
A

Pebbles and Branching Programs for Tree Evaluation

STEPHEN COOK, University of Toronto

PIERRE MCKENZIE, Université de Montréal

DUSTIN WEHR, University of Toronto

MARK BRAVERMAN, University of Toronto

RAHUL SANTHANAM, University of Edinburgh

We introduce the tree evaluation problem, show that it is in LogDCFL (and hence in P), and study its
branching program complexity in the hope of eventually proving a superlogarithmic space lower bound. The
input to the problem is a rooted, balanced d-ary tree of height h, whose internal nodes are labeled with d-ary
functions on [k] = {1, . . . , k}, and whose leaves are labeled with elements of [k]. Each node obtains a value
in [k] equal to its d-ary function applied to the values of its d children. The output is the value of the root. We
show that the standard black pebbling algorithm applied to the binary tree of height h yields a deterministic
k-way branching program with O(kh) states solving this problem, and we prove that this upper bound is
tight for h = 2 and h = 3. We introduce a simple semantic restriction called thrifty on k-way branching
programs solving tree evaluation problems and show that the same state bound of Θ(kh) is tight for all
h ≥ 2 for deterministic thrifty programs. We introduce fractional pebbling for trees and show that this
yields nondeterministic thrifty programs with Θ(kh/2+1) states solving the Boolean problem “determine
whether the root has value 1”, and prove that this bound is tight for h = 2, 3, 4. We also prove that this same
bound is tight for unrestricted nondeterministic k-way branching programs solving the Boolean problem for
h = 2, 3.

Categories and Subject Descriptors: F.2.0 [Theory of Computation]: Analysis of Algorithms and Problem
Complexity

General Terms: Theory

Additional Key Words and Phrases: branching programs, logDCFL, log space, lower bounds

Contents

1 Introduction 2
1.1 Summary of Contributions . 5
1.2 Relation to previous work . 6
1.3 Organization . 6

2 Preliminaries 7
2.1 Branching programs . 7
2.2 One function is enough . 9
2.3 Pebbling . 10

3 Connecting TMs, BPs, and Pebbling 12

4 Pebbling Bounds 14

Versions of parts of this paper appeared in [Braverman et al. 2009a] and [Braverman et al. 2009b].
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 0000-0000/YYYY/-ARTA $10.00
DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Journal Name, Vol. V, No. N, Article A, Publication date: YYYY.

A:2 Stephen Cook et al.

Fig. 1. A height 3 binary tree T 3
2 with nodes numbered heap style.

4.1 Previous results . 14
4.2 Results for fractional pebbling . 17
4.3 White sliding moves . 27

5 Branching Program Bounds 27
5.1 The Nec̆iporuk method . 28
5.2 The state sequence method . 32
5.3 Thrifty lower bounds . 36

6 Conclusion 41

1. INTRODUCTION

Below is a nondecreasing sequence of standard complexity classes between AC0(6)
and the polynomial hierarchy.

AC0(6) ⊆ NC1 ⊆ L ⊆ NL ⊆ LogCFL ⊆ AC1 ⊆ NC2 ⊆ P ⊆ NP ⊆ PH (1)

A problem in AC0(6) is given by a uniform family of polynomial size bounded depth
circuits with unbounded fan-in Boolean and mod 6 gates. As far as we can tell an
AC0(6) circuit cannot determine whether a majority of its input bits are ones, and yet
we cannot provably separate AC0(6) from any of the other classes in the sequence.
This embarrassing state of affairs motivates this paper (as well as much of the lower
bound work in complexity theory).
We propose a candidate for separatingNL from LogCFL. The Tree Evaluation prob-

lem FTd(h, k) is defined as follows. The input to FTd(h, k) is a balanced d-ary tree of
height h, denoted Th

d (see Fig. 1). Attached to each internal node i of the tree is some
explicit function fi : [k]d → [k] specified as kd integers in [k] = {1, . . . , k}. Attached
to each leaf is a number in [k]. Each internal tree node takes a value in [k] obtained
by applying its attached function to the values of its children. The function problem
FTd(h, k) is to compute the value of the root, and the Boolean problem BTd(h, k) is to
determine whether this value is 1.
It is not hard to show that a deterministic logspace-bounded polytime auxiliary

pushdown automaton decides BTd(h, k), where d,h and k are input parameters. This
implies by [Sudborough 1978] that BTd(h, k) belongs to the class LogDCFL of lan-
guages logspace reducible to a deterministic context-free language. The latter class lies
between L and LogCFL, but its relationship withNL is unknown (see [Mahajan 2007]
for a recent survey). We conjecture that BTd(h, k) does not lie inNL. A proof would sep-
arate NL and LogCFL, and hence (by (1)) separate NC1 and NC2.
Thus we are interested in proving superlogarithmic space upper and lower bounds

(for fixed degree d ≥ 2) for BTd(h, k) and FTd(h, k). Notice that for each constant k =

ACM Journal Name, Vol. V, No. N, Article A, Publication date: YYYY.

Pebbles and Branching Programs for Tree Evaluation A:3

k0 ≥ 2, BTd(h, k0) is an easy generalization of the Boolean formula value problem for
balanced formulas, and hence it is in NC1 and L. Thus it is important that k be an
unbounded input parameter.

