
Branching Programs for Tree Evaluation

Mark Braverman1, Stephen Cook2, Pierre McKenzie3, Rahul Santhanam4, and
Dustin Wehr2

1 Microsoft Research
2 University of Toronto

3 Université de Montréal
4 University of Edinburgh

Abstract. The problem FTh
d (k) consists in computing the value in

[k] = {1, . . . , k} taken by the root of a balanced d-ary tree of height
h whose internal nodes are labelled with d-ary functions on [k] and
whose leaves are labelled with elements of [k]. We propose FTh

d (k) as
a good candidate for witnessing L (LogDCFL. We observe that the
latter would follow from a proof that k-way branching programs solv-
ing FTh

d (k) require Ω(kunbounded function(h)) size. We introduce a “state
sequence” method that can match the size lower bounds on FTh

d (k)
obtained by the Nec̆iporuk method and can yield slightly better (yet
still subquadratic) bounds for some nonboolean functions. Both methods
yield the tight bounds Θ(k3) and Θ(k5/2) for deterministic and nonde-
terministic branching programs solving FT 3

2 (k) respectively. We propose
as a challenge to break the quadratic barrier inherent in the Nec̆iporuk
method by adapting the state sequence method to handle FT 4

d (k).

1 Introduction

Let Thd be the balanced d-ary ordered tree Thd of height h, where we take height
to mean the number of levels in the tree and we number the nodes as suggested
by the heap data structure. Thus the root is node 1, and in general the children
of node i are (when d = 2) nodes 2i, 2i+ 1 (see Figure 1). For every d, h, k ≥ 2
we define the Tree Evaluation problem and its associated decision problem:

Definition 1.1 (FThd (k) and BThd (k))
Given: Thd with each non-leaf node i independently labelled with a function fi :
[k]d → [k] and each leaf node independently labelled with an element from [k].
Function evaluation problem FThd (k): Compute the value v1 ∈ [k] of the root 1
of Thd , where in general vi = a if i is a leaf labelled a and vi = fi(vj1 , . . . , vjd)
and the children of i are j1, . . . , jd.
Boolean evaluation problem BThd (k): Decide whether v1 = 1.

In the context of uniform complexity measures such as Turing machine space
we rewrite FThd (k) and BThd (k) as FTd(h, k) and BTd(h, k) to indicate that d is
fixed but h, k are input parameters. It is not hard to show that for each d ≥ 2 a
deterministic logspace-bounded poly-time auxiliary pushdown automaton solves
BTd(h, k), implying by [?] that BTd(h, k) belongs to the class LogDCFL of
languages logspace reducible to a deterministic context-free language. We know
L ⊆ LogDCFL ⊆ P (see [?] for up to date information on LogDCFL). The
special case BTd(h, 2) was investigated under a different name in [?] as part of
an attempt to separate NC1 from NC2. In this paper, we suggest investigating
the space complexity of BTd(h, k) and FTd(h, k).

We choose to study the Tree Evaluation problem as a particularly interesting
candidate for non-membership in L or NL (deterministic of nondeterministic log
space) because pebble games on trees provide natural space bounded algorithms
for solving it: Black pebbling provides deterministic algorithms and, though we
do not consider these in this paper, black-white pebbling provides nondetermin-
istic algorithms. We choose k-way branching programs (BPs) as our model of
Turing machine because the inputs to our problems are tuples of numbers in [k].

For fixed d, h we are interested in how the size (number of states) of BPs
solving FThd (k) and BThd (k) grows with k. One of our contributions is an alter-
native approach to Nec̆iporuk’s lower bound method [?] for this size. Applied to
the problem BThd (k), our “state sequence” approach does as well as (but, so far,
no better than) Nec̆iporuk’s method. On the other hand, our approach does not
suffer in principle from the quadratic limitation inherent in Nec̆iporuk’s method.
Hence there is hope that the approach can be extended. The current bottleneck
stands at height 4. Proving our conjectured lower bound of Ω(k7/ lg k) (writing
lg for log2) for the size of deterministic BPs solving BT 4

3 (k) would constitute a
breakthrough and would overcome the n2 Nec̆iporuk limitation. However we do
not yet know how to do this.

The more specific contributions of this paper are the following:

– we observe that for any d ≥ 2 and unbounded r(h), a lower bound of the
form Ω(kr(h)) on the size of BPs solving FThd (k) would prove BTd(h, k) /∈ L;

– we prove tight black pebbling bounds for Thd and transfer the upper bounds
to size upper bounds of the form kΩ(h) for deterministic k-way BPs for
FThd (k) and BThd (k);

– we prove tight size bounds of Θ(k2d−1) and Θ(k2d−1/ lg k) for deterministic
k-way BPs solving FT 3

d (k) and BT 3
d (k) respectively;

– we prove tight size bounds of Θ(k3d/2−1/2) for nondeterministic k-way BPs
solving BT 3

d (k); in terms of input length, this implies an Ω(n3/2/(lg n)3/2)
bound for the number of states in nondeterministic binary BPs of arbitrary
outdegree, which improves slightly on the former Ω(n3/2) bound obtained
for the number of edges [?,?] in such BPs;

– we give examples of functions, such as the restriction SumMod3
2(k) of FT 3

2 (k)
in which the root function is fixed to the sum modulo k, and the function
Children4

2(k) which is required to simultaneously compute the root values
of two instances of FT 3

2 (k), for which the state sequence method yields a

2

better k-way BP size lower bound than a direct application of Nec̆iporuk’s
method (Ω(k3) versus Ω(k2) for SumMod3

2(k), and Ω(k4) versus Ω(k3) for
Children4

2(k)).

Section 2 defines branching programs and pebbling. Section 3 relates peb-
bling and branching programs to Turing machine space, and proves the pebbling
bounds exploited in Section 4 to prove BP size upper bounds. BP lower bounds
obtained using the Nec̆iporuk method are stated in Subsection 4.1. Our state
sequence method is introduced in Subsection 4.2. An Appendix contains most
of the proofs left out of the main text.

