~a is in the domain of fM and some component of ~a is K, then fMp~aq “ K.

• If P is a predicate symbol with type D1 Ñ B, . . . , Dn Ñ B then PM is a relation with
domain DM`K

1 Y . . .YDM`K
n such that if ~a is in the domain of PM and some component

of ~a is K, then PMp~aq is false.12 When n “ 0, PM P ttrue, falseu.

Grammar for terms and formulas for a given signature Σ.

variable x
sort S
constant symbol c
(partial) function symbol f
predicate symbol P
proper term t – c | x | fpt`q
atomic formula R – P | P pt`q | t “ t | tÓ| Sptq
formula A – R | A^ A | A_ A |  A | @x:S.A | Dx:S.A
term Λ – t | A

Evaluation of terms and formulas

Definition 5 (context, object assignment). Let Σ be a signature and M a Σ-structure. An
M-object assignment is, as usual, a mapping from some finite set of variables to elements of
the universe M. A Σ-context (or just context, when unambiguous) is a finite mapping from
variables to sorts. For κ a context, a 〈κ,M〉-object assignment σ is an object assignment
whose domain is the domain of κ such that σpxq is an element of pκpxqqM for all x.

We are now ready to define the evaluation of terms over a given structure. Fix a signature
Σ and Σ-structure M. The valuation function for M is a partial function whose domain is

12Note that a relation is given by two sets: the relation’s domain, and the set of objects that hold for the
relation, which is a subset of the domain.
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the set of pairs pterm, object assignmentq and whose range is M ` K. We use the normal
notation tMrσs, AMrσs. There are two notions of “defined” involved here. When M’s
valuation function is undefined on a pterm, object assignmentq pair 〈Λ, σ〉, we will say that
the evaluation ΛMrσs crashes or that M, σ crashes Λ. In that case Λ is not a meaningful term
with respect to M and σ, and we will use this notion to define what counts as a syntax error.
The other notion is when ΛMrσs “ K, in which case Λ is a meaningful term with respect
to M and σ; this notion is analogous to the “exception” feature found in many modern
programming languages.

In the following recursive definition, we keep implicit the following constraint: M’s valu-
ation function on 〈Λ, σ〉 is undefined (crashes) if evaluation crashes at any subterm. When
~t “ t1, . . . , tk we make ~tMrσs denote tM1 rσs, . . . , tMk rσs.
Proper terms:
• xMrσs “ σpxq and evaluation crashes if x is not in the domain of σ.

• cMrσs “ cM

• fp~tqMrσs “ fMp~tMrσsq. Evaluation crashes if ~tMrσs is in M˚ but not in the domain of
fM.

Formulas:
• pt1 “ t2q

Mrσs holds iff tM1 rσs and tM2 rσs are the same element of the universe M.13

• PMrσs “ PM and evaluation crashes if the type of P is not B.
• P p~tqMrσs holds iff ~tMrσs is in PM. Evaluation crashes if ~tMrσs is in M˚ but not in the

domain of PM.14

• pA^BqMrσs holds iff AMrσs holds and BMrσs holds. Similarly for _, ,ñ.

• To evaluate p@x:S.AqMrσs or pDx:S.AqMrσs, first evaluate AMrσ, x ÞÑ as for every a P
SM. If SM is empty, then evaluation crashes at this level. If no subevaluation has
crashed yet, then evaluation does not crash at this level, and in that case the definition
is as usual:
– p@x:S.AqMrσs evaluates to true iff AMrσ, x ÞÑ as evaluates to true for every a P SM.
– pDx:S.AqMrσs evaluates to true iff AMrσ, x ÞÑ as evaluates to true for some a P SM.

• tÓM rσs holds iff tMrσs is in M, i.e. if tMrσs ‰ K.

• pSptqqMrσs holds iff tMrσs is in SM.

Definition 6 (consistent signature). A signature Σ is consistent iff the set of Σ-structures
is non-empty.

It is not hard to define an inconsistent signature using just sort constraints. It is also
possible for a signature to be inconsistent without the sort constraints being inconsistent, or
with no sort constraints:

13Hence “ is untyped. Also note that K “M K is false.
14Recall that ~a P PM implies ~a P M˚, and hence if any of the tMi rσs are error values, and none causes a

crash, then P p~tqMrσs is defined and false.
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Example The signature with top-level sorts S1, S2 and a single function symbol of type
tS1 Ñ S1 X S2u is inconsistent.

Definition 7 (well-typed terms). For Σ a consistent signature, a Σ-term Λ is ill-typed in
context κ iff there is a Σ-structure M and 〈κ,M〉-object assignment σ that makes the eval-
uation ΛMrσs crash. Λ is well-typed in κ iff it is not ill-typed in κ.

The problem of determining whether a given signature is consistent is decidable (by
Theorems 1-2). The problem of determining, given 〈Σ, A〉, whether A is a well-typed Σ-
sentence, is also decidable (by Theorems 1-3). For a given signature Σ, the set of valid
Σ-sentences is recursively enumerable (by Theorems 1 and 4). Proofs of these claims will
appear in my dissertation. They are tedious, but not difficult.

Definition 8 (MSFOLĎ). MSFOLĎ is the simplified version of MSFOLĎ,K that has no partial
function types or undefinedness. Every function is total on its domain, and there is noÓ
symbol.

Theorem 1. There is a polynomial time reduction that, given a MSFOLĎ,K signature Σ and
a Σ-sentence A, produces a MSFOLĎ signature Σ1 and Σ1-sentence A1 such that:

• Σ is consistent iff Σ1 is.
• A is a well-typed Σ-sentence iff A1 is a well-typed Σ1-sentence.
• A is a valid Σ-sentence iff A1 is a valid Σ1-sentence.

Theorem 2. The problem of determining whether a given MSFOLĎ signature is consistent
is reducible to the validity problem for monadic predicate logic15, and thus is decidable..

Theorem 3. Given a MSFOLĎ signature Σ and Σ-sentence A, the problem of determining if
A is a well-typed Σ-sentence is reducible to the validity problem for monadic predicate logic,
and thus is decidable.

Theorem 4. For Σ a consistent MSFOLĎ signature, the validity problem for well-typed Σ-
sentences is reducible to the validity problem for FOL.

3.1.1 Reductions and proof sketches for appendix

Definition 9. For a MSFOLĎ signature Σ, if ρ is a function (resp. predicate) symbol of
Σ and k is a positive integer then typeΣ,kpρq is the set of arity-k simple function (resp.
predicate) types of ρ. The argument Σ is left out when it’s clear from the context.

Reduction for Theorem 1
The reduction is given by a polynomial time function that, given a MSFOLĎ,K signature

Σ and a (not necessarily well-typd) Σ-formula A, yields a MSFOLĎ signature Σ1, a set X of
Σ1-sentences, and a Σ1-formula A1.

15i.e. predicate logic with only unary predicate symbols and constants
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We modify Σ to get Σ1, and generate the set X at the same time. Add a new top-level
sort symbol Undef, and a new constant K : Undef. Add @x:Undef. x “ K to X. For each
sort symbol s of Σ, add the constraint s X Undef “ H. Now we modify each of the simple
function or predicate types of each (partial) function or predicate symbol ρ. Recall that the
type of a (partial) function symbol is a set of simple total function types (resp. simple total
and partial function types), and similarly for predicate symbols. For notational convenience,
I will just show what to do for types of arity 2; it will be obvious what to do for smaller and
larger arities. When S is a sort, let SK abbreviate S Y Undef.

• If S1 ˆ S2 Ñ S is a simple function type of ρ, then add to it the two simple function
types tUndef ˆ SK2 Ñ Undef, SK1 ˆ Undef Ñ Undefu, which force the function to be
undefined whenever any of its arguments are undefined.
• If S1 ˆ S2 Ñ? S is a simple partial function type of ρ, then replace it with the three

simple function types tUndef ˆ SK2 Ñ Undef, SK1 ˆ Undef Ñ Undef, SK1 ˆ SK2 Ñ SKu.
This accomplishes the same thing as we did for total function types, except that it
allows the partial function to be undefined when all of its arguments are defined.
• If S1ˆS2 Ñ B is a simple predicate type of ρ, then replace it with SK1 ˆSK2 Ñ B. Also

add to X the sentence @x1:SK1 . @x2:SK2 . px1 “ K _ x2 “ Kq ñ  ρpx1, x2q, which forces
the relation to be false whenever any of its arguments are undefined.

Next we modify the Σ-sentence A to get the Σ1-sentence A1. Let A2 be obtained by replacing
each subformula of the form t1 “ t2 with pt1 ‰ K ^ t2 ‰ K ^ t1 “ t2q, and each subformula
of the form tÓ with t ‰ K. Then A1 is p

Ź

BPX Bq Ñ A2.
To prove correctness of the reduction (i.e. Theorem 1), define a bijection between Σ-

structures, and Σ1-structures that satisfy X. The sentences X are used to translate Σ1-
structures to Σ-structures, since Σ1 alone does not force structures to interpret Undef as a
1-element set, or to make relations false whenever any of the arguments is the interpretation
of K.

Reduction for Theorems 2 and 3
Fix a MSFOLĎ signature Σ. Let L be the monadic predicate logic language consisting of

the sort symbols of Σ as unary predicate symbols. If S is a sort of Σ then xSy is a function
that maps strings to strings, such that xSypxq is an L-formula containing the variable x, and
xSyptq is xSypxqrx ÞÑ xtys.

TODO: sort operators

xsy “ x ÞÑ spxq for s P L
xS1 X S2y “ x ÞÑ xS1ypxq ^ xS2ypxq
xS1 Y S2y “ x ÞÑ xS1ypxq _ xS2ypxq
xS1zS2y “ x ÞÑ xS1ypxq ^  xS2ypxq

xHy “ x ÞÑ x ‰ x

Additionally,

• x¨y maps each sort constraint S1 Ď S2 of Σ to the L-sentence @x. xS1ypxq ñ xS2ypxq.
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• If D “ S1 ˆ ¨ ¨ ¨Sk is an arity k domain type then xDy is the function that takes any
k strings u1, . . . , uk to xS1ypu1q ^ . . . ^ xSkypukq (which is an L-formula if the ui are
variables).
• If D1, . . . , Dm are the arity-k domain types of function or predicate symbol ρ, then let

domρ,k be the function that takes any k strings ~u to xD1yp~uq _ . . ._ xDmyp~uq.
• If D1 Ñ S1, . . . , Dm Ñ Sm are the arity-k simple function types of function symbol f ,

then let rangef,k be the function that takes any k ` 1 strings u1, . . . , uk, uk`1 to
ľ

iďm

xDiypx1, . . . , xkq ñ xSiypxk`1q

which is an L-formula if the ui are variables.

The output ψ “ ψσ, a monadic predicate logic L-sentence, of the reduction for Theorem 2,
is give by the conjunction of the L-sentences:

• xS1 Ď S2y for each sort constraint.
• Dx. spxq for each sort symbol.
• Dx. xSypxq for each constant c of type S.
• For each function symbol f , and each k such that f has a simple function type of

arity k, if tD1 Ñ S1, . . . , Dm Ñ Smu are those simple function types, then for every
nonempty Z Ď t1, . . . ,mu, the sentence

˜

D~x.
ľ

iPZ

xDiyp~xq

¸

ñ

˜

Dx.
ľ

iPZ

xSiypxq

¸

It then suffices to prove that Σ is consistent iff ψ is satisfiable.
The ñ direction is easy - just take the most obvious approach of having the universe of

the Σ structure M be the universe of the ψ model N, and having N’s relations be the same
as M’s interpretations of its sort symbols. Then verify that N satisfies ψ.

For the ð direction, let N be a model of ψ. We construct a Σ-structure M. The
universe U of M is the closure of tsN | s P sort symbol of Σu under intersection, union,
and set difference, minus the empty set. Each predicate symbol of Σ gets interpreted as the
relation that is true for every element of its domain. If the sort of constant c of Σ is S, then
cM “ ta P U | pxSypxqqN rx ÞÑ asu. Now let f be a function symbol of Σ. We have already
determined the domain of f . For ~a in the domain of f , with k “ |~a|, let I be the indices of f ’s
arity-k simple function types. Let I 1 Ď I be the i P I such thatDi Ñ Si is the i-th such simple
function type of arity k and ~a P DM

i . Then fp~aq is V “
Ş

iPI 1ta P U | pxSiypxqq
N
rx ÞÑ asu.

Note that V must be in the universe of M that we specified, since it is obtainable from the
atomic relations sN using intersection, union and set difference, and because it is not the
empty set by virtue of N satisfying the L-axioms for function symbols.