We use branching programs (BPs) as a nonuniform model of Turing machine space:
A lower bound of s(n) on the number of BP states implies a lower bound of Θ(log s(n))
on Turing machine space, but to go the other way, i.e., to deduce BP size lower bounds
from Turing machine space lower bounds, we would need to defeat a Turing machine
supplied with an advice string for each input length. Thus BP state lower bounds are
stronger than TM space lower bounds, but we do not know how to take advantage of
the uniformity of TMs to get the supposedly easier lower bounds on TM space. In this
paper all of our lower bounds are nonuniform and all of our upper bounds are uniform.
In the context of branching programs we think of d and h as fixed, and we are inter-

ested in how the number of states required grows with k. To indicate this point of view
we write the function problem FTd(h, k) as FT

h
d (k) and the Boolean problem BTd(h, k)

as BTh
d (k). For this it turns out that k-way BPs are a convenient model, since an input

for BTh
d (k) or FT

h
d (k) is naturally presented as a tuple of elements in [k]. Each nonfi-

nal state in a k-way BP queries a specific element of the tuple, and branches k possible
ways according to the k possible answers.

It is natural to assume that the inputs to Turing machines are binary strings, so
2-way BPs are a closer model of TM space than are k-way BPs for k > 2. But every
2-way BP is easily converted to a k-way BP with the same number of states, and every
k-way BP can be converted to a 2-way BP with an increase of only a factor of k in the
number of states, so for the purpose of separating L and P we may as well use k-way
BPs.

Of course the number of states required by a k-way BP to solve the Boolean problem
BTh

d (k) is at most the number required to solve the function problem FTh
d (k). In the

other direction it is easy to see (Lemma 2.3) that FTh
d (k) requires at most a factor of k

more states than BTh
d (k). From the point of view of separating L and P a factor of k is

not important. Nevertheless it is interesting to compare the two numbers, and in some
cases (Corollary 5.2) we can prove tight bounds for both: For deterministic BPs solving
height 3 trees they differ by a factor of log k rather than k.

The best (i.e. fewest states) algorithms that we know for deterministic k-way BPs
solving FTh

d (k) come from black pebbling algorithms for trees: If p pebbles suffice to
pebble the tree Th

d then O(kp) states suffice for a BP to solve FTh
d (k) (Theorem 3.4).

This upper bound on states is tight (up to a constant factor) for trees of height h = 2 or
h = 3 (Corollary 5.2), and we suspect that it may be tight for trees of any height.

There is a well-known generalization of black pebbling called black-white pebbling
which naturally simulates nondeterministic algorithms. Indeed if p pebbles suffice to
black-white pebble Th

d then O(kp) states suffice for a nondeterministic BP to solve
BTh

d (k). However the best lower bound we can obtain for nondeterministic BPs solving
BT 3

2 (k) (see Figure 1) is Ω(n2.5), whereas it takes 3 pebbles to black-white pebble the
tree T 3

2 . This led us to rethink the upper bound, and we discovered that there is indeed
a nondeterministic BP with O(k2.5) states which solves BT 3

2 (k). The algorithm comes
from a black-white pebbling of T 3

2 using only 2.5 pebbles: It places a half-black pebble
on node 2, a black pebble on node 3, and adds a half white pebble on node 2, allowing
the root to be black-pebbled (see Figure 2 on page 18).

This led us to the idea of fractional pebbling in general, a natural generalization of
black-white pebbling. A fractional pebble configuration on a tree assigns two nonneg-
ative real numbers b(i) and w(i) totalling at most 1, to each node i in the tree, with
appropriate rules for removing and adding pebbles. The idea is to minimize the max-

ACM Journal Name, Vol. V, No. N, Article A, Publication date: YYYY.

A:4 Stephen Cook et al.

imum total pebble weight on the tree during a pebbling procedure which starts and
ends with no pebbles and has a black pebble on the root at some point.

It turns out that nondeterministic BPs nicely implement fractional pebbling proce-
dures: If p pebbles suffice to fractionally pebble Th

d then O(kp) states suffice for a non-
deterministic BP to solve BTh

d (k). The idea is that if node i has a fraction b(i) + w(i)
pebbles then the corresponding BP configuration remembers a fraction b(i) + w(i) of
the log k bits specifying the value of node i, where b(i) bits are verified and w(i) bits are
conjectured. After much work we have not been able to improve upon this O(kp) upper
bound for any d, h ≥ 2. We prove it is optimal for trees of height 3 (Corollary 5.2).
We can prove that for fixed degree d the number of pebbles required to pebble (in

any sense) the tree Th
d grows as Θ(h), so the p in the above best-known upper bound of

O(kp) states grows as Θ(h). This and the following fact motivate further study of the
complexity of FTh

d (k).

FACT 1. A lower bound of Ω(kr(h)) for any unbounded function r(h) on the number
of states required to solve FTh

d (k) implies that L 6= LogCFL (Theorem 3.1 and Corollary
3.3).