2 Preliminaries

We assume some familiarity with complexity theory, such as can be found in [?].
We write [k] for {1, 2, . . . , k} and let k ≥ 2.
Warning: Recall that the height of a tree is the number of levels in the tree, as
opposed to the distance from root to leaf. Thus T 2

2 has just 3 nodes.

2.1 Branching programs

Many variants of the branching program model have been studied [?,?]. Our def-
inition below is inspired by Wegener [?, p. 239], by the k-way branching program
of Borodin and Cook [?] and by its nondeterministic variant [?,?]. We depart
from the latter however in two ways: nondeterministic branching program labels
are attached to states rather than edges (because we think of branching program
states as Turing machine configurations) and cycles in branching programs are
allowed (because our lower bounds apply to this more powerful model).

Definition 2.1 (Branching programs) A nondeterministic k-way branching
program B computing a total function g : [k]m → R, where R is a finite set,
is a directed rooted multi-graph whose nodes are called states. Every edge has
a label from [k]. Every state has a label from [m], except |R| final sink states
consecutively labelled with the elements from R. An input (x1, . . . , xm) ∈ [k]m

activates, for each 1 ≤ j ≤ m, every edge labelled xj out of every state labelled j.
A computation on input ~x = (x1, . . . , xm) ∈ [k]m is a directed path consisting of
edges activated by ~x which begins with the unique start state (the root), and either
it is infinite, or it ends in the final state labelled g(x1, . . . , xm), or it ends in a
nonfinal state labelled j with no out edge labelled xj (in which case we say the
computation aborts). At least one such computation must end in a final state.
The size of B is its number of states. B is deterministic k-way if every non-sink
state has precisely k outedges labelled 1, . . . , k. B is binary if k = 2.

We say that B solves a decision problem (relation) if it computes the char-
acteristic function of the relation.

3

A k-way branching program computing the function FThd (k) requires kd k-
ary arguments for each internal node i of Thd in order to specify the function
fi, together with one k-ary argument for each leaf. Thus in the notation of
Definition 1.1 FThd (k): [k]m → R where R = [k] and m = dh−1−1

d−1 · kd + dh−1.
Also BThd (k): [k]m → {0, 1}.

We define #detFstateshd(k) (resp. #ndetFstateshd(k)) to be the mininum num-
ber of states required for a deterministic (resp. nondeterministic) k-way branch-
ing program to solve FThd (k). Similarly we define #detBstateshd(k) and #ndetBstateshd(k)
to be the number of states for solving BThd (k).

The next lemma is easy to prove and shows that the function problem is not
much harder to solve than the Boolean problem.

Lemma 2.2 #detBstateshd(k) ≤ #detFstateshd(k) ≤ k ·#detBstateshd(k) and
#ndetBstateshd(k) ≤ #ndetFstateshd(k) ≤ k ·#ndetBstateshd(k).

2.2 Pebbling

The pebbling game for dags was defined by Paterson and Hewitt [?] and was
used as an abstraction for deterministic Turing machine space in [?]. Black-white
pebbling was introduced in [?] as an abstraction of nondeterministic Turing
machine space (see [?] for a survey).

We will only make use of a simple ‘black pebbling’ game in this paper. Here
a pebble can be placed on any leaf node, and in general if all children of a node
i have pebbles, then one of the pebbles on the children can be slid to i (this is
a “sliding” move). The goal is to pebble the root. A pebbling of a tree T using p
pebbles is any sequence of pebbling moves on nodes of T which starts and ends
with no pebbles, and at some point the root is pebbled, and no configuration
has more than p pebbles.

Our motivation for choosing this definition is that we want pebbling algo-
rithms for trees to closely correspond to k-way branching program algorithms
for the tree evaluation problem.

We use #pebbles(T) to denote the minimum number of pebbles required to
pebble T . The following is an adaptation of results and techniques that have been
known since work of Loui, Meyer auf der Heide and Lengauer-Tarjan [?,?,?] in
the late ’70s. We allow sliding moves.

Theorem 2.3. For every d, h ≥ 2, #pebbles(Thd) = (d− 1)h− d+ 2.

3 Connecting TMs, BPs, and Pebbling

Let FTd(h, k) be the same as FThd (k) except now the inputs vary with both h
and k, and we assume the input to FTd(h, k) is a binary string X which codes
h and k and codes each node function fi for the tree Thd by a sequence of kd

binary numbers and each leaf value by a binary number in [k], so X has length

|X| = Θ(dhkd lg k) (1)

4

The output is a binary number in [k] giving the value of the root. The problem
BTd(h, k) is the Boolean version of FTd(h, k): The input is the same, and the
instance is true iff the value of the root is 1.

Obviously BTd(h, k) and FTd(h, k) can be solved in polynomial time, but we
can prove a stronger result.

Theorem 3.1. For each d ≥ 2 the problem BTd(h, k) is in LogDCFL.

The best known upper bounds on the number of states required by a BP
to solve FThd (k) grow as kΩ(h). The next result shows (Corollary 3.3) that any
provable nontrivial dependency on h, for the power of k expressing the minimum
number of such states, would separate L, and perhaps NL (deterministic and
nondeterministic log space), from LogDCFL.

Theorem 3.2. For each d ≥ 2, if BTd(h, k) is in L (resp. NL) then there is a
constant ωd and a function cd(h) such that #detFstateshd(k) ≤ cd(h)kωd (resp.
#ndetFstateshd(k) ≤ cd(h)kωd) for all h, k ≥ 2.