Now we give the reduction for Theorem 3, which uses the reduction for Theorem 2, Let
A be a Σ-sentence. Rename bound variables so that no variable is bound by more than one
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quantifier. Introduce a variable yt for each subterm t of A. Now we extend the definition of
x¨y to (the subterms of) A:

xA1 op A2y “ xA1y^ xA2y for op P t^,_,ñu
x A1y “ xA1y

xQx:S.Ay “ xSypyxq ñ xAy for Q P t@, Du
xxy “ yx
xcy “ yc

xfpt1, . . . , tkqy “ domf,kpyt1 , . . . , ytkq ^ rangef,kpyt1 , . . . , ytk , yfpt1,...,tkqq
xP pt1, . . . , tkqy “ domP,kpyt1 , . . . , ytkq

xt1 “ t2y “ xt1y^ xt2y

Let c1, . . . , cn be the constants of Σ of sorts S1, . . . , Sn that are used in A. Then the final
monadic predicate logic L-sentence is obtained by universally quantifying over all the free
variables in

ψ ^ xS1ypyc1q ^ . . .^ xSnypycnq ñ xAy

Reduction for Theorem 4 Let Σ be a consistent MSFOLĎ signature. Let L “ LΣ be the
first-order language with:
• the same constant symbols as Σ plus one additional constant none.
• a unary predicate symbol for every sort symbol of Σ.
• for each function (resp. predicate) symbol ρ, a k-ary function (resp. predicate) symbol
ρk for every k such that ρ’s type has at least one simple function (resp. predicate) type
of arity k (equivalently, typekpρq is non-empty).

Let Γ be the following set of L-sentences. The conjunction of its elements will be in the
antecedent of the reduction’s final L-sentence. Below, ~x abbreviates x1, . . . , xk.
• For each of L’s function symbols fk the sentences

@~x. rangef,kp~x, fkp~xqq

@~x. fkp~xq ‰ none ô domf,kp~xq

• For each of L’s predicate symbols Pk the sentence

@~x. Pkp~xq ñ domP,kp~xq

• For each constant c in Σ of sort S, the sentence xSypxq.
• For each sort symbol s, the sentence Dx.spxq.
• For each sort constraint S1 Ď S2, the sentence xS1 Ď S2y.
• For s1, . . . , sk the top-level sort symbols of Σ, the following two sentences, which express

that for any model N, the k`1 sets sN1 , . . . , sNk , tnoneNu are a partition of the universe.

@x. p s1pxq ^ . . .^ skpxqq ô x “ none

@x.
ľ

iăjďk

 sipxq _  sjpxq
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Let A be a well-typed Σ-sentence. Obtain an L-sentence φ by modifying A according to
the following rules until no more such modifications are possible:

• Subformula @x:S.A1 becomes @x.xSypxq ñ A1.
• Subformula Dx:S.A1 becomes Dx.xSypxq ^ A1.
• Subterm fpt1, . . . , tkq becomes fkpt1, . . . , tkq.
• Subformula P pt1, . . . , tkq becomes Pkpt1, . . . , tkq.

The final L-sentence returned by the reduction is
´

Ź

ψPΓ ψ
¯

ñ φ. If π is that sentence, then
it satisfies: A is a valid Σ-sentence iff π is a valid L-sentence.

3.2 Vaguely-Interpreted Formal Proofs

In this section I am just giving a name to a kind of document that most teachers of first-
order logic have used at least implicitly. The point is just to make concrete and explicit a
bridge between the formal and informal, providing a particular way for an author of a proof
to describe, in the metalanguage, their intended semantics. In my thesis I will use Douglas
Walton’s fallacious proof about marriage (“nobody should ever get married”) to illustrate the
definitions in this section.

This definition of vaguely-interpreted formal proof in this section is tailored for the par-
ticular variant of sorted first-order logic that I use in the examples and define in Section 3.1,
but it will be clear that a similar definition can be given for any logic that has a somewhat
Tarski-like semantics, including the usual classical first order logic.

There are four kinds of formal axioms that appear in a vaguely-interpreted formal proof:

• An assumption imposes a significant constraint on the semantics of vague symbols (most
symbols other than common mathematical ones), even when the semantics of the mathe-
matical symbols are completely fixed.
• A claim does not impose a significant constraint on the semantics of vague symbols. It

is a proposition that the author is claiming would be formally provable upon adding
sufficiently-many uncontroversial axioms to the theory.
• A simplifying assumption is a special kind of an assumption, although what counts as

a simplifying assumption is quite vague. The author uses it in the same way as in the
sciences; it is an assumption that implies an acknowledged inaccuracy, or other technically-
unjustifiable constraint, that is useful for the sake of saving time in the argument, and
that the author believes does not bias the results. The author should try to minimize the
use of simplifying assumptions.
• A definition is, as usual, an axiom that completely determines the interpretation of a new

symbol in terms of the interpretations of previously-introduced symbols.

A language interpretation guide g for (the language of) a given signature is simply a
function that maps each symbol in the language to a chunk of natural language text, which
describes, often vaguely, what the author intends to count as a “standard interpretation” of
the symbol; due to the vagueness in the problems we are interested in, a set of axioms will
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have many standard models. Typically gpsq will be between the length of a sentence and a
long paragraph, but can be longer.

16Recall that a signature’s language has sort symbols, which structures must interpret
as subsets of the universe, and a signature may constrain their interpretations by sort con-
straints, which are expressions of forms like S1 Ď S2 (meaning that the interpretation of S1

must be a subset of the interpretation of S2) or S1 X S2 “ H, etc. A language can also have
sort operator symbols, which are second order function symbols that can only be applied to
sorts. In this thesis sort operators have a nonvital role, used for uniformly assigning names
and meanings to sorts that are definable as a function of simpler sorts, when that function is
used multiple times and/or is applied to vague sorts (i.e. sorts in Lvague, introduced below).17

A signature assigns sorts to its constants, and types to its function and predicate symbols.
In this thesis, types are mostly used as a lightweight way of formally restricting the domain
on which the informal semantics of a symbol must be given (by the language interpretation
guide). To see why they are beneficial, suppose that we didn’t have them, e.g. that we were
using normal FOL. For the sake of clarity, we would nonetheless usually need to specify types
either informally in the language interpretation guide, or formally as axioms. In the first
case, we inflate the entries of the language interpretation guide with text that rarely needs
to be changed as an argument progresses, and that often can be remembered sufficiently
after reading it only once. In the second case, we clutter the set of interesting axioms (e.g.
the non-obvious and controversial axioms) with usually-uninteresting ones (namely, typing
axioms and axioms that express relationships between sorts).

A sentence label is one of tassum, simp, claim, defn, goalu, where assum is short for assump-
tion and simp is short for simplifying assumption. A symbol label is one of tvague,math, defu.
A language is just a set of symbols, each of which is designated a constant, predicate, func-
tion, sort, or sort-operator symbol.

A vaguely-interpreted formal proof is given by

• A signature Σ.
• A set of well-typed Σ-sentences Γ called the axioms.
• An assignment of symbol labels to the symbols of Σ. If L is the language of Σ, then for

each symbol label l we write Ll for the symbols assigned label l.
• An assignment of sentence labels to the elements of Γ, with one sentenced label goal. For

each sentence label l we write Γl for the sentences in Γ labeled l.
• An assignment of one of the sentence labels assum or simp to each type assignment and

sort constraint of Σ. These typing declarations can be viewed as sentences too, and though
they will usually be regular assumptions (labeled assum), occasionally it’s useful to make
one a simplifying assumption (labeled simp).
• The sentences in Γdefn define the constant, function, and predicate symbols in Ldef. Func-

16I may end up moving this paragraph.
17For example, if our proof only needs the power set of one mathematical sort S (in Lmath), then using a

sort operator would have little benefit over just introducing another mathematical sort symbol named 2S . I
cannot say the same if S is a vague sort (in Lvague), since then we would have to introduce 2S as a vague
sort as well, and I think minimizing the number of vague symbols is usually desirable.
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tion and predicate symbol definitions have a form like @x1:S1. . . . .@xk:Sk. fpx1, . . . , xkq “ t
where t can be a term or formula (in the latter case, replace “ with Ø) and the Si are
sorts.
• Lvague,Lmath,Ldef are disjoint languages, Lvague does not contain any sort-operator sym-

bols,18 and Ldef contains neither sort nor sort-operator symbols19.
• g is a language interpretation guide for a subset of the language of Σ that includes Lvague

and Lmath. So, giving explicit informal semantics for a defined symbol is optional.
• Γgoal is provable from Γassum Y Γsimp Y Γclaim Y Γdefn.
• For each ψ P Γclaim, any reader in the intended audience of the proof can come up with a

set of Lmath-sentences ∆, which are true with respect to the (informal) semantics given by
g, such that ΓassumYΓdefnYΓsimpY∆ proves ψ. See following paragraph for a more-precise
condition.

Lmath is intended to be used mostly for established mathematical structures, but in general
for structures that both sides of an argument agree upon sufficiently well that they are
effectively objective with respect to Γclaim. For each person p in the intended audience of the
proof, let ∆p be the set of Lmath-sentences that p can eventually and permanently recognize
as true with respect to the informal semantics given by g. Then we should have that

Ş

pPaudience
∆p

is consistent and when combined with Γassum Y Γdefn Y Γsimp proves every claim in Γclaim. If
that is not the case, then there is some symbol in Lmath that should be in Lvague, or else the
intended audience is too broad.

The purpose of the language interpretation guide is for the author to convey to readers
what they consider to be an acceptable interpretation of the language. Subjectiveness results
in different readers interpreting the language differently, and vagueness results in each reader
having multiple interpretations that are acceptable to them. Nonetheless, an ideal language
interpretation guide is detailed enough that readers will be able to conceive of a vague set
of personal Σ-structures that is precise enough for them to be able to accept or reject each
assumption (element of Γassum Y Γsimp) independent of the other axioms. When that is not
the case, the reader should raise a semantic criticism (defined below), which is similar to
asking “What do you mean by X?” in natural language.

In more detail, to review a vaguely-interpreted proof π with signature Σ and language
L, you read the language interpretation guide g, and the axioms Γ, and either accept π or
criticize it in one of the following ways:

(1) Semantic criticism: Give φ P Γ and at least one symbol s of Lvague that occurs in φ,
and report that gpsq is not clear enough for you to evaluate φ, which means to conclude
that all, some, or none of your personal Σ-structures satisfy φ. If you cannot resolve
this criticism using communication with the author in the metalanguage, then you

18I suppose that restriction could be lifted, but I haven’t had any desire for vague sort operators in all the
time I’ve worked on this project.

19Another inessential constraint, which I’ve added simply so that I don’t have to include something in the
grammar for defining sorts or sort-operators in terms of other sorts and sort operators
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should submit a Σ-sentence ψ to the author, which is interpreted by the author as the
question: Is ψ consistent with g?

(2) Rigor criticism: Criticize the inclusion of a symbol in Lmath, or do the same as in
(1) but for Lmath. This is the mechanism by which one can insist that vague terms
be recognized as such. The same can be done when φ is a type assignment or sort
constraint, in which case ψ is a Σ-sentence that uses sort symbols as unary predicate
symbols.

(3) Mathematics detail criticism: Ask for some claim in Γclaim to be proved from simpler
claims (about Lmath interpretations).

(4) Subjective criticism: Reject some sentence φ P ΓassumYΓsimp, which means to conclude
that at least one of your personal L-structures falsifies φ. If you wish to communicate
this to the author, you should additionally communicate one of the following:
(a) Tentative commitment to  φ, i.e. conclude that all of your personal Σ-structures

falsify φ.
(b) Tentative commitment to the independence of φ, i.e. conclude that φ is also

satisfied by at least one of your personal Σ-structures. Intuitively, this means
that φ corresponds to a simplifying assumption that you are not willing to adopt.

In the context of its intended audience, we say that a vaguely-interpreted formal proof
is locally-refutable if no member of the intended audience raises semantic or rigor criticisms
when reviewing it. A locally-refutable proof has the ideal property that by using the language
interpretation guide g, any member of the audience can evaluate each of the axioms of the
proof independently of the other axioms.

3.2.1 My prescription for formal mathematics (with 5 color theorem example
and failed proof of 4 color theorem)

I have an unusual opinion about formal mathematics: I agree with the community that it is
worthwhile to try to make formal theorem proving easy enough that it can one day improve
the trustworthiness of proofs in mathematics (especially in computer science), but on the
other hand I think that the way it is being done right now often makes poor use of time.

I’ll call my prescription minimally-reductionist formal theorem proving (or minimally-
reductionist formal mathematics). It uses a notion of proofs that is based on the definition
of vaguely-interpreted formal proofs, with the following roughly-defined additions:

1. There is a language of structured machine-checkable proofs, of the same style as in
Mizar.

2. We add the sentence label lem for lemmas and theorems that are accompanied by
machine-checkable proofs.

3. Declarations of new symbols and sorts are allowed throughout the proof.

There is no syntactic guarantee that the axioms used in a proof are consistent, as in existing
interactive theorem proving systems. Instead, the language interpretation guide is relied
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upon for verifying consistency (informally), and more-generally for verifying that the ax-
ioms are sound with respect to their intended semantics (which existing interactive theorem
proving systems must do informally as well).

The greatest difference of my prescription is in the recommended use of the system. Not
only is it not necessary to define objects in terms of simpler or more-fundamental objects, it
is actually discouraged unless the definition is used in the proof. Furthermore, authors are
encouraged to introduce fundamental symbols for things that are not literally assigned to
symbols in the prose source proof. As an example, in my formal proof of the 5 color theorem,
there is a 6-argument symbol for “nodes u1, u2, u3, u4, u5 are arranged clockwise around node
v”. It is easy to say what it means in prose, and we only need to use one proposition about
it, so it is a waste of time to define it formally.

The current draft of the formal proof of the 5-color theorem can be found here.