Proving tight bounds on the number of pebbles required to fractionally pebble a tree
turns out to be much more difficult than for the case of whole black-white pebbling.
However we can prove good upper and lower bounds. For binary trees of any height h
we prove an upper bound of h/2 + 1 and a lower bound of h/2 − 1 (the upper bound is
optimal for h ≤ 4). These bounds can be generalized to d-ary trees (Theorem 4.4).

We introduce a natural semantic restriction on BPs which solve BTh
d (k) or FT

h
d (k):

A k-way BP is thrifty if it only queries the function f(x1, . . . , xd) associated with a node
when (x1, . . . , xd) are the correct values of the children of the node.
It is not hard to see that the deterministic BP algorithms that implement black

pebbling are thrifty. With some effort we were able to prove a converse (for binary
trees): If p is the minimum number of pebbles required to black-pebble Th

2 then every
deterministic thrifty BP solving BTh

2 (k) (or FT
h
2 (k)) requires at least kp states. Thus

any deterministic BP solving these problems with fewer states must query internal
nodes fi(x, y) where (x, y) are not the values of the children of node i. For the decision
problem BTh

2 (k) there is indeed a nonthrifty deterministic BP improving on the bound
by a factor of log k (Theorem 5.1 (16)), and this is tight for h = 3 (Corollary 5.2). But we
have not been able to improve on thrifty BPs for solving any function problem FTh

d (k).
The nondeterministic BPs that implement fractional pebbling are indeed thrifty.

However here the converse is far from clear: there is nothing in the definition of thrifty
that hints at fractional pebbling. We have been able to prove that thrifty BPs cannot
beat fractional pebbling for binary trees of height h = 4 or less, but for general trees
this is open.
It is not hard to see that for black pebbling, fractional pebbles do not help. This may

explain why we have been able to prove tight bounds for deterministic thrifty BPs for
all binary trees, but only for trees of height 4 or less for nondeterministic thrifty BPs.

We pose the following as another interesting open question:

Thrifty Hypothesis: Thrifty BPs are optimal among k-way BPs solving FTh
d (k).

Proving this for deterministic BPs would show L 6= LogDCFL, and for nondeter-
ministic BPs would show NL 6= LogCFL. Disproving this would provide interesting
new space-efficient algorithms and might point the way to new approaches for proving
lower bounds.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: YYYY.

Pebbles and Branching Programs for Tree Evaluation A:5

The lower bounds mentioned above for unrestricted branching programs when the
tree heights are small are obtained in two ways: First using the Nec̆iporuk method
[Nec̆iporuk 1966] (or see [Wegener 2000]), and second using a method that analyzes
the state sequences of the BP computations. Using the state sequence method we have
not yet beat the Ω(n2) deterministic branching program size barrier (neglecting log
factors) inherent to the Nec̆iporuk method for Boolean problems, but we can prove
lower bounds for function problems which cannot be matched by the Nec̆iporuk method
(Theorems 5.5, 5.6, 5.9, 5.10). For nondeterministic branching programs with states of
unbounded outdegree, we show that both methods yield a lower bound of Ω(n3/2) states
(neglecting logs) for the decision problem BT 3

2 .

1.1. Summary of Contributions

— We introduce a family of computation problems FTh
d (k) and BTh

d (k), d, h ≥ 2,
which we propose as good candidates for separating L and NL from apparently larger
complexity classes in (1). Our goal is to prove space lower bounds for these problems
by proving state lower bounds for k-way branching programs which solve them. For
h = 3 we can prove tight bounds for each d ≥ 2 on the number of states required by
k-way BPs to solve them, namely (from Corollary 5.2)

Θ(k(3/2)d−1/2) for nondeterministic BPs solving BT 3
d (k)

Θ(k2d−1/ log k) for deterministic BPs solving BT 3
d (k)

Θ(k2d−1) for deterministic BPs solving FT 3
d (k)

— We introduce a simple and natural restriction called thrifty on BPs solving
FTh

d (k) and BTh
d (k). The best known upper bounds for deterministic BPs solving

FTh
d (k) and for nondeterministic BPs solving BTh

d (k) are realized by thrifty BPs (al-
though deterministic nonthrifty BPs can save a factor of log k states over deterministic
thrifty BPs solving the decision problem BTh

2 (k)). Proving even much weaker lower
bounds than these upper bounds for unrestricted BPs would separate L from LogCFL
(see Fact 1 above). We prove that for binary trees deterministic thrifty BPs cannot do
better than implement black pebbling (this is far from obvious). 1

— We formulate the Thrifty Hypothesis (see above). Either a proof or a disproof
would have interesting consequences.

— We introduce fractional pebbling as a natural generalization of black-white peb-
bling for simulating nondeterministic space bounded computations. We prove almost
tight lower bounds for fractionally pebbling binary trees (Theorem 4.4). The best
known upper bounds for nondeterministic BPs solving FTh

d (k) come from fractional
pebbling, and these can be implemented by thrifty BPs. An interesting open question
is to prove that nondeterministic thrifty BPs cannot do better than implement frac-
tional pebbling. (We prove this for h = 2, 3, 4.)