Proof. By Lemma 2.2, arguing for #detBstateshd(k) and #ndetBstateshd(k) in-
stead of #detFstateshd(k) and #ndetFstateshd(k) suffices. In general a Turing ma-
chine which can enter at most C different configurations on all inputs of a given
length n can be simulated (for inputs of length n) by a binary (and hence k-ary)
branching program with C states. Each Turing machine using space O(lg n) has
at most nc possible configurations on any input of length n ≥ 2, for some constant
c. By (1) the input for BTd(h, k) has length n = Θ(dhkd lg k), so there are at
most (dhkd lg k)c

′
possible configurations for a log space Turing machine solving

BTd(h, k), for some constant c′. So we can take cd(h) = dc
′h and ωd = c′(d+ 1).

�

Corollary 3.3 Fix d ≥ 2 and any unbounded function r(h). If #detFstateshd(k)
(resp. #ndetFstateshd(k)) ∈ Ω(kr(h)) then BTd(h, k) /∈ L (resp. /∈ NL).

The next result connects pebbling upper bounds with BP upper bounds.

Theorem 3.4. If Thd can be pebbled with p pebbles, then deterministic branching
programs with O(kp) states can solve FThd (k) and BThd (k).

Corollary 3.5 #detFstateshd(k) = O(k#pebbles(Th
d)).

4 Branching Program Bounds

In this section we prove optimal bounds (up to a constant factor) for the number
of states required for both deterministic and nondeterminisitc k-way branching
progams to solve the Boolean problems BT 3

d (k) for all trees of height 3. (The
bound is obviously Θ(kd) for trees of height 2, because there are d + kd input
variables.) We also prove bounds for the function problem FThd (k).

For the deterministic case our nearly best bounds come from pebbling via
Theorem 3.4, although we can improve on them for BTh2 (k) by a factor of lg k.

5

Theorem 4.1 (BP Upper Bounds).

#detBstateshd(k) = O(k(d−1)h−d+2) (2)
#detFstateshd(k) = O(k(d−1)h−d+2) (3)

#ndetBstates32(k) = O(k5/2) (4)
#detBstateshd(k) = O(k(d−1)(h−1)+1/ lg kd−1), for h ≥ 3. (5)

We can combine the above upper bounds with the Nec̆iporuk lower bounds
in Subsection 4.1, Figure 1, to obtain the following tight bounds.

Corollary 4.2 (Height 3 trees)

#ndetBstates32(k) = Θ(k5/2)
#detBstates3d(k) = Θ(k2d−1/ lg k)
#detFstates3d(k) = Θ(k2d−1).

4.1 The Nec̆iporuk method

The Nec̆iporuk method still yields the strongest explicit binary branching pro-
gram size lower bounds known today, namely Ω(n2

(lgn)2) for deterministic [?]

and Ω(n
3/2

lgn) for nondeterministic (albeit for a weaker nondeterministic model in
which states have bounded outdegree [?], see [?]).

By applying the Nec̆iporuk method to a k-way branching program B comput-
ing a function f : [k]m → R, we mean the following well known steps [?]:

1. Upper bound the number N(s, v) of (syntactically) distinct branching pro-
grams of type B having s non-sink states, each labelled by one of v variables.

2. Pick a partition {V1, . . . , Vp} of [m].
3. For 1 ≤ i ≤ p, lower bound the number rVi(f) of restrictions fVi : [k]|Vi| → R

of f obtainable by fixing values of the variables in [m] \ Vi.
4. Then size(B) ≥ |R|+

∑
1≤i≤p si, where si = min{ s : N(s, |Vi|) ≥ rVi

(f) }.

Theorem 4.3. Applying the Nec̆iporuk method yields Figure 1.

Remark 4.4. The Ω(n3/2/(lg n)3/2) binary nondeterministic BP lower bound for
the BThd (k) problem and in particular for BT 3

2 (k) applies to the number of states
when these can have arbitrary outdegree. This seems to improve on the best
known former bound of Ω(n3/2/ lg n), slightly larger but obtained for the weaker
model in which states have bounded degree, or equivalently, for the switching
and rectifier network model in which size is defined as the number of edges [?,?].

Let Childrenhd(k) have the same input as FThd (k) with the exception that
the root function is deleted. The output is the tuple (v2, v3, . . . , vd+1) of values
for the children of the root.

6

Model Lower bound for FTh
d (k) Lower bound for BTh

d (k)

Deterministic k-way
branching program

dh−2−1
4d(d−1)2

· k2d−1 dh−2−1
3d(d−1)

· k2d−1

lg k

Deterministic binary
branching program

dh−2−1
6d(d−1)

· k2d = Ω(n2/(lgn)2) dh−2−1
4d(d−1)

· k2d

lg k
= Ω(n2/(lgn)3)

Nondeterministic k-
way BP

dh−2−1
2d−2

· k
3d
2 −

1
2
√

lg k dh−2−1
2d−2

· k
3d
2 −

1
2

Nondeterministic bi-
nary BP

dh−2−1
2d−2

· k
3d
2 lg k = Ω(n3/2/ lgn) dh−2−1

2d−2
· k

3d
2 = Ω(n3/2/(lgn)3/2)

Fig. 1. Size bounds, expressed in terms of n = Θ(kd lg k) in the binary cases, obtained
by applying the Nec̆iporuk method. Rectangles indicate optimality in k when h = 3
(Cor. 4.2). Improving any entry to Ω(kunbounded f(h)) would prove L (P (Cor. 3.3).

Theorem 4.5. For any d, h ≥ 2, the best k-way deterministic BP size lower
bound attainable for Childrenhd(k) by applying the Nec̆iporuk method is Ω(k2d−1).

Let SumModhd(k) have the same input as FThd (k) with the exception that
the root function is preset to the sum modulo k. In other words the output is
v2 + v3 + · · ·+ vd+1 mod k.

Theorem 4.6. The best k-way deterministic BP size lower bound attainable for
SumMod3

2(k) by applying the Nec̆iporuk method is Ω(k2).