3.3 Theoretical Dialogue System

3.3.1 Vaguely-Interpreted Formal Proofs with Finite Models

For now I will just give a preview of the definition of a state of a dialog. It includes:

1. A vaguely-interpreted formal proof π with signature Σ and axioms Γ.

2. A set Γind of Σ-sentences that are independent of Γ, and are a minimal set of indepen-
dent sentences in the following sense: for every A P Γind, the independence of A from
Γ does not follow from the independence of Γind ´ A from Γ.

3. A subsignature Σfin of Σ that contains all the symbols of Lvague and any symbols of
Ldef that depend on symbols from Lvague.

Let Γfin denote the axioms of Γ that are well-typed Σfin-sentences. All controversial axioms
must be in Γfin, and Γfin must have finite models.

Since symbols in Lvague may have types that contain sort symbols from Lmath whose in-
tended interpretation is infinite, and since controversial axioms will often include symbols
from Lmath, converting an argument into a form that fits this schema will sometimes require
introducing new versions of sort and term symbols in Lmath that have finite intended inter-
pretations. For example, in the Berkeley argument from Section 4, we would introduce a
second version of the cardinality function | ¨ | : AÑ N that has type AÑ N1, where N1 is a
new sort symbol whose intended interpretation is the first 4526 natural numbers; enough to
give a size to each of the relevant sets of applications. This complication is just one of the
reasons why I am calling the dialog system theoretical.

In my thesis, I will give general conditions on vaguely-interpreted formal proofs that
enable one to convert a proof to the above schema. Intuitively, this amounts to an argument
not making indispensable use of infinite objects. My hypothesis is that for arguments about
problems in the domain I am interested in (Section 1.1), doing so is always possible in
principle.
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3.3.2 Dialogue rules and definition of progress

The rules that I’ll define precisely here will consist of:

1. Rules for moves similar to those given at the end of Section 3.2 for criticizing a vaguely-
interpreted formal proof.

2. Rules for moves that extend the language.

It turns out to be easy to ensure progress if the language is not extended indefinitely. I then
build on that conclusion by allowing moves that extend the language but simultaneously
make progress in another way. The gist is this: we allow a move that extends the language
L to L1 and the axioms Γ to Γ1 if the number of finite models of Γfin that can be extended to
models of Γ1fin is smaller than the number of finite models of Γfin.20 We should also allow each
party to make a bounded number of language-extending moves that do not make progress.

3.3.3 Example using Sue Rodriguez argument

I will sketch what a dialogue could look like where one party is carrying out the argument
introduced in Section 7.1 and the other is criticizing.

3.4 Patterns for formalizing common kinds of defeasible reasoning

When I explain my work to intelligent people outside of mathematical disciplines –students
of law, politics, philosophy; incidentally the people who take the greatest interest in it– the
most difficult task is explaining the practical effect of the limitation to deductive reasoning.

Consider the following excerpt from a recent paper [Wal11] by Walton, which advocates
the use of defeasible logic:

The most widely useful argumentation schemes that fit arguments in everyday
conversational argumentation are defeasible ones [citation omitted]. A good ex-
ample is argument from expert opinion. This scheme is not well modeled by a
deductive interpretation. Basing it on an absolutely universal generalization, to
the effect that what an expert says is always true, does not yield a useful logical
model. Indeed such a deductive model would make the scheme into a fallacious
form of argument by making it unalterably rigid. In practice, evaluating an ar-
gument from expert opinion is best carried out by seeing how well it survives the
testing procedure of critical questioning [citation omitted].

Ironically, Walton has employed a straw man argument here (but on the other hand, he does
say that he is talking about “everyday conversational argumentation”, which is certainly not
my interest). This is typical in the motivation for defeasible logic: implicitly the proponent
suggests that in a deductive logic framework, to formalize an argument from expert opinion,

20Actually, L and Γ are not necessarily from the previous state of the dialogue. They are from the last
of the (bounded number of) states of the dialogue when the language was extended in a way that doesn’t
ensure progress
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or an instance of inductive or abductive reasoning, or an instance of default reasoning, the
only option is to assert a general rule that has obvious fallacious instances. A slightly
more dignified criticism of deductive logic makes the implicit suggestion that in a deductive
framework, the only option is to formulate a concise and elegant schema for some type of
defeasible argument, which suffices to justify all and only the good instances of that argument
type. I say that it is slightly more dignified because it is sometimes an innocent instance of
academics’ often-very-productive instinct to generalize, to obsess about elegance and wide
applicability.

In contrast, for arguing about contentious and important issues, when plenty of time is
available, I think it is a good idea to insist on the use of deductive logic, particularly for
the sake of obtaining locally-refutable proofs. Of course, that “restriction” does not preclude
the use of defeasible reasoning (which is easy to do in deductive logic, provided you don’t
insist on elegant, widely-applicable schema), but rather just makes it stand out, often as the
weakest part of an argument. I claim, moreover, that any really solid use of a defeasible
reasoning pattern, such as appeal to expertise, can be formulated, with enough effort and
perhaps a little creativity, as a really solid deductive argument. Two examples of special
classes of deductively-strong appeals to expertise follow.

Example A man, John Doe, is on trial for vehicular homicide. A forensics expert testifies
that from his examination of the skid marks on the road and the tires of Doe’s car after the
accident, he is “certain” (subtext: as certain as he ever is on a judgement like this), that
Doe’s car was traveling at least 75mph just before the point where the skid marks begin.
The proposition that the prosecuting attorney wants to use is a formalization of “John Doe’s
car was traveling at least 75mph just before it began to skid”. In the initial version of the
attorney’s informally-interpreted proof, she uses a propositional variable X to represent that
statement (i.e. the assertion that the statement is true), and another propositional variable
Y for a statement that quotes the full record of the testimony of the expert witness, and
asserts that it is in fact what the expert said. She then includes the axioms Y and Y ñ X.

Why am I calling this a deductively strong appeal to expertise? It’s because the pros-
ecuting attorney, with the help of her expert witness, is quite prepared to replace those
two axioms with a longer proof from a larger set of axioms, each of which is much more
trustworthy than Y ñ X. Those axioms include axioms about measurements taken by the
investigators, which can be checked against crime scene photos and evidence collected at the
scene, as well as the physics-based assumptions that the expert uses to derive a lower bound
on the speed of the car, e.g. from the length of the skid marks, upper bounds on the force
of friction of the tires against the pavement (as a function of the distance along the skid),
weight of the car, wind resistance, etc.

Example Frustrated with accusations of biasness and lack of rigor, the climate change ex-
perts involved in the Fifth Assessment Report of the UN Intergovernmental Panel on Climate
Change take steps to clarify the meaning of their highest-certainty 10-year predictions. From
those predictions21, they formalize a family of increasingly-weak assertions A1, . . . , Ak, to an

21By “predictions”, I have in mind conditional statements, possibly with many premises, e.g. “IF at least
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extent that independent third parties, after 10 years, can check whether the assertions hold.
Together with their government’s politicians, they then sign a contract, which stipulates a
family of increasingly-lucrative sets of legal entitlements S1, . . . , Sk for oil-producing nations
(e.g. which permit high levels of pollution), such that Si is awarded if Ai turns out false. In
the aftermath of the IPCC’s move, for those highest-certainty predictions, the accusations
of biasness and lack of rigor fall off.

This example demonstrates a distinction between two kinds of appeal to expertise. As in
the previous example, to formalize their argument, I could start by using X for the prediction
of the expert, i.e. one of the assertions Ai. And again we will have axioms X and Y ñ X, for
some additional propositional variable Y . The legal entitlements Si justify our strengthening
of gpY q from some elaboration of “The IPCC experts say that Ai will almost certainly turn
out true”, to some elaboration of “The IPCC experts say, and clearly believe, that Ai will
almost certainly turn out true”.

At first reading, the difference between the two versions of gpY q may seem too informal to
be meaningful. And indeed, with or without the entitlements, it would be acceptable to make
a semantic criticism (defined in Section ) about the second version of gpY q. What makes the
difference between the two versions of gpY q meaningful is that, without the entitlements, I
do not see the author of the argument being able to adequately formalize “clearly believe”
(they will get stuck after a sequence of rigor criticisms and other dialog moves, made with
the intention of forcing them to clarify what they mean), whereas with the entitlements it
is a simple matter, since the IPCC scientists will also be arguing elsewhere that, assuming
Ai, a policy should be put into place that would conflict with the legal entitlements Si (In
other words, essentially all that needs to be claimed is that the experts have a strong desire
to avoid the granting of the entitlements Si.).

3.5 Complications/obstacles

3.5.1 Tedium

The proofs in this paper are tedious to read. They were tedious to write, also.

The true reason for this straying from the portal of knowledge is, I believe, that
principles usually seem dry and not very attractive and are therefore dismissed
with a mere taste.

(Gottfried Leibniz, 1679, “On the General Characteristic”[LL76])

In this section I’ll discuss why that is, and what, if anything, can be done about it.

3.5.2 Expanding Scope (expanding language)

There is one problem that the dialog system in Section 3.3.2 deals with in (what I consider)
an unsatisfactory way, though it is not clear that it can be dealt with much better. General
expansions of the language of an argument (which amounts to the scope of the argument)

N tons of oil are burned in the next 10 years AND no major geoengineering project is initiated, then . . .”
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can be used to block progress indefinitely. On the other hand, we can rarely specify all
the relevant concepts before an argument begins. The theoretical dialog system that I will
present allows any number of expansions of the language that are accompanied by some
other mark of progress, and a pre-specified limit on the number of general expansions (with
no mark of progress) that either party can do.

This section will expand on this problem, and discuss whether or not it is practically
important for my project.

4 Example: Berkeley gender bias lawsuit
The following table summarizes UC Berkeley’s Fall 1973 admissions data for its six largest
departments. Across all six departments, the acceptance rates for men and women are
about 44.5% and 30.4% respectively. The large observed bias prompted a lawsuit against
the university, alleging gender discrimination.22 In [BHO75] it was argued that the observed
bias was actually due to a tendency of women to disproportionately apply to departments
that have high rejection rates for both sexes.

Male Female Total
Department

D1

D2

D3

D4

D5

D6

Applied Accepted
825 512 p62%q
560 353 p63%q
325 120 p37%q
417 138 p33%q
191 53 p28%q
373 22 p6%q

Applied Accepted
108 89 p82%q
25 17 p68%q
593 202 p34%q
375 131 p35%q
393 94 p24%q
341 24 p7%q

Applied Accepted
933 601 p64%q
585 370 p63%q
918 322 p35%q
792 269 p34%q
584 147 p25%q
714 46 p6%q

The first argument I give is similar to the final analysis given in [BHO75],23 though
it makes weaker assumptions (Assumption 2 in particular: their corresponding, implicit as-
sumption is obtained by replacing the parameters .037 and 9 with 0s). The argument resolves
the apparent paradox by assuming a sufficiently-precise definition of “gender discrimination”
and reasoning from there. More precisely, it first fixes a definition of “gender discrimination”,
and then defines (in natural language) a hypothetical admissions protocol that prevents gen-
der discrimination by design. Considering then a hypothetical round-of-admissions scenario
that has the same set of applications as in the actual round of admissions, if we assume that
the ungendered departmental acceptance rates are not much different in the hypothetical
scenario, then it can be shown that the overall bias is actually worse for women in the hy-
pothetical scenario. Since the hypothetical scenario has no gender discrimination by design,

22The data given is apparently the only data that has been made public. The lawsuit was based on the
data from all 101 graduate departments, which showed a pattern similar to what the data from the 6 largest
shows.

23The paper is written to convey the subtlety of the statistical phenomenon involved (an instance of
“Simpson’s Paradox”), and so considers several poor choices of statistical analyses before arriving at the final
one.
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and is otherwise very similar to the real scenario, we conclude that the observed bias cannot
be blaimed on gender discrimination.

The second argument tells us why it is that our vagueness about “gender discrimination”
resulted in an apparent paradox; namely, we were implicitly admitting definitions of “gender
discrimination” that allow for the question of the presence/absense of discrimination to
depend on whether or not the sexes apply to different departments at different rates. If we
forbid such definitions, then to prove that the gendered departmental acceptance rates do
not constitute gender discrimination, it should suffice to show that there is an overall bias in
favour of women in any hypothetical admissions round in which the gendered departmental
acceptance rates are close to what they actually were, and where men and women apply to
each department at close to the same rate.

I’ll use g to refer to the language interpretation guide for the language L of this argument.
Lvague consists of:

• The constant Acchyp.
• The propositional variables (i.e. 0-ary predicate symbols) 〈bias only evidence〉,
〈lawsuit should be dismissed〉, 〈gender uncor with ability in each dept〉.

Lmath consists of:

• The constants App, Acc, Appm, Appf , App1, . . . ,App6. Since the elements of these sets
are not in the universe, their semantics are determined by axioms that assert their
sizes and the sizes of sets formed by intersecting and unioning them with each other.
The reader can check that this is fits with the definition given in the paragraph above
that introduces vaguely-interpreted formal proofs.
• A number of mathematical symbols that have their standard meaning: constants

0, 1, 512, 825, . . ., function symbols | ¨ |,X,Y,`,´, ˚, {, predicate symbols ă,“.
• The sorts A,N, Q (see below for g’s entries for them), with Q and A the top-level sorts,

and N Ď Q. Recall that the top-level sort symbols must be interpreted as a partition
of the universe.

The types of the function/predicate symbols24 are as follows. With respect to the definition
of vaguely-interpreted formal proof from Section 3.2, they are all assumptions as opposed to
simplifying assumptions.