— We use a “state sequence” method for proving size lower bounds for branching
programs solving FTh

d (k) and BTh
d (k), and show that it improves on the Nec̆iporuk

method for certain function problems.

The next major step is to prove good lower bounds for trees of height h = 4. If we can
prove the above Thrifty Hypothesis for deterministic BPs solving the function problem
(and hence the decision problem) for trees of height 4, then we would beat the Ω(n2)

1In [Wehr 2011] coauthor Wehr solved an open problem in [Gál et al. 2008] by adapting our thrifty lower
bound proof to prove an exponential lower bound on the size of semantic incremental branching programs
solving GEN.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: YYYY.

A:6 Stephen Cook et al.

limitation mentioned above on Nec̆iporuk’s method. See Section 6 (Conclusion) for this
argument, and a comment about the nondeterministic case.

1.2. Relation to previous work

Taitslin [Taitslin 2005] proposed a problem similar to BTh
2 (k) in which the functions

attached to internal nodes are specific quasi groups, in an unsuccessful attempt to
prove NL 6= P.
Gál, Koucký and McKenzie [Gál et al. 2008] proved exponential lower bounds on the

size of restricted n-way branching programs solving versions of the problem GEN. Like
our problems BTh

d (k) and FT
h
d (k), the best known upper bounds for solving GEN come

from pebbling algorithms.
As a concrete approach to separating NC1 from NC2, Karchmer, Raz and Wigder-

son [Karchmer et al. 1995] suggested proving that the circuit depth required to com-
pose a Boolean function with itself h times grows appreciably with h. They pro-
posed the universal composition relation conjecture, stating that an abstraction
of the composition problem requires high communication complexity, as an inter-
mediate goal to validate their approach. This conjecture was later proved in two
ways, first [Edmonds et al. 2001] using innovative information-theoretic machinery
and then [Håstad and Wigderson 1993] using a clever new complexity measure that
generalizes the subadditivity property implicit in Nec̆iporuk’s lower bound method
[Nec̆iporuk 1966; Wegener 2000]. Proving the conjecture thus cleared the road for the
approach, yet no sufficiently strong unrestricted circuit lower bounds could be proved
using it so far.
Edmonds, Impagliazzo, Rudich and Sgall [Edmonds et al. 2001] noted that the

approach would in fact separate NC1 from AC1. They also coined the name
Iterated Multiplexor for the most general computational problem considered in
[Karchmer et al. 1995], namely composing in a tree-like fashion a set of explicitly pre-
sented Boolean functions, one per tree node. Our problem FTh

d (k) can be considered as
a generalization of the Iterated Multiplexor problem in which the functions map [k]d

to [k] instead of {0, 1}d to {0, 1}. This generalization allows us to focus on getting lower
bounds as a function of k when the tree is fixed.

For time-restricted branching programs, Borodin, Razborov and Smolensky
[Borodin et al. 1993] exhibited a family of Boolean functions that require exponential
size to be computed by nondeterministic syntactic read-k times BPs. Later Beame,
Saks, Sun, and Vee [Beame et al. 2003] exhibited such functions that require expo-
nential size to be computed by randomized BPs whose computation time is limited to
o(n

√

log n/ log log n), where n is the input length. However all these functions can be
computed by polynomial size BPs when time is unrestricted.
In the present paper we consider branching programs with no time restriction such

as read-k times. However the smallest size deterministic BPs known to us that solve
FTh

d (k) implement the black pebbling algorithm, and these BPs happen to be (syntac-
tic) read-once.

1.3. Organization

The paper is organized as follows. Section 2 defines the main notions used in this paper,
including branching programs and pebbling. Section 3 relates pebbling and branching
programs to Turing machine space, noting in particular that a k-way BP size lower
bound of Ω(kfunction(h)) for BTh

d (k) would show L 6= LogCFL. Section 4 proves upper
and lower bounds on the number of pebbles required to black, black-white and frac-
tionally pebble the tree Th

d . These pebbling bounds are exploited in Section 5 to prove
upper bounds on the size of branching programs. BP lower bounds are obtained us-

ACM Journal Name, Vol. V, No. N, Article A, Publication date: YYYY.

Pebbles and Branching Programs for Tree Evaluation A:7

ing the Nec̆iporuk method in Subsection 5.1. Alternative proofs to some of these lower
bounds using the “state sequence method” are given in Subsection 5.2. An example of
a function problem for which the state sequence method beats the Nec̆iporuk method
is given in Theorems 5.5 and 5.9. Subsection 5.3 contains bounds for thrifty branching
programs.

2. PRELIMINARIES

We assume some familiarity with complexity theory, such as can be found in
[Goldreich 2008]. We write [k] for {1, 2, . . . , k}. For d, h ≥ 2 we use Th

d to denote the
balanced d-ary tree of height h.

Warning: Here the height of a tree is the number of levels in the tree, as opposed to
the distance from root to leaf. Thus T 2

2 has just 3 nodes.

We number the nodes of Th
d as suggested by the heap data structure. Thus the root

is node 1, and in general the children of node i are (when d = 2) nodes 2i, 2i + 1 (see
Figure 1).