4.2 The state sequence method

Here we give alternative proofs for some of the lower bounds given in Section
4.1. These proofs are more intricate than the Nec̆iporuk proofs but they do not
suffer a priori from a quadratic limitation. The method also yields stronger lower
bounds to Children4

2(k) and SumMod3
2(k) than those obtained by applying the

Nec̆iporuk’s method as expressed in Subsection 4.1 (see Theorems 4.5 and 4.6).

Theorem 4.7. #ndetBstates32(k) ≥ k2.5 for sufficiently large k.

Proof. Consider an input I to BT 3
2 (k). We number the nodes in T 3

2 as in Figure
1, and let vIj denote the value of node j under input I. We say that a state in
a computation on input I learns vIj if that state queries f Ij (vI2j , v

I
2j+1) (recall

2j, 2j + 1 are the children of node j).
Definition [Learning Interval] Let B be a k-way nondeterministic BP that
solves BT 3

2 (k). Let C = γ0, γ1, · · · , γT be a computation of B on input I. We say
that a state γi in the computation is critical if one of the following holds:

1. i = 0 or i = T
2. γi learns vI2 and there is an earlier state which learns vI3 with no intervening

state that learns vI2 .

7

3. γi learns vI3 and no earlier state learns vI3 unless an intervening state learns
vI2 .

We say that a subsequence γi, γi+1, · · · γj is a learning interval if γi and γj are
consecutive critical states. The interval is type 3 if γi learns vI3 , and otherwise
the interval is type 2.

Thus the first learning interval is type 2, begins with γ0, and ends at the first
state which learns vI3 ,or at γT if no state in the computation learns vI3 . After
that all type 2 learning intervals begin with a state learning vI2 and end with
γT or with a state learning vI3 , and vice versa for learning intervals of type 3.
Type 2 learning intervals never learn vI3 until the last state, and type 3 learning
intervals never learn vI2 until the last state.

Now let B be a nondeterministic branching program that solves BT 3
2 (k). For

j ∈ {2, 3} let Γj be the set of all states of B which query the input function fj .
We will prove the theorem by showing that for large k

|Γ2|+ |Γ3| > k2
√
k. (6)

Given four numbers a4, a5, a6, a7 in [k] we define F a4,a5,a6,a7
yes to be the set of

all YES inputs I to B whose four leaves are labelled a4, a5, a6, a7 respectively,
whose middle node functions f I2 and f I3 are identically 0 except f I2 (a4, a5) = vI2
and f I3 (a6, a7) = vI3 . Since I is a YES input it follows that f I1 (vI2 , v

I
3) = 1.

Note that each member I of F a4,a5,a6,a7
yes is uniquely specified by a triple

(vI2 , v
I
3 , f

I
1) where f I1 (vI2 , v

I
3) = 1 (7)

and hence F a4,a5,a6,a7
yes has exactly k2(2k

2−1) members.
For j ∈ {2, 3} and a, b ∈ [k] let Γ a,bj be the subset of Γj consisting of those

states which compute fj(a, b). Then Γj is the disjoint union of Γ a,bj over all pairs
(a, b) in [k]× [k]. Hence to prove (6) it suffices to show

|Γ a4,a5
2 |+ |Γ a6,a7

3 | >
√
k (8)

for large k and all a4, a5, a6, a7 in [k]. We will show this by showing

(|Γ a4,a5
2 |+ 1)(|Γ a6,a7

3 |+ 1) ≥ k/2 (9)

for all k ≥ 2. (Note that given the product, the sum is minimized when the
summands are equal.)

For each input I in F a4,a5,a6,a7
yes we associate a fixed accepting computation

C(I) of B on input I.
For a, b ∈ [k] and f : [k] × [k] → {0, 1} with f(a, b) = 1 we use (a, b, f) to

denote the input I in F a4,a5,a6,a7
yes it represents as in (7).

Lemma. Assume (9) is false. Then ∃a, b ∈ [k] and ∃f, g : [k] × [k] → {0, 1}
such that f(a, b) = 1 and g(a, b) = 0 and for all states γ, δ, if there is a learning
interval beginning with γ and ending with δ in the computation C(a, b, f) and the
interval is type 2 then ∃b′ ∈ [k] such that g(a, b′) = 1 and C(a, b′, g) contains a

8

type 2 learning interval beginning with γ and ending with δ, and if the interval
is type 3 then ∃a′ ∈ [k] such that g(a′, b) = 1 and the computation C(a′, b, g)
contains a type 3 learning interval beginning with γ and ending with δ.

We first show that (9), and hence the theorem, follows from the lemma. If (9)
is false, then by the lemma we can show that B accepts the NO input (a, b, g).
The accepting computation is obtained by modifying the accepting computation
C(a, b, f) by replacing each learning interval beginning with some γ and ending
with some δ in that computation by the corresponding learning interval in the
computation C(a, b′, g) or C(a′, b, g). This works because a type 2 learning interval
never computes v3 and a type 3 learning interval never computes v2.

It remains to prove the lemma. We may assume that the branching program
B has a unique initial state γ0 and a unique accepting state δACC .

For j ∈ {2, 3}, a, b ∈ [k] and f : [k] × [k] → {0, 1} with f(a, b) = 1 define
ϕj(a, b, f) to be the set of all state pairs (γ, δ) such that there is a type j learning
interval in C(a, b, f) which begins with γ and ends with δ. Note that if j = 2
then γ ∈ (Γ a4,a5

2 ∪{γ0}) and δ ∈ (Γ a6,a7
3 ∪{δACC}), and if j = 3 then γ ∈ Γ a6,a7

3

and δ ∈ (Γ a4,a5
2 ∪ {δACC})

To complete the definition, define ϕj(a, b, f) = ∅ if f(a, b) = 0.
For j ∈ {2, 3} and f : [k] × [k] → {0, 1} we define a function ϕj [f] from [k]

to sets of state pairs as follows:

ϕ2[f](a) =
⋃
b∈[k]

ϕ2(a, b, f) ⊆ S2

ϕ3[f](b) =
⋃
a∈[k]

ϕ3(a, b, f) ⊆ S3

where S2 = (Γ a4,a5
2 ∪ {γ0}) × (Γ a6,a7

3 ∪ {δACC}) and S3 = Γ a6,a7
3 × (Γ a4,a5

2 ∪
{δACC}).