App,Acc,Acchyp,Appm,Appf ,
App1, . . . ,App6 : A

| ¨ | : AÑ N
0, 1, 512, 825, . . . : N

X,Y : AˆAÑ A

`,´, ˚ : QˆQÑ Q
{ : QˆQÑ? Q24

ă : QˆQÑ B25

24Besides “, which is untyped.
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4.1 First Argument

The goal sentence is the following implication involving propositional variables whose infor-
mal meanings, given by the language interpretation guide g, will be given next.

〈gender uncor with ability in each dept〉^ 〈bias only evidence〉ñ 〈lawsuit should be dismissed〉

gp〈bias only evidence〉q consists of the above table, and then the assertion: “The bias
shown in the data is the only evidence put forward by the group who accused Berkeley of
gender discrimination.”

gp〈gender uncor with ability in each dept〉q we take to be just “Assumption 1” from [BHO75],
which I quote here:

Assumption 1 is that in any given discipline male and female applicants do not
differ in respect of their intelligence, skill, qualifications, promise, or other at-
tribute deemed legitimately pertinent to their acceptance as students. It is pre-
cisely this assumption that makes the study of "sex bias" meaningful, for if we did
not hold it any differences in acceptance of applicants by sex could be attributed to
differences in their qualifications, promise as scholars, and so on. Theoretically
one could test the assumption, for example, by examining presumably unbiased es-
timators of academic qualification such as Graduate Record Examination scores,
undergraduate grade point averages, and so on. There are, however, enormous
practical difficulties in this. We therefore predicate our discussion on the validity
of assumption 1. [BHO75]

gp〈lawsuit should be dismissed〉q “ “The judge hearing the suit against Berkley should
dismiss the suit on grounds of lack of evidence.”

gpQq “ “The rational numbers.”

gpAq “ “The powerset of App. Note that the individual applications are not in the
universe of discourse (though each singleton set is), since they are not required for the
proof.”

g also says that

• 0, 1, 512, etc are the expected numerals.
• | ¨ | is the function that gives the size of each set in A.
• X,Y,`,´, ˚ are the expected binary functions on A and Q respectively..
• { is division on Q, which is defined iff the second argument is not 0.

24Ñ? denotes the type of a partial function. The version of many-sorted FOL I use has build-in (AKA
“first-class“) partial functions.

25B is the type for booleans; technically it is not a sort, so its elements are not in the universe of discourse.
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• ă is the usual ordering on Q.

Recall that the next 11 symbols are all 0-ary predicate symbols.

gpAppq “ “App is the set of applications. Its size is 4526 (sum of the entries in the two
“Applied” columns of the table).”

gpAccq “ “Acc is the set of (actual) accepted applications. Its size is 1755 (sum of the
entries in the two “Accepted” columns of the table).”

gpAcchypq is a fairly long text: “We need a sufficiently-precise, context-specific definition
of “gender discrimination”, and to get it we imagine a hypothetical scenario. An alternative
admissions process is used, which starts with exactly the same set of applications App,
and then involves an elaborate26, manual process of masking the gender on each of them
(including any publications and other supporting materials). The application reviewers,
while reading the applications and making their decisions, are locked in a room together
without access to outside information, except that interviews are done over computer using
an instant messaging client (which, of course, is monitored to make sure the gender of
the applicant remains ambiguous). Then, Acchyp is the set of accepted applications in the
hypothetical scenario.”

gpAppmq “ “Appm is a subset of App of size 2691 (sum of the first “Applied” column in
the table), specifically the applications where the applicant is male.”

gpAppf q “ “Appf is a subset of App of size 1835 (sum of the second “Applied” column in
the table), specifically the applications where the applicant is female.”

For d “ 1, . . . , 6:
gpAppdq “ “Appd is the set of applications for admission into department d.”

Definition 10. For g P tm, fu and d P t1, . . . , 6u:

App – Appm Z Appf

Appd,g – Appd X Appg

Accd,g – Appd,g X Acc

Accd,ghyp – Appd,g X Acchyp

Definition 11. For x, y, z P Q, we write z P rx˘ ys for x´ y ď z ď x` y.

Assumption 1. In the hypothetical scenario, the number of applicants of gender g accepted
to department d is as close as possible to what we’d expect assuming that gender is uncor-
related with ability within the set of applicants to department d. For d P t1, . . . , 6u and
g P tm, fu:
〈gender uncor with ability in each dept〉ñ

26It need not be efficient/economical, since we are only introducing the scenario as a reasoning device.
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|Accd,ghyp| P

„

|Accdhyp| ¨
|Appd,g|
|Appd|

˘ 1{2



|Accd,ghyp|

|Accdhyp|
“
|Appd,g|
|Appd|

Assumption 2. Assuming that gender is uncorrelated with ability within the set of appli-
cants to department d, the number of applicants accepted to department d in the hypothet-
ical scenario is close to the number accepted in the real scenario. That is, the overall, non-
gendered departmental acceptance rates do not change much when we switch to gender-blind
reviews. We require that a model satisfies at least one of the following two quantifications
of that idea. For d P t1, . . . , 6u:
〈gender uncor with ability in each dept〉ñ

ˆ

Ź

1ďdď6 |Accd| ¨ p1´ .037q ď |Accdhyp| ď |Accd| ¨ p1` .037q

˙

_

ˆ

Ź

1ďdď6 |Accdhyp| P
“

|Accd| ˘ 9
‰

˙

To illustrate the first form, the bounds for the departments with the fewest and greatest
number of accepted applicants are:

45 ď |Acc6
hyp| ď 47 and 579 ď |Acc1

hyp| ď 623

Definition 12. For g P tm, fu:

accRateg – Accg{Appg and accRateghyp – Accghyp{Appg

Assumption 3. If 〈bias only evidence〉 and
accRatemhyp

accRatefhyp

ą
accRatem

accRatef

then 〈lawsuit should be dismissed〉

Simplifying Assumption 1. 〈bias only evidence〉

Claim 1.

〈gender uncor with ability in each dept〉 ñ
accRatemhyp

accRatefhyp

ą
accRatem

accRatef

Proof. It is not hard to formulate this as a linear integer programming problem, where the
variables are the sizes of the sets Accd,ghyp. Coming up with inequalities that express the
previous axioms and the data axioms from Section 4.3 is easy. Reduce the Claim itself
to a linear inequality, and then negate it. One can then proof using any decent integer
programming solver that the resulting system of equations is unsatisfiable.

Claim 2. The goal sentence easily follows from the previous three propositions.

〈gender uncor with ability in each dept〉^ 〈bias only evidence〉ñ 〈lawsuit should be dismissed〉
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4.2 Second argument

This second argument better captures the intuition of the usual informal resolution of the
apparent paradox; the observed bias is completely explained by the fact that women favored
highly-competitive departments (meaning, with higher rejection rates) more so than men.
We show that there is an overall bias in favour of women in any hypothetical admissions
round in which the gendered departmental acceptance rates are close to what they actually
were, and where men and women apply to each department at close to the same rate.

In this argument, the set of applications in the hypothetical scenario can be different
from those in the real scenario, so we introduce the new symbols Appdhyp : A for 1 ď d ď 6.

The hypothetical admissions round is similar to the true admissions round (Axioms 4
and 6) except that men and women apply to each department at close to the same rate
(Assumption 5) - meaning the fraction of male applications that go to department d is
close to the fraction of female applications that go to department d. We need to update
the language interpretation guide entries gpAppdhypq and gpAcchypq to reflect these alternate
assumptions.

This proof uses Definitions 10 and 11 from the previous proof.

Assumption 4. In the hypothetical round of admissions, the total number of applications
to department d is the same as in the actual round of admissions. Likewise for the total
number of applications from men and women.27

For d P t1, . . . , 6u and g P tm, fu:

|Appdhyp| “ |Appd|, |Appghyp| “ |Appg|

Assumption 5. In the hypothetical scenario, gendered departmental application rates are
close to gender-independent. For d P t1, . . . , 6u and g P tm, fu:

|Appd,ghyp| P

«

|Appghyp| ¨
|Appdhyp|
|Apphyp|

˘ 6

ff

Assumption 6. In the hypothetical scenario, gendered departmental acceptance rates are
close to the same as in the real scenario.
For d P t1, . . . , 6u and g P tm, fu:

|Accd,ghyp| P

„

|Accd,g|
|Appd,g|

¨ |Appd,ghyp| ˘ 6



Claim 3. accRatefhyp ą accRatemhyp

27This axiom could be weakened in principle, by replacing the equations with bounds, but doing so in the
obvious way introduces nonlinear constraints, and then I would need to use a different constraint solver.
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Proof. As in the previous proof, it is easy to reduce this to a linear integer programming
problem. Coming up with constraints that express the previous axioms and the data axioms
from the next section is easy. Then, add the constraint

˜

ÿ

1ďdď6

|Accd,fhyp

¸

{|Appf | ď

˜

ÿ

1ďdď6

|Accd,mhyp

¸

{|Appm|

which expresses the negation of the Claim (recall that |Appm| and |Appf | are constants).
Finally, prove that the resulting system of equations is unsatisfiable.

Assumption 7. If 〈bias only evidence〉 and accRatefhyp ą accRatemhyp then 〈lawsuit should be dismissed〉

Simplifying Assumption 1 from the previous proof, which just asserts 〈bias only evidence〉,
is also used here. From it, Assumption 7, and Claim 3, the goal sentence 〈lawsuit should be dismissed〉
follows immediately.

4.3 Data Axioms

Assumption 8.

|App| “ 4526,
ľ

1ďdď6

Appd Ď App, Acc Ď App, Acchyp Ď App

|App1,m
| “ 825, |Acc1,m

| “ 512, |App1,f
| “ 108, |Acc1,f

| “ 89

|App2,m
| “ 560, |Acc2,m

| “ 353, |App2,f
| “ 25, |Acc2,f

| “ 17

|App3,m
| “ 325, |Acc3,m

| “ 120, |App3,f
| “ 593, |Acc3,f

| “ 202

|App4,m
| “ 417, |Acc4,m

| “ 138, |App4,f
| “ 375, |Acc4,f

| “ 131

|App5,m
| “ 191, |Acc5,m

| “ 53, |App5,f
| “ 393, |Acc5,f

| “ 94

|App6,m
| “ 373, |Acc6,m

| “ 22, |App6,f
| “ 341, |Acc6,f

| “ 24

That App is the disjoint union of App1, . . . ,App6 follows from the previous sentences.

5 Example: Fresh evidence appeal for Leighton Hay’s
murder conviction

Leighton Hay is one of two men convicted of murdering a man in an Ontario nightclub in
2002. The other man, Gary Eunich, is certainly guilty, but evidence against Hay is weak–
much weaker, in my opinion and in the opinion of the Association in Defense of the Wrongly
Accused (AIDWYC), than should have been necessary to convict. A good, short summary
about the case can be found here: http://www.theglobeandmail.com/news/national/defence-
prosecution-split-on-need-for-forensic-hair-testing/article1367543/
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Name in proof Max width (micrometers) Count
bin1 0 to 112.5 10
bin2 112.5 to 137.5 20
bin3 137.5 to 162.5 40
bin4 162.5 to 187.5 19

Table 1: Measurements of 89 hairs found in a balled-up newspaper at the top of Hay’s
bathroom garbage. Forensic experts on both sides agreed that the hairs in bin3 and bin4 are
very likely beard hairs, and that the hairs in bin1 and bin2 could be either beard or scalp
hairs.

The prosecution’s case relies strongly on the testimony of one witness, Leisa Maillard,
who picked (a 2 year old picture of) Hay out of a photo lineup of 12 black men of similar age,
and said she was 80% sure that he was the shooter. There were a number of other witnesses,
none of whom identified Hay as one of the killers. Ms. Malard’s testimony is weak in a
number of ways (e.g. she failed to identify him in a lineup a week after the shooting, and
at two trials when she picked out Gary Eunich instead), but here we will be concerned with
only one of them: she described the unknown killer as having 2-inch “picky dreads,” whereas
Hay had short-trimmed hair when he was arrested the morning after the murder. Thus, the
police introduced the theory that Hay cut his hair during the night, between the murder
and his arrest. In support of the theory, they offered as evidence a balled-up newspaper
containing hair clippings that was found at the top of the garbage in the bathroom used by
Hay. Their theory, in more detail, is that the known killer, Gary Eunich, cut Hay’s hair and
beard during the night between the murder and the arrests, using the newspaper to catch
the discarded hair, then emptied most of the discarded hair into the toilet; and crucially, a
hundred-or-so short hair clippings remained stuck to the newspaper, due perhaps to being
lighter than the dreads. It is the origin of those hair clippings that we are primarily concerned
with here; Hay has always said that the clippings were from a recent beard-only trim. If
that is so, then the newspaper clippings are not at all inculpatory, and knowing this could
very well have changed the jury’s verdict, since the clippings –as hard as this is to believe–
were the main corroborating evidence in support of Ms. Malard’s eye witness testimony.

Both sides, defense and prosecution, agree that the newspaper clippings belong to Hay,
and that either they originated from his beard and scalp (prosecution’s theory), or just his
beard (defense’s theory). We will try to prove, from reasonable assumptions, that it is more
likely that the hair clippings were the product of a beard-only trim than it is that they were
the product of a beard and scalp trim.