DEFINITION 2.1 (TREE EVALUATION PROBLEMS). Given: The tree Th
d with each

non-leaf node i independently labeled with a function fi : [k]
d → [k] and each leaf node

independently labeled with an element from [k], where d, h, k ≥ 2.
Function evaluation problem FTh

d (k): Compute the value v1 ∈ [k] of the root 1 of Th
d ,

where in general vi = a if i is a leaf labeled a and vi = fi(vj1 , . . . , vjd) if the children of i
are j1, . . . , jd.
Boolean problem BTh

d (k): Decide whether v1 = 1.

2.1. Branching programs

A family of branching programs serves as a nonuniform model of a Turing machine.
For each input size n there is a BP Bn in the family which models the machine on
inputs of size n. The states (or nodes) of Bn correspond to the possible configurations
of the machine for inputs of size n. Thus for s(n) ∈ Ω(log n), if the machine computes
in space s(n) then Bn has 2O(s(n)) states.

Many variants of the branching program model have been studied (see in par-
ticular the survey by Razborov [Razborov 1991] and the book by Ingo Wegener
[Wegener 2000]). Our definition below is inspired by Wegener [Wegener 2000, p. 239],
by the k-way branching program of Borodin and Cook [Borodin and Cook 1982] and by
its nondeterministic variant [Borodin et al. 1993; Gál et al. 2008]. We depart from the
latter however in two ways: nondeterministic branching program labels are attached
to states rather than edges (because we think of branching program states as Turing
machine configurations) and cycles in branching programs are allowed (because our
lower bounds apply to this more general model2).

DEFINITION 2.2 (BRANCHING PROGRAMS). A nondeterministic k-way branching
program B computing a total function g : [k]m → R, where R is a finite set, is a directed
rooted multi-graph whose nodes are called states. Every edge has a label from [k]. Ev-
ery state has a label from [m], except |R| final sink states consecutively labelled with the
elements from R. An input (x1, . . . , xm) ∈ [k]m activates, for each 1 ≤ j ≤ m, every edge
labelled xj out of every state labelled j. A computation on input ~x = (x1, . . . , xm) ∈ [k]m

is a directed path consisting of edges activated by ~x which begins with the unique start
state (the root), and either it is infinite, or it ends in the final state labelled g(x1, . . . , xm),

2A BP with cycles can be simulated by an acyclic BP by at most squaring the number of states. Hence this
distinction is not important for separating L and P.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: YYYY.

A:8 Stephen Cook et al.

or it ends in a nonfinal state labelled j with no outedge labelled xj (in which case we
say the computation aborts). At least one such computation must end in a final state.
The size of B is its number of states. B is deterministic k-way if every non-final state
has precisely k outedges labelled 1, . . . , k. B is binary if k = 2.

We say that B solves a decision problem (relation) if it computes the characteristic
function of the relation.

A k-way branching program computing the function FTh
d (k) requires as input kd

many k-ary arguments for each internal node i of Th
d in order to specify the function fi,

together with one k-ary argument for each leaf. Thus in the notation of Definition 2.1,

FTh
d (k): [k]

m → R where R = [k] andm = dh−1−1
d−1 ·kd+dh−1. Also BTh

d (k): [k]
m → {0, 1}.

For fixed d, h we are interested in how the number of states required for a k-
way branching program to compute FTh

d (k) and BTh
d (k) grows with k. We define

#detFstates
h
d(k) (resp. #ndetFstates

h
d(k)) to be the minimum number of states required

for a deterministic (resp. nondeterministic) k-way branching program to solve FTh
d (k).

Similarly we define #detBstates
h
d(k) and #ndetBstates

h
d(k) to be the number of states

for solving BTh
d (k).

The next lemma shows that the function problem is not much harder to solve than
the Boolean problem.

LEMMA 2.3.

#detBstates
h
d(k) ≤ #detFstates

h
d(k) ≤ (k − 1) ·#detBstates

h
d(k)

#ndetBstates
h
d(k) ≤ #ndetFstates

h
d(k) ≤ (k − 1) ·#ndetBstates

h
d(k)

PROOF. The left inequalities are obvious. For the others, we can construct a branch-
ing program solving the function problem from a sequence of k − 1 programs solving
Boolean problems, where the ith program determines whether the value of the root
node is i.

Next we introduce thrifty programs, a restricted form of k-way branching programs
for solving tree evaluation problems. Thrifty programs efficiently simulate pebbling
algorithms, and implement the best known upper bounds for #ndetBstates

h
d(k) and

#detFstates
h
d(k), and are within a factor of log k of the best known upper bounds for

#detBstates
h
d(k). In Section 5 we prove tight lower bounds for deterministic thrifty pro-

grams which solve BTh
d (k) and FT

h
d (k).

DEFINITION 2.4 (THRIFTY BRANCHING PROGRAM). A deterministic k-way
branching program which solves FTh

d (k) or BTh
d (k) is thrifty if during the com-

putation on any input every query fi(~x) to an internal node i of Th
d satisfies the

condition that ~x is the tuple of correct values for the children of node i. A nondetermin-
istic such program is thrifty if for every input every computation which ends in a final
state satisfies the above restriction on queries.