For each f the function ϕj [f] can be specified by listing a k-tuple of subsets
of Sj , and hence there are at most 2k|Sj | distinct such functions as f ranges over
the 2k

2
Boolean functions on [k]× [k], and hence there are at most 2k(|S2|+|S3|)

pairs of functions (ϕ2[f], ϕ3[f]). By our assumption that (9) is false, we have
|S2| + |S3| < k. Hence by the pigeonhole principle there must exist distinct
Boolean functions f, g such that ϕ2[f] = ϕ2[g] and ϕ3[f] = ϕ3[g].

Since f and g are distinct we may assume that there exist a, b such that
f(a, b) = 1 and g(a, b) = 0. Since ϕ2[f](a) = ϕ2[g](a), if (γ, δ) are the endpoints
of a type 2 learning interval in C(a, b, f) there exists b′ such that (γ, δ) are the
endpoints of a type 2 learning interval in C(a, b′, g) (and hence g(a, b′) = 1).
Similarly for type 3 intervals. This proves the lemma and completes the proof of
Theorem 4.7. �

Theorem 4.8. Every deterministic branching program that solves BT 3
2 (k) has

at least k3/ lg k states for sufficiently large k.

Proof. We modify the proof of Theorem 4.7. Let B be a deterministic BP which
solves T2(3, k), and for j ∈ {2, 3} let Γj be the set of states in B which query fj .

9

It suffices to show that for sufficiently large k

|Γ2|+ |Γ3| ≥ k3/ lg k. (10)

For r, s ∈ [k] we define the set F r,s of inputs I of B to be those which satisfy
the following restrictions:

– The leaves satisfy vI4 = vI6 = r and vI5 = vI7 = s.
– For j ∈ {2, 3} the node function fj satisfies fj(x, y) = 0 unless x = r and
y = s. (Here we assume [k] = {0, . . . , k − 1}.)

Each member of I of F r,s is uniquely specified by a triple

(a, b, f)

where a, b ∈ [k] and f : [k]× [k]→ {0, 1}; namely vI2 = a, vI3 = b, f1 = f . So for
each r, s there are exactly k22k

2
inputs in F r,s.

For j ∈ {2, 3} let Γ r,sj be the set of states of B which query fj(r, s). Then Γj
is the disjoint union

Γj =
⋃

r,s∈[k]

Γ r,sj

To prove (10) it suffices to show that for sufficiently large k and all r, s in [k]

|Γ r,s2 |+ |Γ
r,s
3 | ≥ k/ lg k. (11)

We may assume there are unique start, accepting, and rejecting states γ0, δACC ,
δREJ . Fix r, s ∈ [k].

For each root function f : [k]× [k]→ {0, 1} we define the functions

ψ2[f] : [k]× (Γ r,s2 ∪ {γ0})→ (Γ r,s3 ∪ {δACC , δREJ})
ψ3[f] : [k]× Γ r,s3 → (Γ r,s2 ∪ {δACC , δREJ})

by ψ2[f](a, γ) = δ if δ is the next critical state after γ in a computation with input
(a, b, f) (this is independent of b), or δ = δREJ if there is no such critical state.
Similarly ψ3[f](b, δ) = γ if γ is the next critical state after δ in a computation
with input (a, b, f) (this is independent of a), or δ = δREJ if there is no such
critical state.

CLAIM: The pair of functions (ψ2[f], ψ3[f]) is distinct for distinct f .

For suppose otherwise. Then there are f, g such that ψ2[f] = ψ2[g] and
ψ3[f] = ψ3[g] but f(a, b) 6= g(a, b) for some a, b. But then the sequences of
critical states in the two computations C(a, b, f) and C(a, b, g) must be the
same, and hence the computations either accept both (a, b, f) and (a, b, g) or
reject both. So the computations cannot both be correct.

Now we prove (11) from the CLAIM. Let s2 = |Γ r,s2 | and let s3 = |Γ r,s3 |, and
let s = s2 + s3. Then the number of distinct pairs (ψ2, ψ3) is at most

(s3 + 2)k(s2+1)(s2 + 2)ks3 ≤ (s+ 2)k(s+1)

10

and since there are 2k
2

functions f we have

2k
2
≤ (s+ 2)k(s+1)

so taking logs, k2 ≤ k(s + 1) lg(s + 2) so k/ lg(s + 2) ≤ s + 1, and (11) follows.
This proves the CLAIM and completes the proof of Theorem 4.8. �

Recall from Theorem 4.5 that applying the Nec̆iporuk method to Children4
2(k)

yields an Ω(k3) size lower bound and from Theorem 4.6 that applying it to
SumMod3

2(k) yields Ω(k2). The next two theorems are proved in the Appendix.

Theorem 4.9. Any deterministic k-way BP for Children4
2(k) has at least k4/2

states.

Theorem 4.10. Any deterministic k-way BP for SumMod3
2(k) requires at least

k3 states.

5 Conclusion

Our main open question is whether we can adapt the state sequence method
to break the Ω(n2) barrier for the size of deterministic branching programs. In
particular, can the method be extended to handle trees of height 4? Specifically,
can we prove a lower bound of Ω(k7/ lg k) for BT 4

3 (k) (see Theorem 4.1)?
Another question arises from the O(k5/2) upper bound arising in Theo-

rem 4.1. Is there a pebbling to justify such a non-integral exponent? As it turns
out, the answer is yes. One can introduce fractional black-white pebbling and
develop an interesting theory. Our work on that issue will be the subject of
another paper.