On 8 Nov 2013 the Supreme Court of Canada granted Hay a new trial in a unanimous
decision, based on the new expert analysis of the hair clippings. We do not yet know whether
the prosecution will attempt to again use the hair clippings as evidence against Hay.
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Max width (micrometers) Count
12.5 to 37.5 3
37.5 to 62.5 28
62.5 to 87.5 41
87.5 to 112.5 17
112.5 to 137.5 1

Table 2: Measurements of Hay’s scalp hairs obtained at the request of AIDWYC in 2010.
Note that the first 4 bins are contained in bin1 from Table 1. Samples of Hay’s beard hairs
were not taken and measured in 2010 because the forensic hair experts advised that beard
hairs get thicker as a man ages.

5.1 High-level argument

In 2002, the prosecution introduced the theory that Hay was the second gunman and must
have had his dreads cut off and hair trimmed short during the night following the murder.
It is clear that they did this to maintain the credibility of their main witness. In 2012, after
the new forensic tests ordered by AIDWYC proved that at least most of the hairs found
in Hay’s bathroom were (very likely) beard hairs, the prosecution changed their theory to
accomodate, now hypothesizing that the hairs came from the combination of beard and scalp
trims with the same electric razor, using the newspaper to catch the clipped hairs for both
trims. Intuitively, that progression of theories is highly suspicious.

On the other hand, perhaps the hairs did come from the combination of a beard and
scalp trim, and the prosecution was simply careless in formulating their original theory. We
cannot dismiss the newspaper hairs evidence just because we do not respect the reasoning
and rhetoric employed by the prosecution. The argument below takes the prosecution’s latest
theory seriously. At a high level, the argument has the following structure:

1. There are many distinct theories of how the hypothesized beard and scalp trims could
have happened. In the argument below, we introduce a family of such theories indexed
by the parameters αmin and αmax.

2. Most of the theories in that family are bad for the prosecution; they result in a model
that predicts the data worse than the defense’s beard-trim-only theory.

3. The prosecution cannot justify choosing from among just the theories that are good
for them, or giving such theories greater weight.

We will deduce how the parameters αmin and αmax must be set in order for the prosecution’s
theory to have predictive power as good as the defense’s theory, and we will find that the
parameters would need to be set to values that have no reasonable justification (without
refering to the measurements). If the assumptions from which we derive the parametric
theory are reasonable (e.g. the fixed prior over distributions for Hay’s beard hair widths, and
the fixed distribution for Hay’s scalp hair widths), then we can conclude that the newspaper
hair evidence is not inculpatory.

Though the argument to follow is unquestionably an example of Bayesian analysis, I
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prefer to use the language of frequencies and repeatable events rather than degrees of belief.
One could just as well use the language of degrees of belief, with no changes to the axioms.

We posit constraints on a randomized simulation model of the crime and evidence, which
is applicable not just to Hay’s case, but also to a number of very-similar hypothetical cases
(in some of which the suspect is guilty) taken from an implicitly-constrainted distribution
D. The probabilities are just parameters of the model, and in principle we judge models
according to how often they make the correct prediction when a case is chosen at random
from D. In the argument below, we don’t use D directly, but rather use a distribution over
a small number of random variables that are meaningul in D, namely the joint distribution
for the random variables:

G,Clipped,Mix,BParams,H,Widths

Some of the most significant assumptions for the argument:

1. The prior chosen for the suspect’s beard hair-width distribution is fair and reasonable.28

This is Simplifying Assumption 3. It is probably the most objectionable of the assumptions.
I give some criticisms of it in Section 5.3.

2. The distribution for the suspect’s scalp hair widths, based on the samples taken in 2010, is
fair and reasonable (Simplifying Assumption 5).

3. The simulation model, on runs where the suspect is guilty (and thus the newspaper hair
evidence comes from a combined beard and scalp trim), chooses uniformly at random
(Simplifying Assumption 2) from a sufficiently large range the ratio

P(random clipped hair came from beard, given only that it ended up in the newspaper)
P(random clipped hair came from the scalp, given only that it ended up in the newspaper)

Specifically that range is r αmin
1´αmin

, αmax
1´αmax

s. The axioms enforce no constraints about αmin and
αmax except for 0 ă αmin ă αmax ă 1, but the hypotheses of Claims 5 and 6 assert significant
constraints; it turns out that in order for the likelihood ratio to be ě 1, the prosecution
needs to make an extreme assumption about αmin and αmax. Intuitively, assuming the
suspect is guilty, both prosecution and defense are still very ignorant (before seeing the
newspaper hair measurements) of how exactly the suspect trimmed his beard and scalp,
e.g. in what order, how exactly he used the newspaper, and how exactly he emptied most
of the clippings into the toilet, all of which would influence the above ratio. The hypotheses
of Claims 5 and 6 formalize that intuition in different ways, which are close to equivalent,
but nonetheless I think Claim 6 is significantly easier to understand and accept.

4. The suspect in the simulation model does not have an unusually low ratio of scalp hairs to
beard hairs. This is Assumption 16. We can improve the current argument, if we wish, by
having the simulation model choose that ratio from some prior distribution, and doing so
actually makes results in a version of Claim 6 that is better for the defense.
28The reason we use a prior for the suspect’s beard hair width distribution is that Leighton Hay’s beard

hair widths were never sampled; that decision was on the advice of one of the hair forensics experts, who
said that a man’s beard hairs tend to get thicker as he ages.
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5.2 Argument

A completely-formal version of this argument, which strictly adheres to the definition of
vaguely-interpreted formal proof, will be included in my thesis. That includes explicit types
for each symbol, with each type labeled as an assumption or simplifying assumption. The
formalization is mostly straight-forward; the only part that requires some thought is the
formalization of random variables and the Ppproposition | propositionq syntax.
I will often use the following basic facts. In the completely-formal proof they would be axioms
in Γassum that use only symbols in Lmath, and thus should be accepted by any member in the
intended audience of the proof.
• For t1, t2, t3 boolean-valued terms:

Ppt1, t2 | t3q “ Ppt1 | t2, t3qPpt2 | t3q

• ForX a continuous random variable with conditional density function dX whose domain
S is a polygonal subset of Rn for some n:

Ppt1 | t2q “
ż

xPS

Ppt1 | t2, X“xq dXpx | t2q

bin1,bin2,bin3,bin4 are constants denoting the four micrometer-intervals from Table 1.
Formally, they belong to their own sort, which has exactly 4 elements in every model.
We do not actually have micrometer intervals in the ontology of the proof, so we could
just as well use t1, 2, 3, 4u, but I think that would be confusing later on. Bins is the sort
tbin1, bin2, bin3, bin4u.
Throughout this writeup, ~b “ b1, . . . , b89 is a fixed ordering of the newspaper hair measure-
ments shown in Table 1. Specifically, each bi is one of the constants bin1, bin2, bin3, or bin4;
bin1 appears 10 times, bin2 20 times, bin3 40 times, and bin4 19 times.

~p abbreviates 〈p1, p2, p3〉.
p4 abbreviates 1´ p1 ´ p2 ´ p3 (except in Claim 8, as noted there also).

G is the boolean simulation random variable that determines if the suspect in the current
run is guilty. I write just G to abbreviate G“true and G to abbreviate G“ false.

Clipped is a simulation random variable whose value is determined by G. When G is false,
Clipped is the set of beard hair fragments that fall from the suspect’s face when he does a
full beard trim with an electric trimmer29 several days before the murder took place. When
G is true, Clipped is the set of beard and scalp hair fragments that fall from the suspect’s
head when he does a full beard trim and a full scalp trim (the latter after cutting off his
two-inch dreds) with the same electric trimmer. This includes any such fragments that were
flushed down the sink or toilet, but not including –in the case that the suspect is guilty–

29The police collected an electric trimmer that was found, unhidden, in Hay’s bedside drawer, which Hay
has always said he used for trimming his beard.
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hair fragments that were part of his 2-inch “picky dreads.”

H is a simulation random variable whose distribution is the uniform distribution over Clipped,
i.e. it is a random hair clipping.

BParams is the simulation random variable that gives the parameters of the suspect’s beard
hair width distribution.

Mix is the simulation random variable that gives the the mixture parameter that determine’s
the prosecution’s newspaper hair width distribution given the beard and scalp hair width
distributions.

NOTATION: BParams and Mix will usually be hidden in order to de-clutter equations and
to fit within the page width. Wherever you see ~p or 〈p1, p2, p3〉 where a boolean-valued term
is expected, that is an abbreviation for BParams“ ~p or BParams“ 〈p1, p2, p3〉, respectively.
Similarly, I write just α as an abbreviation for Mix “ α.

B is the set from which our prior for the suspect’s beard hair width distribution is defined.
It is the set of tripples 〈p1, p2, p3〉 P r0, 1s3 such that p1 ď p2, p3, p4 and 〈p1, p2, p3, p4〉 is
unimodal when interpreted as a discrete distribution where pi is the probability that the
width of a hair randomly chosen from the suspect’s scalp (in 2002) falls in bin i.

Ppt1 | t2q is the notation we use for the Bayesian/simulation distribution over the random
variables G,Clipped,Mix,BParams,H,Widths, where t1 and t2 are terms taking on boolean
values; it is the probability over runs of the simulation that t1 evaluates to true given that
t2 evaluates to true.

Widths is the simulation random variable that gives the approximate widths (in terms of
the 4 intervals binj) of the 89 hair clippings that end up in the balled-up newspaper.

When the variables ~p and α appear unbound in an axiom, I mean for them to be implicitly
quantified in the outermost position like so: @~p P B and @α P rαmin, αmaxs.

When X is a continuous random variable with a density function, dX denotes that function.

Definition 13. We are aiming to show that from reasonable assumptions, the following
likelihood ratio is less than 1, meaning that the defense’s theory explains the newspaper
hairs evidence at least as well as the prosecution’s theory.

likelihood-ratio –
PpWidths “ ~b | Gq

PpWidths “ ~b | Gq
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Assumption 9. The values of BParams and Mix are chosen independently of each other and
G (whether or not the suspect is guilty). Hence the defense and prosecution have the same
prior for the suspect’s beard hair width distribution.
For t P ttrue, falseu:

d〈BParams,Mix〉p~p, α | G“ tq “ dBParamsp~pq ¨ dMixpαq

αmin and αmax are constants in p0, 1q such that αmin ă αmax.

Simplifying Assumption 2. The prior distribution for the mixture parameter Mix is the
uniform distribution over rαmin, αmaxs.

dMixpαq “

#

1{pαmax ´ αminq if α P rαmin, αmaxs

0 otherwise

Simplifying Assumption 3. The prior distribution for the parameters of the suspect’s
beard hair width distribution is the uniform distribution over the set B Ď r0, 1s3 defined
above.

dBParamsp~pq “

#

1{}B} if ~p P B
0 otherwise

Newsphq“true iff the hair clipping h ends up in the balled-up newspaper.
Beardphq “ true (respectively Scalpphq “ true) iff hair clipping h came from the suspect’s
beard (respectively scalp).

Assumption 10. Both prosecution and defense agreed that all the hairs in the newspaper
came from the suspect’s beard or scalp, and not both.30

Scalpphq “  Beardphq

width is the function from Clipped to tbin1, bin2, bin3, bin4u such that widthphq is the interval
in which the maximum-width of hair clipping h falls.

Simplifying Assumption 4. In the simulation model, the hairs that ended up in the
newspaper are chosen indepedently at random with replacement from some hair-width dis-
tributions.

PpWidths“~b | G, ~p, αq “
89
ź

i“1

PpwidthpHq“bi | NewspHq,G, ~p, αq

PpWidths“~b | G, ~pq “
89
ź

i“1

PpwidthpHq“bi | NewspHq,G, ~pq

30“Not both” actually ignores the issue of sideburn hairs, whose widths can be intermediate between scalp
and beard hair widths. Doing this is favourable for the prosecution.

37



Claim 4. We can write the width distribution of newspaper hairs in terms of the width
distributions of beard and scalp hairs, together with the probability that a random newspaper
hair is a beard hair.

PpwidthpHq“bi | NewspHq,G, ~p, αq
“ PpwidthpHq“bi | BeardpHq,NewspHq,G, ~p, αq PpBeardpHq | NewspHq,G, ~p, αq
` PpwidthpHq“bi | ScalppHq,NewspHq,G, ~p, αq PpScalppHq | NewspHq,G, ~p, αq

Proof. Follows from Assumption 10.
Assumption 11. In the defense’s model (not guilty G), all the newspaper hair came from
a beard trim, and so the mixture parameter is irrelevant.

PpwidthpHq“bi | NewspHq,G, ~p, αq
“ PpwidthpHq“bi | BeardpHq,NewspHq,G, ~pq

Assumption 12. Given that a clipped hair came from the suspect’s beard, the hair’s width
is independent of whether the suspect is guilty in this run of the simulation. Thus the defense
and prosecution models use the same distribution of hair widths for the suspect’s beard.

PpwidthpHq“bi | BeardpHq,NewspHq,G, α, ~pq
“ PpwidthpHq“bi | BeardpHq,NewspHq,G, α, ~pq
“ PpwidthpHq“bi | BeardpHq,NewspHq, α, ~pq

Assumption 13. We finally give the precise meaning of the simulation’s mixture parameter
random variable Mix. It is the probability, when the suspect is guilty, that a randomly chosen
hair clipping came from the suspects beard given that it ended up in the newspaper.