Note that the restriction in the above definition is semantic, rather than syntactic.
It somewhat resembles the semantic restriction used to define incremental branching
programs in [Gál et al. 2008]. However we are able to prove strong lower bounds using
our semantic restriction, but in [Gál et al. 2008] a syntactic restriction was needed to
prove lower bounds.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: YYYY.

Pebbles and Branching Programs for Tree Evaluation A:9

2.2. One function is enough

It turns out that the complexities of FTh
d (k) and BTh

d (k) are not much different if
we require all functions assigned to internal nodes to be the same.3 To denote this
restricted version of the problems we replace F by F̂ and B by B̂. Thus F̂ Th

d (k) is

the function problem for Th
d when all node functions are the same, and B̂Th

d (k) is the
corresponding Boolean problem. To specify an instance of one of these new problems

we need only give one copy of the table for the common node function f̂ , together with
the values for the leaves.

THEOREM 2.5. Let N = (dh−1)/(d−1) be a constant denoting the number of nodes

in the tree Th
d . Any Nk-way branching program B̂ solving F̂ Th

d (Nk) (resp. B̂Th
d (Nk))

can be transformed to a k-way branching program B solving FTh
d (k) (resp. BTh

d (k)),

where B has no more states than B̂ and B is deterministic iff B̂ is deterministic. Also

for each d ≥ 2 the decision problem BTd(h, k) is log space reducible to B̂Td(h, k) (where
h, k are input parameters).

PROOF. Given an instance I of FTh
d (k) (or BTh

d (k)) we can find a corresponding

instance Î of F̂ Th
d (Nk) (or B̂Th

d (Nk)) by coding the set of all functions fi associated

with internal nodes i in I by a single function f̂ associated with each node of Î. Here
we represent each element of [Nk] by a pair 〈i, x〉, where i ∈ [N] represents a node in
Th
d and x ∈ [k]. We want to satisfy the following Claim:

Claim: If a node i has a value x in I then node i has value 〈i, x〉 in Î.
Thus if i is a leaf node, then we define the leaf value for node i in Î to be 〈i, x〉, where

x is the value of leaf i in I.
We define the common internal node function f̂ as follows. If nodes i1, . . . , id are the

children of node j in Th
d , then

f̂(〈i1, x1〉, . . . , 〈id, xd〉) = 〈j, fj(x1, . . . , xd)〉 (2)

The value of f̂ is irrelevant (make it 〈1, 1〉) if nodes i1, . . . , id are not the children of j.
An easy induction on the height of a node i shows that the above Claim is satisfied.
Note that the value x of the root node 1 in I is easily determined by the value 〈1, x〉 of

the root in Î. We specify that the pair 〈1, 1〉 has value 1 in [Nk], so I is a YES instance

of the decision problem BTh
d (k) iff Î is a YES instance of B̂Th

d (Nk).
To complete the proof of the last sentence in the theorem we note that the number of

bits needed to specify I isΘ(Nkd log k), and the number of bits to specify Î is dominated

by the number to specify f̂ , which is O((Nk)d log(Nk)). Thus the transformation from

I to Î is length-bounded by a polynomial in length of its argument, and it is not hard
to see that it can be carried out in log space.

Now we prove the first part of the theorem. Given anNk-way BP B̂ solving B̂Th
d (Nk)

(resp. F̂ Th
d (Nk)) we can find a corresponding k-way BPB solvingBTh

d (k) (resp. FT
h
d (k))

as follows.
The idea is that on input instance I, B acts like B̂ on input Î. Thus for each state q̂

in B̂ that queries a leaf node i, the corresponding state q in B queries i, and for each
possible answer x ∈ [k], B has an outedge labelled x corresponding to the edge from

q̂ labelled 〈i, x〉. If q̂ queries f̂ at arguments as in (2) (where i1, . . . , id are the children
of node j) then q queries fj(x1, . . . , xd) and for each x ∈ [k], q has an outedge labelled

3We thank Yann Strozecki, who posed this question.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: YYYY.

A:10 Stephen Cook et al.

x corresponding to the edge from q̂ labelled 〈j, x〉. If i1, . . . , id are not the children of
j, then the node q is not necessary in B, since the answer to the query is always the
default 〈1, 1〉.
In case B̂ is solving the function problem F̂ Th

d (Nk) then each output state labelled
〈1, x〉 is relabelled x in B (recall that the root of Th

d is number 1). Any output state q
labelled 〈i, x〉 where i > 1 will never be reached in B (since the value of the root node

of Î always has the form 〈1, x〉) so q can be deleted. For any edge in B̂ leading to q the
corresponding edge in B can lead anywhere.