Acknowledgment James Cook played a helpful role in the early parts of
this research. The second author is grateful to Michael Taitslin for suggesting a
version of the tree evaluation problem in which the nodes are labelled by quasi
groups (see [?]).

11

Appendix
Proof of Theorem 2.3. #pebbles(Thd) = (d− 1)h− d+ 2.

Proof. For h = 2 this gives #pebbles(T 2
d) = d, which is obviously correct. In

general we show #pebbles(Th+1
d) = #pebbles(Thd)+d−1, from which the theorem

follows.
The following pebbling strategy gives the upper bound: Let the root be node

1 and the children be 2 . . . d+ 1. Pebble the nodes 2 . . . d+ 1 in order using the
optimal number of pebbles for Th−1

d , leaving a black pebble at each node. Note
that for the black pebble game, the complexity of pebbling in the game where
a pebble remains on the root is the same as for the game where the root has a
black pebble on it at some point. The maximum number of pebbles at any point
on the tree is d− 1 + #pebbles(Th−1

d). Now slide the black pebble from node 1
to the root, and then remove all pebbles.

For the lower bound, consider the time t at which the children of the root all
have black pebbles on them. There must be a final time t′ before t at which one
of the sub-trees rooted at 2, 3, . . . d+ 1 had #pebbles(Thd) pebbles on it. This is
because pebbling any of these subtrees requires at least #pebbles(Thd) pebbles,
by definition. At time t′, all the other subtrees must have at least 1 black pebble
each on them. If not, then there is a subtree T which does not, and it would
have to be pebbled before time t, which contradicts the definition of t′. Thus at
time t′, there are at least #pebbles(Thd) + d− 1 pebbles on the tree. �

Proof of Theorem 3.1. For each d ≥ 2, BTd(h, k) ∈ LogDCFL.

Proof. By [?] if suffices to show that BTd(h, k) is solved by some deterministic
auxiliary pushdown automaton M in lg space and polynomial time. The algo-
rithm for M is to use its stack to perform a depth-first search of the tree Thd ,
where for each node i it keeps a partial list of the values of the children of i,
until it obtains all d values, at which point it computes the value of i and pops
its stack, adding that value to the list for the parent node. �

Proof of Theorem 3.4. If Thd can be pebbled with p pebbles, then deter-
ministic branching programs with O(kp) states can solve FThd (k) and BThd (k).

Proof. Consider the sequence C0, C1, . . . Cτ of pebble configurations for a peb-
bling of Thd using p pebbles. We may as well assume that the root is pebbled
in configuration Cτ , since all pebbles could be removed in one more step at no
extra cost in pebbles. We design a branching program B for solving FThd (k) as
follows. For each pebble configuration Ct, program B has kp states; one state
for each possible assignment of a value from [k] to each of the p pebbles. Hence
B has O(kp) states, since τ is a constant independent of k. Consider an input
I to FThd (k), and let vi be the value in [k] which I assigns to node i in Thd (see
Definition 1.1). We design B so that on I the computation of B will be a state
sequence α0, α1, . . . , ατ , where the state αt assigns to each pebble the value vi
of the node i that it is on. (If a pebble is not on any node, then its value is 1.)

12

For the initial pebble configuration no pebbles have been assigned to nodes,
so the initial state of B assigns the value 1 to each pebble. In general if B is
in a state α corresponding to configuration Ct, and the next configuration Ct+1

places a pebble j on node i, then the state α queries the node i to determine
vi, and moves to a new state which assigns vi to the pebble j and assigns 1 to
any pebble which is removed from the tree. Note that if i is an internal node,
then all children of i must be pebbled at Ct, so the state α ‘knows’ the values
vj1 , . . . , vjd of the children of i, so α queries fi(vj1 , . . . , vjd).

When the computation of B reaches a state ατ corresponding to Cτ , then
ατ determines the value of the root (since Cτ has a pebble on the root), so B
moves to a final state corresponding to the value of the root. �

Proof of Theorem 4.1.

#detBstateshd(k) = O(k(d−1)h−d+2) (12)
#detFstateshd(k) = O(k(d−1)h−d+2) (13)

#ndetBstates32(k) = O(k5/2) (14)
#detBstatesh2 (k) = O(kh/ lg k), for h ≥ 3 (15)

Proof. The first two bounds follow immediately from Theorems 2.3 and 3.4. We
now prove (14) for the case d = 2. The general case is similar.

Let ` ≤ lg k + 2 be an even integer at least as big as the number of bits in
the binary notation for k.

Let vi denote the value of node i in T 3
2 , where the nodes are numbered as in

Fig. 1. The following algorithm by a nondeterministic k-way BP solves BT 3
2 in

O(k5/2) states.

1. Allocate O(k2) states to compute the leaf values v4 and v5 and use them to
compute v2.

2. Allocate O(k2 · 2`/2) = O(k5/2) states to remember just the `/2 most signif-
icant bits of v2 and to compute v3 as above.

3. Allocate O(k2) states to guess at the low-order `/2 bits of v2 to reconstruct
v2 and use this and v3 to compute v1. If v1 6= 1 then REJECT.

4. Forget all node values except the guessed `/2 low order bits of v2. Now
recompute v2 as in step 1, and ACCEPT iff the guessed values are correct.

To prove (15) we use a branching program which follows the following algo-
rithm. Here we have a parameter m, which is optimized when m = lg k− lg lg k.
In the following analysis we estimate the number of states required up to a
constant factor.

1) Compute v2 (the value of node 2 in the heap ordering), using the black peb-
bling algorithm for the principal left subtree. This requires kh−1 states. Divide
the k possible values for v2 into k/m blocks of size m.

2) Remember the block number for v2, and compute v3. This requires k/m ×
kh−1 = kh/m states.

13

3) Remember v3 and the block number for v2. Compute f1(a, v3) for each of the
m possible values a for v2 in its block number, and keep track of the set of a’s
for which f1 = 1. This requires k × k/m×m× 2m = k22m states.