α “ PpBeardpHq | NewspHq,G, ~p,Mix“αq

1´ α “ PpScalppHq | NewspHq,G, ~p,Mix“αq

Assumption 14. The precise meaning of the simulation random variable BParams. Recall
that p4 abbreviates 1´ p1 ´ p2 ´ p3. For j P t1, 2, 3, 4u:

pj “ PpwidthpHq“binj | BeardpHq,BParams“〈p1, p2, p3〉 ,NewspHqq
Simplifying Assumption 5. We use a completely-fixed distribution for the suspect’s scalp
hair, namely the one that maximizes the probability of obtaining the hair sample measure-
ments from Table 2 when 90 hairs are chosen independently and uniformly at random from
the suspect’s scalp.

PpwidthpHq “ bi | ScalppHq,G, α, ~pq “

$

’

&

’

%

89{90 if i “ 1
1{90 if i “ 2

0 if i “ 3, 4

The next axiom and claim give the main result, and the later Claim 6 is (almost)
a corrolary of Claim 5.

Assumption 15. If PpWidths“~b|Gq
PpWidths“~b|Gq

ď 1 (i.e. likelihood-ratio ď 1), then
〈the newspaper hair evidence is neutral or exculpatory〉.31

31The text in brackets is a constant predicate symbol.
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Claim 5. If αmin ď .849 then PpWidths“~b|Gq
PpWidths“~b|Gq

ă 1

The proof of Claim 5 is outlined formally below, after Claim 6.

With the introduction of a new parameter and a mild assumption about its values (Assump-
tion 16, the ratio on the left side being the new parameter), we will obain a corrolary of
Claim 5 that is easier to interpret.

We do not know what the ratio of beard to scalp hairs on Hay’s head was on the date of the
murder, and it is not hard to see that a higher value of PpBeardpHq | G, ~p, αq is favourable for
the prosecution.32 We do, however, know that the unknown shooter’s beard was described
as “scraggly” and “patchy” by eye witnesses, and we have no reason to think that LH had a
smaller than average number of scalp hairs. Thus it is a conservative approximation (from
the perspective of the prosecution) to assume that Hay had a great quantity of beard hairs for
a man (40,000), and an average quantity of scalp hairs for a man with black hair (110,000).33

Thus we assume:

Assumption 16.
PpBeardpHq | G, ~p, αq
PpScalppHq | G, ~p, αq

ď 4{11

Claim 6. The hypothesis of Assumption 15 also follows if we assume Assumption 16 and
that the uniform prior over Mix gives positive density to a model where a random clipped
beard hair is ď 15 times more likely to end up in the newspaper as a random clipped scalp
hair:
If there exists α P rαmin, αmaxs and ~p P B such that

PpNewspHq | BeardpHq,G, ~p, αq
PpNewspHq | ScalppHq,G, ~p, αq

ď 15

then
PpWidths“~b | Gq

PpWidths“~b | Gq
ă 1

Proof. Let α, ~p be as in the hypothesis.
From basic rules about conditional probabilities:

α

1´ α
“

PpBeardpHq | NewspHq,G, ~p, αq
PpScalppHq | NewspHq,G, ~p, αq

“
PpNewspHq | BeardpHqG, ~p, αq PpBeardpHq | G, ~p, αq
PpNewspHq | ScalppHq,G, ~p, αq PpScalppHq | G, ~p, αq

(1)
Using the inequality from the hypothesis and Assumption 16, solve for α in (1). This gives
α ď 0.84507. Since αmin ď α we have αmin ď .84507, so we can use Claim 5 to conclude that
the likelihood ratio is less than 1.

32Raising the value makes both models worse, but it hurts the prosecution’s model less since the prosecu-
tion’s model can accomodate by lowering αmin and αmax.

33Trustworthy sources for these numbers are hard to find. 40,000 is just the largest figure I found amongst
untrustworthy sources, and 110,000 is a figure that appears in a number of untrustworthy sources. If this
troubles you, consider the ratio a parameter whose upper bound we can argue about later.
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Simplifying Assumption 6 (hypothesis of Claim 6). There exists α P rαmin, αmaxs and
~p P B such that

PpNewspHq | BeardpHq,G, ~p, αq
PpNewspHq | ScalppHq,G, ~p, αq

ď 15

Goal Sentence 1. 〈the newspaper hair evidence is neutral or exculpatory〉

Proof. From Simplifying Assumption 6, Claim 6, and Assumption 15.

Proof of Claim 5

Note: there is nothing very interesting about this proof; it is basically just a guide for com-
puting the likelihood-ratio as a function of αmin, αmax.

To compute the integrals, I will break up the polygonal region B into several pieces which
are easier to handle with normal Riemann integration over real intervals.
Let B1 be the subset of B where p2 ą p3 ě p4

B2 the subset of B where p3 ą p2 ą p4

B3 the subset of B where p3 ą p4 ě p2

B4 the subset of B where p4 ą p3 ě p2

Claim 7. B is the disjoint union of B1,B2,B3,B4.

Claim 8. In the scope of this claim, p4 is a normal variable, not an abbreviation for 1´p1´

p2 ´ p3.

ż

~p“〈p1,p2,p3〉PB1

tpp1, p2, p3, 1´ p1´ p2´ p3qd~p “

1{4
ż

p1“0

1´p1
3
ż

p4“p1

1´p1´p4
2
ż

p3“p4

tpp1, 1´ p1´ p3´ p4, p3, p
1
4qdp1dp4dp3

ż

~p“〈p1,p2,p3〉PB2

tpp1, p2, p3, 1´ p1´ p2´ p3qd~p “

1{4
ż

p1“0

1´p1
3
ż

p4“p1

1´p1´p4
2
ż

p2“p4

tpp1, p2, 1´ p1´ p2´ p4, p4qdp1dp4dp2

ż

~p“〈p1,p2,p3〉PB3

tpp1, p2, p3, 1´ p1´ p2´ p3qd~p “

1{4
ż

p1“0

1´p1
3
ż

p2“p1

1´p1´p2
2
ż

p4“p2

tpp1, p2, 1´ p1´ p2´ p4, p4qdp1dp2dp4

ż

~p“〈p1,p2,p3〉PB4

tpp1, p2, p3, 1´ p1´ p2´ p3qd~p “

1{4
ż

p1“0

1´p1
3
ż

p2“p1

1´p1´p2
2
ż

p3“p2

tpp1, p2, p3, 1´ p1´ p2´ p3qdp1dp2dp3

Claim 9. }B} “ 1{36
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Proof. The measure of Bj can be computed by standard means by substituting 1 in for tp. . .q
in the right side of the j-th equation of Claim 8. We find that }B1} “ }B2} “ }B3} “ }B4} “

1{144. Hence }B} “ 1{36 follows from Claim 7.

Claim 10. Simplified forms amenable to efficient computation:

PpWidths“~b | G, 〈p1, p2, p3〉q “ p10
1 p

20
2 p

40
3 p

19
4

PpWidths“~b | G, 〈p1, p2, p3〉 , αq “ pp1α ` 89{90p1´ αqq10
pp2α ` 1{90p1´ αqq20

pp3αq
40
pp4αq

19

Proof. The first equation follows easily from Simplifying Assumption 4 and Assumption 14.
The second follows easily from Simplifying Assumption 4, Axioms 14 and 13, and Claim
4.

From the next fact and Claim 8 we can compute the two terms of the likelihood ratio for
fixed αmin and αmax.

Claim 11.

PpWidths“~b | Gq “
ż

αPrαmin,αmaxs

ż

~pPB

PpWidths“~b | G, ~p, αq d〈BParams,Mix〉p~p, α | Gq

“
1

pαmax ´ αminq}B}

ÿ

iPt1,2,3,4u

ż

αPrαmin,αmaxs

ż

~pPBi

PpWidths“~b | G, ~p, αq

PpWidths“~b | Gq “
ż

~pPB

PpWidths“~b | G, ~pq dBParamsp~p | Gq

“
1

}B}

ÿ

iPt1,2,3,4u

ż

~pPBi

PpWidths“~b | G, ~pq

Proof. The first equation follows just from ~p, α ÞÑ PpWidths“~b | G, ~p, αq being an integrable
function and d〈BParams,Mix〉p~p, α | Gq being the conditional density function for 〈Mix,BParams〉
given G “ true.
The second equation follows from Claim 7, Simplifying Assumptions 2 and 3, and the fact
that ~p, α ÞÑ PpWidths“~b | G, ~p, αq is bounded. The first and fourth of those facts suffice to
show that the integral over B is equal to the sum of the integrals over the sets Bj.
Justifications for the third and fourth equations are similar to those for the first and second.

As of now I’ve mostly used Mathematica’s numeric integration, which doesn’t provide error
bounds, to evaluate the intervals, but there are also software packages one can use that
provide error bounds.
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The likelihood ratio achieves its maximum of « 1.27 when αmin and αmax are practically equal
(unsurprising, as that allows the prosecution model to choose the best mixture parameter)
and around .935; Plot 5.2 illustrates this, showing the likelihood ratio as a function of
αmin when αmax ´ αmin “ 10´6. To prove Claim 5 we need to look at parameterizations
of αmin, αmax similar to the one depicted in Plot 5.2, which shows the likelihood ratio as a
function of αmax when αmin “ .849 (the extreme point in the hypothesis of Claim 5), in which
case the likelihood ratio is maximized at « .996 when αmax “ 1. In general, for smaller fixed
αmin, the quantity

max
αmaxPpαmin,1q

plikelihood-ratiopαmin, αmaxqq

decreases as αmin does. More precisely, Claim 5 follows from the following three propositions
in Claim 12. The first has been tested using Mathematica’s numerical integration; if it is
false, it is unlikely to be false by a wide margin (i.e. taking a value slightly smaller than
.849 should suffice). The remaining two have also not been proved, but one can gain good
confidence in them by testing plots similar to Figure 5.2 for values of αmin ă .849. Proving
or disproving Claim 12 is just a matter of spending more time on it (or enlisting the help
of an expert to do it quickly). But we will see in the next section that the argument is
more-vulnerable to attack in other ways.

Claim 12.

1. likelihood-ratiop.849, 1q ă .997

2. For α1 ă .849 have likelihood-ratiopα1, 1q ă likelihood-ratiop.849, 1q

3. For α1 ă .849 and α1 ă α2 ă 1 have likelihood-ratiopα1, α2q ă likelihood-ratiopα1, 1q

5.3 Criticism of argument

5.3.1 Criticism 1

It is arguable that the prior for the suspect’s beard hair width distribution is slightly biased
in favor of the defense, in which case the prosecution could reject Simplifying Assump-
tion 3. In particular, the average value of the component of BParams for bin1, the bin
corresponding to the thinnest hairs, is 0.0625.34 It is best for the defense when the value of
that component is 11{89, and best for the prosecution when it is 0, so the prosecution could
reasonably insist that a prior is not fair unless the average is at most the mean of those two
extremes, which is « 0.0618.

We can raise this criticism in a disciplined way, for example by suggesting an axiom that
expresses the above; if x is the value of p1 that maximizes the probability of the evidence
given G “ true, and y is the value of the p1 that maximizes the probability of the evidence
given G “ false, then

ş

~pPB p1 ď px` yq{2.

34Compute by substituting p1 in for t in each of the four equations of Claim 8, and sum the results.
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Figure 1: Likelihood ratio as a function of αmin when αmax ´ αmin “ 10´6, obtained by
numerical integration.
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The defense can respond to the criticism, and I will show that. This requires slightly
strengthening the hypotheses of Claims 5 and 6.

5.3.2 Criticism 2

The prior for BParams is unreasonable, with respect to measurements of beard hair widths
of black men in the literature, in that it never yields a beard hair width distribution that
has hairs of width greater than 187.5 micrometers. In terms of the argument, we should
reject the (implicit) axioms that constitute the types of width (and/or Widths); according
to the semantics of those symbols, their types assert that all the hairs in Leighton Hay’s
beard and scalp had thickness at most 187.5 micrometers, which is unjustified. Formally,
one way to do this would be to suggest new definitions of Bins,width, and Widths. We can
do this by suggesting new axioms (some of which are type constraints). Most importantly
we should suggest redefining the sort Bins as tbin1, . . . , bin5u, where bin5 is a new constant.
The results of that approach are discussed in Section 5.3.3.
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Figure 2: Likelihood ratio as a function of αmax when αmin “ .849, obtained by numerical
integration. The shape of this plot is similar for smaller values of αmin, being maximized
when αmax “ 1, which is what parts 2 and 3 of Claim 12 express.
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5.3.3 Response to criticisms

We can address both criticisms at once; if we introduce a fifth component of BParams corre-
sponding to the interval p187.5,8q, and like the first component (probability width is in bin1)
of BParams constrain it to be less than the middle three components (for bin2, bin3, bin4),
then the average value of the bin1 component of BParams goes down to ă .057. We then
need to slightly strengthen the hypotheses of the two main claims, changing the parameter
.85 in Claim 5 to .835 and the parameter 15 in Claim 6 to 13.9.