Similarly to Theorem 2.5 it is easy to see that the problems FTh
d (k) and BT

h
d (k) can

be reduced to the case that the degree d = 2 by increasing the height h by a factor of
⌈log2 d⌉ and increasing k to k′ = kd

′

, where d′ < d. The idea is to replace each node
v in Th

d by a binary tree Tv of height ⌈log2 d⌉ whose first d leaves correspond to the d
children of v. The value of the root of Tv is that of v, and the value of a non-root internal
node u of Tv is the tuple of values of the leaves of Tv which are descendants of u. The
function f ′v which corresponds to the node v in the binary tree satisfies (assuming d is
a power of 2)

f ′v(〈x1, . . . , xd/2〉, 〈xd/2+1, . . . , xd〉) = fv(x1, . . . , xd)

The function associated with a non-root internal node of Tv just concatenates tuples
with appropriate padding with 1’s.
One goal of this paper is to draw attention to the tree evaluation problem and to

encourage further attempts at showing BTd(h, k) /∈ L. By the preceding paragraph
this is equivalent to showing BT2(h, k) /∈ L, and by Theorem 2.5 this is equivalent

to showing B̂Td(h, k) /∈ L. Further our suggested method is to try proving for each
fixed h a lower bound of Ω(kr(h)) on the number of states required for a k-way BP to
solve FTh

d (k), where r(h) is any unbounded function (see Corollary 3.3 below). Again
according to Theorem 2.5 (since N is a constant) technically speaking we may as well
assume that all the node functions in the instance of FTh

d (k) are the same. However in
practice this assumption is not helpful in proving a lower bound. For example Theorem
5.10 states that k3 states are required for a deterministic k-way BP to solve FT 3

2 (k),
and the proof assigns three different functions to the three internal nodes of the binary
tree of height 3.

2.3. Pebbling

The pebbling game for DAGs (directed acyclic graphs) was defined by Paterson and
Hewitt [Paterson and Hewitt 1970] and was used as an abstraction for determinis-
tic Turing machine space in [Cook 1974]. Black-white pebbling was introduced in
[Cook and Sethi 1976] as an abstraction of nondeterministic Turing machine space
(see [Nordström 2009] for a recent survey).
Here we define and use three versions of the pebbling game for DAGs with one

root (i.e. one sink node). The first is a simple ‘black pebbling’ game: A black pebble
can be placed on any leaf (i.e. source node), and in general if all children of a node i
(where a child of i is a node with an edge to i) have pebbles, then one of the pebbles on
the children can be slid to i (this is a “black sliding move’)’. Any black pebble can be
removed at any time. The goal is to pebble the root, using as few pebbles as possible.
The second version is ‘whole’ black-white pebbling as defined in

[Cook and Sethi 1976] with the restriction that we do not allow “white sliding
moves”. Thus if node i has a white pebble and each child of i has a pebble (either black
or white) then the white pebble can be removed. (A white sliding move would apply
if one of the children had no pebble, and the white pebble on i was slid to the empty
child. We do not allow this.) A white pebble can be placed on any node at any time.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: YYYY.

Pebbles and Branching Programs for Tree Evaluation A:11

The goal is to start and end with no pebbles, but to have a black pebble on the root at
some time.

The third is a new game called fractional pebbling, which generalizes whole black-
white pebbling by allowing the black and white pebble value of a node to be any real
number between 0 and 1. However the total pebble value of each child of a node imust
be 1 before the black value of i is increased or the white value of i is decreased. Figure
2 illustrates two configurations in an optimal fractional pebbling of the binary tree of
height three using 2.5 pebbles.

Our motivation for choosing these definitions is that we want pebbling algorithms
for trees to closely correspond to k-way branching program algorithms for the tree
evaluation problem. A black pebble on a node means that the corresponding branching
program state knows the value of the node, and a white pebble (applicable to nonde-
terministic BPs) means that state has a specific conjecture for the value of the node
(which must later be verified). A fractional pebble means that the state knows or con-
jectures that fraction of the log k bits is the value.

We start by formally defining fractional pebbling, and then define the other two
notions as restrictions on fractional pebbling.

DEFINITION 2.6 (PEBBLING). A fractional pebble configuration on a rooted d-ary
tree T is an assignment of a pair of real numbers (b(i), w(i)) to each node i of the tree,
where

0 ≤ b(i), w(i) (3)

b(i) + w(i) ≤ 1 (4)

Here b(i) and w(i) are the black pebble value and the white pebble value, respectively,
of i, and b(i) + w(i) is the pebble value of i. The number of pebbles in the configuration
is the sum over all nodes i of the pebble value of i. The legal pebble moves are as follows
(always subject to maintaining the constraints (3), (4)): (i) For any node i, decrease
b(i) arbitrarily, (ii) For any node i, increase w(i) arbitrarily, (iii) For every node i, if
each child of i has pebble value 1, then decrease w(i) to 0, increase b(i) arbitrarily, and
simultaneously decrease the black pebble values of the children of i arbitrarily.
A fractional pebbling of T using p pebbles is any sequence of (fractional) pebbling

moves on nodes of T which starts and ends with every node having pebble value 0, and
at some point the root has black pebble value 1, and no configuration has more than p
pebbles.

A whole black-white pebbling of T is a fractional pebbling of T such that b(i) and
w(i) take values in {0, 1} for every node i and every configuration. A black pebbling is a
black-white pebbling in which w(i) is always 0.