4) Remember just the set of possible a’s (within its block) from above (there are
2m possibilities). Compute v2 again and accept or reject depending on whether
v2 is in the subset. This requires kh−12m states.

The total number of states has order the max{kh/m, kh−12m}, which is min-
imized when m = lg k − lg lg k. �

Proof of Theorem 4.3. Applying the Nec̆iporuk method yields Figure 1.

Proof. We have Nk-way
det (s, v) ≤ vs · (s + |R|)sk for the number of deterministic

BPs and Nk-way
nondet(s, v) ≤ vs ·(|R|+1)sk ·(2s)sk for nondeterministic BPs having s

non-sink states, each labelled with one of v variables. To see Nk-way
nondet(s, v), note

that an edge labelled i ∈ [k] can connect a state S to zero or one state among
the sink states and can connect S independently to any number of states among
the non-sink states.

The only decision to make when applying the Nec̆iporuk method is the choice
of the partition of the input variables. Here every entry in Figure 1 is obtained
using the same partition (with the proviso that a k-ary variable in the partition
is replaced by lg k binary variables when we treat 2-way branching programs).

We will only partition the set V of k-ary FThd (k) or BThd (k) variables that
pertain to internal tree nodes other than the root (we will neglect the root and
leaf variables). Each internal tree node has d−1 siblings and each sibling involves
kd variables. By a litter we will mean any set of d k-ary variables that pertain
to precisely d such siblings. We obtain our partition by writing V as a union of

kd ·Σh−3
i=0 d

i = kd · d
h−2 − 1
d− 1

litters. (Specifically, each litter can be defined as

{fi(j1, j2, . . . , jd), fi+1(j1, j2, . . . , jd), . . . , fi+d−1(j1, j2, . . . , jd)}

for some 1 ≤ j1, j2, . . . , jd ≤ k and some d siblings i, i+ 1, . . . , i+ d− 1.)
Consider such a litter L. We claim that |D|kd

distinct functions fL : [k]d → D
can be induced by setting the variables outside of L, where |D| = k in the case of
FThd (k) and |D| = 2 in the case of BThd (k). Indeed, to induce any such function,
fix the “descendants of the litter L” to make each variable in L relevant to the
output; then, set the variables pertaining to the immediate ancestor node ν of
the siblings forming L to the appropriate kd values, as if those were the final
output desired; finally, set all the remaining variables in a way such that the
values in ν percolate from ν to the root.

It remains to do the calculations. We illustrate two cases. Similar calculations
yield the other entries in Figure 1.

14

Nondeterministic k-way branching programs computing FThd (k). Here |R| = k.
In a correct program, the number s of states querying one of the d litter L
variables must satisfy

kk
d

≤ Nk-way
nondet(s, d) ≤ ds · (k + 1)sk · (2s)sk ≤ ss · k2sk · (2s)sk

since d ≤ s (because FThd (k) depends on all its variables), and thus

kd lg k ≤ s(lg s+ 2k lg k) + s2k.

Suppose to the contrary that s < (k
d−1
2
√

lg k)/2. Then

s(lg s+2k lg k)+s2k < s(
d− 1

2
lg k+

lg lg k
2

+2k lg k)+s2k < s(sk)+s2k < kd lg k

for large k and all d ≥ 2, a contradiction. Hence s ≥ (k
d−1
2
√

lg k)/2. Since this
holds for every litter, the total number of states in the program is at least

k + kd · d
h−2 − 1
d− 1

· (k
d−1
2

√
lg k)/2 ≥ dh−2 − 1

2d− 2
· k 3d

2 −
1
2
√

lg k.

Nondeterministic binary (ie 2-way) branching programs deciding BThd (k). Here
|R| = 2. When the program is binary, the d variables in the litter L become d lg k
Boolean variables. The number s of states querying one of these d lg k variables
then verifies

2k
d

≤ Nk-way
nondet(s, d lg k) ≤ (d lg k)s · (2 + 1)2s · (2s)2s < (s lg k)s · 24s+2s2

since d ≤ s and thus

kd ≤ s lg s+ s lg lg k + 4s+ 2s2 ≤ 3s2 + 5s lg lg k.

It follows that s ≥ k
d
2 /2. Hence the total number of states in a binary nonde-

terministic program deciding BThd (k) is at least

kd·d
h−2 − 1
d− 1

·kd/2/2 ≥ dh−2 − 1
2(d− 1)

·k 3d
2 =

dh−2 − 1
2(d− 1)

· (k
d lg k)3/2

(lg k)3/2
= Ω(n3/2/(lg n)3/2)

where n = Θ(kd lg k) is the length of the binary encoding of BThd (k). �

Proof of Theorem 4.5. For any fixed d, h ≥ 2, the best k-way deterministic
BP size lower bound attainable for Childrenhd(k) by the Nec̆iporuk method is
Ω(k2d−1).

Proof. The function Childrenhd(k) : [k]m → R has m = Θ(kd). Any partition
{V1, . . . , Vp} of the set of k-ary input variables thus has p = O(kd). Claim:
for each i, the best attainable lower bound on the number of states querying
variables from Vi is O(kd−1).

15

Consider such a set Vi, |Vi| = v ≥ 1. Here |R| = kd, so the number
Nk-way

det (s, v) of distinct deterministic BPs having s non-sink states querying vari-
ables from Vi satisfies

Nk-way
det (s, v) ≥ 1s · (s+ |R|)sk

≥ (1 + kd)sk

≥ kdsk.

Hence the estimate used in the Nec̆iporuk method as an upper bound toNk-way
det (s, v)

will be at least kdsk. On the other hand, the number of functions fVi
: [k]v → R

obtained by fixing variables outside of Vi cannot exceed kO(kd) since the number
of variables outside Vi is Θ(kd). Hence the best lower bound on the number of
states querying variables from Vi obtained by applying the method will be no
larger than the smallest s verifying kck

d ≤ kdsk for some c depending on d and
k. This proves our claim since then this number is at most s = O(kd−1).