5.3.4 An open problem

Though I do not have such a criticism in mind, the prosecution could potentially argue that
the prior for Hay’s beard hair distribution is still biased, in the sense that it does not take
into account everything we know about the beard hair width distributions of young black
men or Hay himself, say by referring to literature such as [TCFK83] (cited in the documents
submitted by expert witnesses from both sides of the trial), or by taking samples of Hay’s
current beard hair width distribution and somehow adjusting for the increase in width that
expert witnesses said is likely, since Hay was only 19 at the time of the murder. Or they
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could criticize my choice of prior by claiming that it assumes too much.35

Given that, an ideal proof would have the following form. We would first come up with
some relation R over priors for 5-bin distributions, such that Rpfq expresses as well as
possible (given the constraint of having to complete the proof of the following proposition)
that f is “fair and reasonable”, . Then, we would find the largest constant α0 P p0, 1q such
that we can prove:

For any f P R, if f is used as the prior for the suspect’s beard hair width
distribution, and αmin ă α0, then likelihood-ratio ă 1

The same goes for Hay’s scalp hair width distribution; it would be better to have a broad
set of distributions that an adversary can choose from. At the very least, the argument
should accomodate the possibility that Hay’s scalp hairs have thinned over time, in which
case we would make use of the fact that Hay is not balding (male pattern balding makes
hair follicles, and the hairs they produce, gradually thinner, until the hair follicle is blocked
completely).

6 Example: The first studies linking smoking and cancer
The following excerpt is from Michael J. Thun’s article When truth is unwelcome: the first
reports on smoking and lung cancer[Thu05]. In my thesis I will compare his quantitative
conclusion to mine.

In retrospect, the strength of the association in the two largest and most in-
fluential of these studies – by Enest Wynder & Evarts Graham in the Journal
of the American Medical Association (JAMA). . . and by Richard Doll & Austin
Bradford Hill (both of whom were later knighted for their work) in the Briiish
Medical Journal– should have been sufficient to evoke a much stronger and more
immediate response than the one that actually occurred. Had the methods for
calculating and interpreting odds ratios been available at the time, the British
study would have reported a relative risk of 14 in cigarette smokers compared
with never-smokers, and the American study a relative risk of nearly 7, too high
to be dismissed as bias.

In 1950 two landmark papers were published giving the first strong statistical evidence
that tobacco smoking causes cancer, the first in the United States and the second in England.
It was not until 1965 that cigarette packages were required to have health warnings in the
US. I will give part of an argument here that said policy was well-justified already in the
early 1950s. I may flesh out the remainder of the argument later, which involves introducing
two more candidate models (see below), the cigarette companies’ unknown genotype model

35Although I expect that would be a bad idea. For example, I found that if we take the prior to be the
completely uniform prior over finite distributions for 5 bins, then the results are significantly worse for the
prosecution.
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and the statistician R.A. Fisher’s soothing herb model. The easiest way to refute those is to
incorporate the data on female smoking and cancer, which neither model is able to explain.36

The part of the argument given here simply compares a version of the standard, causal model
dependModel, to the naive null-hypothesis model indepModel, which posits that smoking and
lung cancer are independent. I call dependModel the “dependent-variables” model, since it
doesn’t actually formalize why it predicts that smoking and cancer are dependent variables.

This argument is an instance of the following setup: An experiment to measure some
variable is designed and published, with the possible outcomes of the experiment (values
of the variable) defined precisely. Sufficient time is given for all the interested parties to
publish competing models for predicting the outcome of the experiment, by giving probability
distributions over the set of possible outcomes. The experiment is performed. Suppose that
one of the modelsM is "overwhelmingly better" (defined in the experimental design - below,
via the definition of Beatsp¨, ¨q and Axiom 22) at predicting the true outcome than the others.
Moreover, suppose that M asserts that the use of a certain product (may) pose a health risk
to its users; below, this is productWarningpMq. Then the result of this competition must be
communicated to potential users of the product. The warning can be revoked if M loses in
a later equally-rigorous experiment competition.

The purpose of this example is, in part, to demonstrate that the requirement of deductive
reasoning is not a limitation for problems in the domain I specified (Section 1.1)37, provided
at least that one is firmly committed to certain ideals of persuasion.

6.1 Refinements of the argument

In the argument below, the causal scientific theory, which motivates the assumptions made by
dependModel, is not made explicit. With the addition of Fisher’s soothing herb model and the
tobacco companies’ unknown genotype model (i.e. adding those models to the set AllCM), it
would be necessary to make candidate models derive their outcome distributions from other
sorts of assumptions. The reason is that those models are contrived to fit the data; they
have outcome distributions similar to dependModel’s, in order to prevent dependModel from
winning on purely quantitative grounds, as it does against indepModel. Hence it is necessary
to have a test that at least requires that a model’s outcome distribution is derived from some
more-readily-understandable axioms. In Fisher’s model, the readily-understandable axioms
essentially say that lung cancer causes smoking. In the unknown genotype model, they say
that there is a common genetic cause of both lung cancer and a person’s propensity to smoke
tobacco.

36Smoking became popular among men years before it became popular among women, and the lung cancer
rates reflect this. The unknown genotype model could explain the earlier, smaller rates of lung cancer and
smoking among women by suggesting a sex-linked genotype; however, they would not be able to explain
why the rates increased so quickly. As for Fisher’s soothing herb model (lung cancer causes smoking, because
of the soothing effect of smoking), it would require an additional hypothesis, unrelated to the purported
soothing effect, to explain why there was a delay in the increase of female lung cancer rates.

37This example does not today meet the second criteria (contentiousness) that I listed there, but it did in
the 1950s.
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6.2 Proof with hypergeometric distributions contingent on an un-
proved mathematical claim

Vaguely-defined sorts (in Lvague)

• CM : candidate models for the possible outcomes of the British study. In the current
version of this argument, a candidate model M is determined by outcomeDistrpM, ¨q and
productWarningpMq.

• A : set of adult men living in the US at the time when the American study was done.

• B : set of adult men living in England at the time when the British study was done.

Sharply-definable sorts (in Lmath)

• R and N - reals and natural numbers

• FSrαs - finite subsets of (the interpretation of) the given sort α. This is a function from
sorts to sorts.

• Str - strings over the ASCII alphabet

• StudyOutcomes ď FSrNs - the set t620, . . . , 649u. Before the study is done, we don’t know
how many of the people with lung cancer are smokers, i.e. |LCsamp

B X Ssamp
B | is unknown.

The size of that set is smallest when every person without lung cancer is a smoker, and
largest when every person with lung cancer is a smoker, so the set of outcomes of the study
(the possible sizes of LCsamp

B XSsamp
B ) is t|Ssamp

B |´ |LCsamp
B |, . . . , |LCsamp

B |u “ t620, . . . , 649u.

Function symbols in Lvague
In the following, a person being a “smoker” means that they smoked at least one cigarette
per day during the most-recent period when they smoked.

• Bpop : FSrBs is a hypothetical set; the population that we imagine the British study
samples were drawn from.

• LCpop
B : FSrBs is the set of people in Bpop with lung cancer.

• LCpop
B : FSrBs is the set of people in Bpop without lung cancer.

• Spop
B,i : FSrBs is indepModel’s guess at the set of smokers in Bpop.

• Spop
B,d : FSrBs is dependModel’s guess at the set of smokers in Bpop.

• Asamp, Bsamp : FSrAs is the sample of patients used in the American (resp. British) study.

• LCsamp
A ,LCsamp

B : FSrAs is the set of people in Asamp (resp Bsamp) who have lung cancer.

• Ssamp
A , Ssamp

B : FSrAs is the set of smokers in Asamp (resp Bsamp).

• outcomeDistrp¨, ¨q : CMˆStudyOutcomesÑ R is the given candidate model’s distribution
over StudyOutcomes.

• AllCM : FSrCMs - the set of all candidate models. It should contain a candidate model
from every interested party.
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Defined function symbols (in Ldef)

• StudyOutcomes : FSrNs – t620, . . . , 649u. A copy of the sort StudyOutcomes (see above
for definition) that resides in the universe. So StudyOutcomes denotes both (1) a sort,
and (2) an element of the universe defined to be the set that is the intended interpretation
of (1).

• Constants for the complements of some sets:
• For each symbol X P tLCsamp

A , Ssamp
A u: X – AsampzX

• For each symbol X P tLCsamp
B , Ssamp

B u: X – BsampzX

• For each symbol X P tLCpop
B , Spop

B,d, S
pop
B,i u: X – BpopzX

• PrxPUpx P V1 |x P V2q : FSrαs ˆ FSrαs ˆ FSrαs Ñ? R – |V1 X V2 X U |{|V2 X U |

• For each k P t0, 1, 2u:
testIntervalk : FSrStudyOutcomess– t|Ssamp

B X LCsamp
B | ´ k, . . . , |Ssamp

B X LCsamp
B | ` ku

• For each k P t0, 1, 2u:

testkpMq : CMÑ R –
x“maxptestIntervalkq

ř

x“minptestIntervalkq
outcomeDistrpM,xq

Predicate symbols in Ldef

• BeatspM1:CM,M2:CMq Ø
Ź

kPt0,1,2u testkpM1q ą 1000 ¨ testkpM2q. Model M1 beats model
M2 if it assigns much higher probability to the true outcome |Ssamp

B X LCsamp
B |, as well as

to the intervals of size 3 and 5 around the true outcome. The interval of size 5 is about
17% of StudyOutcomes, and any larger interval would be biased since the interval of size
5 already contains the maximum of StudyOutcomes.

• BeatsAllpM1:CMq Ø @M2:CM.pM2 P AllCM ^M1 ‰ M2q ñ BeatspM1,M2q simply says
that M1 beats all the other models in AllCM.

Function symbols in Lmath

• tx, . . . , yu : N ˆ N Ñ FSrNs is the set of naturals from x to y inclusive, or the empty set
if x ą y.

• `, ¨ : tNˆ NÑ N,Rˆ RÑ Ru (addition and multiplication)

• ´ : Nˆ NÑ? N is subtraction, but undefined if the result is negative.

• { : Rˆ RÑ? R is division, undefined when the second argument is 0.

• Σt2
x“t1t3pxq : N ˆ N ˆ pN Ñ Rq Ñ R is the usual summation binder symbol. The formal

syntax is Σpt1, t2, λx:N.t3q.
• X : FSrαs ˆ FSrαs Ñ FSrαs is set intersection.

• z : FSrαs ˆ FSrαs Ñ FSrαs is set difference.

• | ¨ | : FSrαs Ñ N is the size of the given finite subset of (the interpretation of) α.

•
`

X
k

˘

: FSrαs ˆ NÑ FSrFSrαss is the set of subsets of X of size k.
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• minp¨q,maxp¨q : FSrNs Ñ? N are the minimum and maximum elements of a finite set of
naturals. Undefined if the set is empty.

• hyperpk, s,N, s1q : N ˆ N ˆ N ˆ N Ñ? R is the hypergeometric distribution (in the last
argument; the other three arguments are parameters), defined when s1 ď s ď N, s ď k ď
N ; if a population of size N has s smokers and N´s nonsmokers, and k people are chosen
uniformly at random without replacement from the population, then hyperpk, s,N, s1q is
the probability that the resulting set contains exactly s1 smokers.

• condHyperps1, s2, X1, X2, s
1
1q : NˆNˆFSrBsˆFSrBsˆNÑ? R is a probability distribution

(in the last argument; the other four arguments are parameters), defined when s11 ď s1 ď

|Ssamp
B | ď N , s1 ď |X1|, s2 ď |X2|. Suppose we have disjoint sets of people X1 and X2 ,

with X1 having s1 smokers and X2 having s2 smokers. Uniformly at random we choose
size-|LCsamp

B | subsets X 1
1 of X1 and X 1

2 of X2. Then condHyperps1, s2, X1, X2, s
1
1q is the

conditional probability that X 1
1 contains exactly s11 smokers, given that there are |Ssamp

B |

smokers in X 1
1 YX

1
2.

Simplifying Assumption 7. We would change this to a normal Assumption if we included
formalizations of Fisher’s and the tobacco companies’ models also (see section 6.1 above).

AllCM “ tindepModel, dependModelu

Axiom 1. Sizes of sets from the American study.

|LCsamp
A | “ 780 patients in sample with conditions other than cancer

|LCsamp
A | “ 605 patients in sample with lung cancer

|Ssamp
A X LCsamp

A | “ 114 nonsmokers with conditions other than cancer
|Ssamp
A X LCsamp

A | “ 8 nonsmokers with lung cancer

Axiom 2.
productWarningpdependModelq “ “Scientific studies have found a correlation between to-
bacco smoking and lung cancer that is currently best-explained by the hypothesis that smoking
causes an increase in the probability that a person will get lung cancer.”

productWarningpindepModelq “ “” (the empty string)

Axiom 3. This gives the sizes of the sample sets, and certain subsets of those sets, from
the British study. We evaluate the different models on how well they predict the size of
LCsamp

B X Ssamp
B , given the sizes of LCsamp

B ,LCsamp
B , and Ssamp

B . A model predicts the size well
if its distribution over StudyOutcomes assigns high probability to |LCsamp

B X Ssamp
B | or some

close number; this is formalized in the definition of Beatsp¨, ¨q.

|LCsamp
B | “ |LCsamp

B | “ 649
|Ssamp
B | “ 1269

|LCsamp
B X Ssamp

B | “ 647

|LCsamp
B X Ssamp

B | “ 622
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Simplifying Assumption 8 (dependModel posits a hypergeometric distribution). Note
that the values of the four parameters are only bounded by the other axioms, especially As-
sumptions 17, 18, 19, and 20, with the latter two distinguishing dependModel’s distribution
from indepModel’s.

Still, this and Simplifying Assumption 9 are the worst of the axioms with respect to the
standards that I strive for. Unlike the others, we cannot seriously claim that this axiom is
literally true with respect to the informal intended semantics, simply because the authors
of the British study did not methodically randomize the way that they chose their sample
sets of men with and without lung cancer. I would be satisfied to have an axiom that says
outcomeDistrpdependModel, ¨q is “close enough” to a hypergeometric distribution, but I have
not yet investigated suitable ways of formalizing “close enough,” and it is not clear that there
would be a benefit in pedagogy or cogency that warrants the added complexity.

@s:StudyOutcomes. outcomeDistrpdependModel, sq
“ condHyperp|LCpop

B X Spop
B,d|, |LC

pop
B X Spop

B,d|,LC
pop
B ,LCpop

B , sq

Simplifying Assumption 9 (indepModel posits a hypergeometric distribution). Note that
the values of the four parameters are only constrainted by the other axioms, especially As-
sumptions 17, 18, and 21, with the Assumption 21 distinguishing indepModel’s distribution
from dependModel’s.

@s:StudyOutcomes. outcomeDistrpindepModel, sq
“ condHyperp|LCpop

B X Spop
B,i |, |LC

pop
B X Spop

B,i |,LC
pop
B ,LCpop

B , sq

Assumption 17. This is a conservative axiom for dependModel; a figure from the British
study says that the rate of lung cancer in men was 10.6 per 100, 000 in 1936-1939, and
population data for England in 1951 puts the population at about 38.7 million, hence even
if the population from which the British sample was drawn is taken to be the entire nation,
if we assume about half the population was male, and that the rate at most trippled from
1939 to 1950, then we should only expect about 6100 men with lung cancer.

|LCpop
B | ď 7000

Assumption 18. This is a conservative axiom for dependModel; it says that of the hospital
patients from which the British scientists drew their sample, at most 1 in 6 had lung cancer
(in reality it would have been significantly lower).

|LCpop
B | ě 5 ˚ |LCpop

B |

Assumption 19. If we were to define a best-guess version of the dependent-variables model
dependModel, we would set the (unknown) left side of the below inequality equal to the
(known) right side (and similarly for Assumption 20. However, the evidence is so strongly
in favor of dependModel that this much weaker assumption suffices:

PrxPBpoppx P Spop
B,d | x P LC

pop
B q

PrxPBpoppx P Spop
B,d | x P LC

pop
B q

ď 3 ¨
PrxPAsamppx P Ssamp

A | x P LCsamp
A q

PrxPAsamppx P Ssamp
A | x P LCsamp

A q

38

38“ 3p.0132231{.146154q « .27142
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Assumption 20. Same comment as in Assumption 19 applies here.

PrxPBpoppx P Spop
B,d | x P LC

pop
B q ě 1{3 ¨ PrxPAsamppx P Ssamp

A | x P LCsamp
A q 39

Assumption 21. The independent-variables model simply posits that, in the population
from which the British sample was drawn, the fraction of smokers among people with lung
cancer is the same as the fraction of smokers among people with illnesses other than lung
cancer.

PrxPBpoppx P Spop
B,i | x P LC

pop
B q “ PrxPBpoppx P Spop

B,i | x P LC
pop
B q

The next assumption states the intended consequence of one model beating all the others.

Assumption 22. @M :CM. BeatsAllpMq ñ ShouldRequirepproductWarningpMqq

Claim 13.
condHyperps1, s2, X1, X2, s

1
1q

equals

hyperp|LCsamp
B |, s1, |X1|, s

1
1q ¨ hyperp|LC

samp
B |, s1, |X2|, |Ssamp

B | ´ s11q
maxpStudyOutcomesq

ř

x“minpStudyOutcomesq
hyperp|LCsamp

B |, s1, |X1|, xq ¨ hyperp|LCsamp
B |, s1, |X2|, |Ssamp

B | ´ xq

The above axioms, together with some basic mathematical axioms, prove that for any setting
of the free parameters |LCpop

B |, |LCpop
B |, |Spop

B,i X LCpop
B |, |Spop

B,d X LCpop
B |, etc that obeys the

constraints given by Axioms (17)-(21), the dependent-variables model decisively beats the
independent-variables model:

Conjecture 1.
ľ

kPt0,1,2u

testkpdependModelq ą 5000 ¨ testkpindepModelq

From Conjecture 1, the goal sentence follows:

ShouldRequirepproductWarningpdependModelqq

6.3 Simpler, complete proof

We add a symbol for the binomial distribution.

binDistr¨,¨p¨q : r0, 1s ˆ Nˆ NÑ? N
39 “ p1{3q.146154 “ .048718
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We may either give binDistr¨,¨p¨q a prose definition, and then state the next axiom as a Claim,
or we could make binDistr¨,¨p¨q a defined function symbol. Either way is consistent with the
definition of vaguely-interpreted formal proof.

@p:p0, 1q.@n, t:N. p0 ď t ď nq ñ binDistrp,nptq “
ˆ

n

t

˙

ptp1´ pqn´t

We introduce a family of probability distributions that takes the place of condHyperp¨, ¨, ¨, ¨, ¨q.
In this case, we give it the following prose definition and state the later two axioms 14 and
15 as Claims, which are made only for the purpose of calculation.
• condBinompp1, p2, s

1
1q : r0, 1s ˆ r0, 1s ˆ N Ñ R is a probability distribution (in the last

argument; the other two arguments are parameters). Suppose we sample |LCsamp
B | times

from each of two binomial distribution, the first having success probability p1 and the
second having success probability p2. Then condBinompp1, p2, s

1
1q is the conditional prob-

ability that we get s11 successes from the first distribution given that the sum of successes
is |Ssamp

B |.

We also introduce three new constants pSd|LC, pSd|LC, and pSi|˚ of type r0, 1s. pSd|LC and pSd|LC

are dependModel’s estimates of the fraction of smokers in the lung cancer population and
in the population of people with conditions other than lung cancer. pSi|˚ is indepModel’s
estimate of the fraction of smokers in both populations.

We drop Simplifying Assumptions 8 and 9, replacing them with the following two:

Simplifying Assumption 10 (dependModel posits a binomial distribution). Note that the
values of the two parameters (first two arguments) of condBinomp¨, ¨, ¨q are only bounded
by the other axioms, namely Axioms (23), and (24), with the latter two distinguishing
dependModel’s distribution from indepModel’s.

The following paragraph is the same as in the description of Simplifying Assumption 8.
Still, this and Simplifying Assumption (11) are the worst of the axioms with respect to

the standards that I strive for. Unlike the others, we cannot seriously claim that this axiom
is literally true with respect to the informal intended semantics, simply because the authors
of the British study did not methodically randomize the way that they chose their sample
sets of men with and without lung cancer. I would be satisfied to have an axiom that says
outcomeDistrpdependModel, ¨q is “close enough” to a binomial distribution, but I have not
yet investigated suitable ways of formalizing “close enough,” and it is not clear that there
would be a benefit in pedagogy or cogency that warrants the added complexity.

@s:StudyOutcomes.
outcomeDistrpdependModel, sq “ condBinomppSd|LC, pSd|LC, sq

Simplifying Assumption 11 (indepModel posits a binomial distribution).

@s:StudyOutcomes.
outcomeDistrpindepModel, sq “ condBinomppSi|˚, pSi|˚, sq
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The next two axioms bound the frequencies mentioned in the previous two axioms. The
description of Axiom (19) in the last section has some motivation that applies here as well.

Assumption 23.

1

2
¨ PrxPAsamppx P Ssamp

A | x P LCsamp
A q ď 1´ pSd|LC ď 2 ¨ PrxPAsamppx P Ssamp

A | x P LCsamp
A q

Assumption 24.

1

2
¨ PrxPAsamppx P Ssamp

A | x P LCsamp
A q ď 1´ pSd|LC ď 2 ¨ PrxPAsamppx P Ssamp

A | x P LCsamp
A q

The next two axioms tell us how to compute the distributions
Claim 14. For n “ |LCsamp

B | (and recall |LCsamp
B | “ |LCsamp

B |) have

condBinompp1, p2, aq

equals
binDistrp1,npaq ¨ binDistrp2,np|S

samp
B | ´ aq

maxpStudyOutcomesq
ř

x“minpStudyOutcomesq
binDistrp1,npxq ¨ binDistrp2,np|S

samp
B | ´ xq

Claim 15. For n “ |LCsamp
B | (and recall |LCsamp

B | “ |LCsamp
B |) have

condBinompp, p, aq “

`

n
a

˘

¨
`

n
|Ssamp

B |´a

˘

`

2n
|Ssamp

B |

˘

Lemma 1.
ľ

kPt0,1,2u

testkpdependModelq ą 2000 ¨ testkpindepModelq

Proof. –I will give an analytic proof in my thesis.–
The independent variables model has no parameters, so testkpindepModelq is a constant for
each k P t0, 1, 2u.Viewing the 3D plot of testkpdependModelq as a function of the parameters
pSd|LC and pSd|LC, it is clear that within the range allowed by Axioms (23) and (24), the func-
tion is minimized at one of the corner points; for test0pdependModelq and test1pdependModelq
it is minimized when pSd|LC is maximal and pSd|LC is minimal; for test2pdependModelq the
minimum is at the opposite point, when pSd|LC is minimal and pSd|LC is maximal.40

40The reason for the switch of locations of the minimum is not very interesting. The maximum likelihood
model for the American data slightly overestimates the correlation between smoking and lung cancer in the
British data, which can be used to explain the minimum for test0pdependModelq. However, when we broaden
the test interval enough, so that we accept all numbers between 645 and 649 as equally-good predictions of
the number of smokers among the lung cancer patients, then all the possible overestimating models (i.e. with
means greater than 647) are very close to being as good as the model that maximizes the likelihood of the
British data, which results in the worst model being the one that maximally underestimates the correlation
between smoking and lung cancer.
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7 More Major Examples

7.1 Sue Rodriguez at the Supreme Court (in progress)

This argument exists only in HTML right now. In my thesis I will include a LATEXversion
also. Click here for the current draft.

It is an argument for granting the right to assisted suicide to a particular individual, as
opposed to an argument for an assisted suicide policy, of roughly the same sort as found in
Oregon or Holland, that would provide access to assisted suicide to any Canadian who meets
certain requirements (which is the goal of Section 7.2).

Note: “Simplifying Assumption 7”, etc, refers to an axiom in the HTML document.
I adopt a narrative where the party criticizing the proof is the supreme court justices

who voted to deny Sue Rodriguez’s petition for access to physician assisted suicide. Exactly
the same argument works for the more-recent case of Gloria Taylor; she was initially granted
access to assisted suicide by the British Columbia Supreme Court in 2012, but the decision
was overturned in 2013. In Rodriguez’s (or Taylor’s) particular case, no major party to
the argument argued that the government would be doing her harm by making assisted
suicide legal for her (see Simplifying Assumption 7). Thus, the argument comes down to
whether allowing Rodriguez. access to assisted suicide would have a negative effect of some
sort (against other people - see Simplifying Assumption 5, which will eventually be a lemma
proved from more-obvious assumptions; or abstract principles - see Axiom 4 and Axiom 6)
that rivals the negative effect of denying her access.

The main goals of the argument are:
1. To clarify the qualitative cost to Sue Rodriguez of denying her access to assisted suicide.

2. To more-precisely state the position that (1) exceeds any cost incurred if the Supreme
Court were to grant her access. Or rather, that no such cost has been presented, and
because of that she should have been granted access.

7.2 Assisted suicide policy in Canada (in progress)

There is a more-ambitious, and much more difficult, argument to be made about assisted
suicide in Canada, namely that some system should be put into place by which access to
assisted suicide would be granted to any Canadian who meets certain (very strict) require-
ments. This requires, first of all, a specification of such a system, which must be done in
significant detail, since it is a delicate matter to prevent, as much as possible, instances of
regrettable uses of legal assisted suicide (which I define in a sufficiently-precise way already
in the Sue Rodriguez argument; see URL in Section 7.1). The hairiest part is that we cannot
prove or reasonably claim that there is no possibility of a regrettable assisted suicide, as
we can with the Sue Rodriguez case. Hence, it is necessary to have axioms, which will be
the weakest part of the argument, which together prove that the negative expected “utility”
(but not necessarily formalized in terms of real-valued utilities) from the possibility of a
regrettable use of assisted suicide is compensated for by the positive expected utility for the
people who gain access to assisted suicide.
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7.3 Sesardic’s analysis of SIDS case (todo)

I intend to formalize Neven Sesardic’s excellent investigative work and Bayesian argument
[Ses07] about the famous Sally Clark court case, in which a woman was prosecuted for
murdering her two infants, while she claimed that they died of SIDS (sudden infant death
syndrome). It is a notable example, as Sesardic, a philosopher, contradicts the hasty conclu-
sions of some prominent statisticians (who themselves famously contradicted the physician
who gave expert testimony for the prosecution), essentially by applying the same Bayesian
quantitative argument, but with much more care taken in constraining the values of the prior
probabilities.

A Proof of completeness for the logic from Section 3.1
[todo]

Perhaps I care more than I should about completeness, but since I’ve worked out the proof
already, why not include it for the subset of readers who care also?

More practically, the proof reduces the logic to normal FOL, so it can be used to imple-
ment a theorem prover using existing resolution theorem provers.
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