Proof of Theorem 4.6. The best k-way deterministic BP size lower bound
attainable for SumMod3

2(k) by the Nec̆iporuk method is Ω(k2).

Proof. The function SumMod3
2(k) : [k]m → R has m = Θ(k2). Consider a set

Vi in any partition {V1, . . . , Vp} of the set of k-ary input variables, |Vi| = v.
Here |R| = k, so the number Nk-way

det (s, v) of distinct deterministic BPs having s
non-sink states querying variables from Vi satisfies

Nk-way
det (s, v) ≥ 1s · (s+ |R|)sk

≥ (1 + k)sk

≥ ksk.

If Vi contains a leaf variable, then perhaps the number of functions induced by
setting variables complementary to Vi can reach the maximum kk

2
. Nec̆iporuk

would conclude that k states querying the variables from such a Vi are necessary.
Note that there are at most 4 sets Vi containing a leaf variable (hence a total of
4k states required to account for the variables in these 4 sets). Now suppose that
Vi does not contain a leaf variable. Then setting the variables complementary
to Vi can either induce a constant function (there are k of those), or the sum
of a constant plus a variable (there are at most k · |Vi| of those) or the sum of
two of the variables (there are at most |Vi|2 of those). So the maximum number
of induced functions is |Vi|2 = O(k4). The number of states querying variables
from Vi is found by Nec̆iporuk to be s ≥ 4/k. In other words s = 1. So for any of
the at least p− 4 sets in the partition not containing a leaf variable, the method
gets one state. Since p − 4 = O(k2), the total number of states accounting for
all the Vi is O(k2).

Proof of theorem 4.9 Any deterministic k-way BP computing Children4
2(k)

has at least k4/2 states.

16

Proof. Let E4true be the set of all inputs I to Children4
2(k) such that f I2 =

f I3 = +k (addition mod k), and for i ∈ {4, 5, 6, 7} f Ii is identically 0 except for
f Ii (vI2i, v

I
2i+1).

Let B be a branching program as in the theorem. For each I ∈ E4true let
C(I) be the computation of B on input I.

For r, s ∈ [k] let Er,s4true the set of inputs I in E4true such that for i ∈
{4, 5, 6, 7}, vI2i = r and vI2i+1 = s. Then for each pair r, s each input I in Er,s4true

is completely specified by the quadruple vI4 , v
I
5 , v

I
6 , v

I
7 , so |Er,s4true| = k4.

For r, s ∈ [k] and i ∈ {4, 5, 6, 7} let Γ r,si be the set of states of B that query
fi(r, s), and let

Γ r,s = Γ r,s4 ∪ Γ r,s5 ∪ Γ r,s6 ∪ Γ r,s7 (16)

The theorem follows from the following Claim.

CLAIM 1: |Γ r,s| ≥ k2/2 for all r, s ∈ [k].

To prove CLAIM 1, suppose to the contrary for some r, s

|Γ r,s| < k2/2 (17)

We associate a pair
T (I) = (γI , vIi)

with I as follows: γI is the last state in the computation C(I) that is in Γ r,s

(such a state clearly exists), and i ∈ {4, 5, 6, 7} is the node queried by γI . (Here
vIi is the value of node i).

We also associate a second triple U(I) with each input I in Er,s4true as follows:

U(I) =

 (vI4 , v
I
5 , v

I
3) if γI queries node 4 or 5

(vI6 , v
I
7 , v

I
2) otherwise.

CLAIM 2: As I ranges over Er,s4true, U(I) ranges over at least k3/2 triples in [k]3.

To prove CLAIM 2, consider the the subset E′ of inputs in Er,s4true whose
values for nodes 4,5,6,7 have the form a, b, a, c for arbitrary a, b, c ∈ [k]. For each
such I in E′ an adversary trying to minimize the number of triples U(I) must
choose one of the two triples (a, b, a +k c) or (a, c, a +k b). There are a total of
k3 distinct triples of each of the two forms, and the adversary must choose at
least half the triples from one of the two forms, so there must be at least k3/2
distinct triples of the form U(I). This proves CLAIM 2.

On the other hand by (17) there are fewer than k3/2 possible values for T (I).
Hence there exist inputs I, J ∈ Er,s4true such that U(I) 6= U(J) but T (I) = T (J).
Since U(I) 6= U(J) but vIi = vJi (where i is the node queried by γI = γJ)
it follows that either vI2 6= vJ2 or vI3 6= vJ3 , so I and J give different values
to the function Children4

2(k). But since T (I) = T (J) if follows that the two
computations C(I) and C(J) are in the same state γI = γJ the last time any of
the nodes {4, 5, 6, 7} is queried, and the answers vIi = vJi to the queries are the
same, so both computations give identical outputs. Hence one of them is wrong.
�

17

Proof of theorem 4.10 Any deterministic k-way BP for SumMod3
2(k)

requires as least k3 states.

Proof. We adapt the previous proof. Now Er,s is the set of inputs I to SumMod3
2(k)

such that for i ∈ {2, 3}, f Ii is identically zero except for f Ii (r, s), and vI4 = vI6 = r
and vI5 = vI7 = s. Note that an input to Er,s can be specified by the pair (vI2 , v

I
3),

so Er,s has exactly k2 elements. Define

Γ r,s = Γ r,s2 ∪ Γ r,s3

Now we claim that an input I in Er,s can be specified by the pair (γI , vIi), where
γI is the last state in the computation C(I) that is in Γ r,s, and i ∈ {2, 3} is the
node queried by γI .

The Claim holds because (γI , vIi) determines the output of the computation,
which in turn (together with vIi) determines vIj , where j is the sibbling of i.

From the Claim it follows that |Γ r,s| ≥ k for all r, s ∈ [k], and hence there
must be at least k3 states in total.

18