Notice that rule (iii) does not quite treat black and white pebbles dually, since the
pebble values of the children must each be 1 before any decrease of w(i) is allowed.
A true dual move would allow increasing the white pebble values of the children so
they all have pebble value 1 while simultaneously decreasing w(i). In other words,
we allow black sliding moves, but disallow white sliding moves. The reason for this
(as mentioned above) is that nondeterministic branching programs can simulate the
former, but not the latter. However white sliding moves are a natural dual to black
sliding moves and we give a formal definition and examples in Section 4.3.
We use #pebbles(T), #BWpebbles(T), and #FRpebbles(T) respectively to denote the

minimum number of pebbles required to black pebble T , black-white pebble T , and
fractional pebble T . Bounds for these values are given in Section 4. For example for
d = 2 we have #pebbles(Th

2) = h, #BWpebbles(Th
2) = ⌈h/2⌉ + 1, and #FRpebbles(Th

2) ≤
h/2 + 1. In particular #FRpebbles(T 3

2) = 2.5 (see Figure 2).

ACM Journal Name, Vol. V, No. N, Article A, Publication date: YYYY.

A:12 Stephen Cook et al.

3. CONNECTING TMS, BPS, AND PEBBLING

Let FTd(h, k) be the same as FTh
d (k) except now the inputs vary with both h and k, and

we assume the input to FTd(h, k) is a binary string X which codes h and k and codes
each node function fi for the tree Th

d by a sequence of kd binary numbers and each leaf
value by a binary number in [k], so X has length

|X| = Θ(dhkd log k) (5)

The output is a binary number in [k] giving the value of the root.
The problem BTd(h, k) is the Boolean version of FTd(h, k): The input is the same,

and the instance is true iff the value of the root is 1.
ObviouslyBTd(h, k) and FTd(h, k) can be solved in polynomial time, but we can prove

a stronger result.

THEOREM 3.1. The problem BTd(h, k) is in LogDCFL, even when d is given as an
input parameter.

PROOF. By [Sudborough 1978] if suffices to show that BTd(h, k) is solved by some
deterministic auxiliary pushdown automatonM in log space and polynomial time. The
algorithm forM is to use its stack to perform a depth-first search of the tree Th

d , where
for each node i it keeps a partial list of the values of the children of i on its stack, until
it obtains all d values, at which point it computes the value of i and pops its stack,
adding that value to the list for the parent node.
Note that the length n of an input instance is about dhkd log k bits, so log n > d log k,

so M has ample space on its work tape to write all d values of the children of a node
i.

The best known upper bounds on branching program size for FTh
d (k) grow as kΩ(h).

The next result shows (Corollary 3.3) that any lower bound with a nontrivial depen-
dency on h in the exponent of k for deterministic (resp. nondeterministic) BP size would
separate L (resp. NL) from LogDCFL.

THEOREM 3.2. For each d ≥ 2, ifBTd(h, k) is in L (resp.NL) then there is a constant

cd and a function fd(h) such that #detFstates
h
d(k) ≤ fd(h)k

cd (resp. #ndetFstates
h
d(k) ≤

fd(h)k
cd) for all h, k ≥ 2.

PROOF. By Lemma 2.3 it suffices to prove this for #detBstates
h
d(k) and

#ndetBstates
h
d(k) instead of #detFstates

h
d(k) and #ndetFstates

h
d(k). In general a Turing

machine which can enter at most C different configurations on all inputs of a given
length n can be simulated (for inputs of length n) by a binary (and hence k-ary) branch-
ing program with C states. Each Turing machine using space O(log n) has at most nc

possible configurations on any input of length n ≥ 2, for some constant c. By (5) the
input for BTd(h, k) has length n = Θ(dhkd log k), so there are at most (dhkd log k)c

′

pos-
sible configurations for a log space Turing machine solvingBTd(h, k), for some constant

c′. So we can take fd(h) = dc
′h and cd = c′(d+ 1).

COROLLARY 3.3. Fix d ≥ 2 and any unbounded function r(h). If #detFstates
h
d(k) ∈

Ω(kr(h)) then BTd(h, k) /∈ L. If #ndetFstates
h
d(k) ∈ Ω(kr(h)) then BTd(h, k) /∈ NL.

The next result connects pebbling upper bounds with upper bounds for thrifty
branching programs.

THEOREM 3.4. (i) If Th
d can be black pebbled with p pebbles, then deterministic

thrifty branching programs with O(kp) states can solve FTh
d (k) and BT

h
d (k).

ACM Journal Name, Vol. V, No. N, Article A, Publication date: YYYY.

Pebbles and Branching Programs for Tree Evaluation A:13

(ii) If Th
d can be fractionally pebbled with p pebbles then nondeterministic thrifty

branching programs can solve BTh
d (k) with O(kp) states.

PROOF. Consider the sequence C0, C1, . . . Cτ of pebble configurations for a black peb-
bling of Th

d using p pebbles. We may as well assume that the root is pebbled in config-
uration Cτ , since all pebbles could be removed in one more step at no extra cost in
pebbles. We design a thrifty branching program B for solving FTh

d (k) as follows. For
each pebble configuration Ct, program B has kp states; one state for each possible as-
signment of a value from [k] to each of the p pebbles. Hence B has O(kp) states, since τ
is a constant independent of k. Consider an input I to FTh

d (k), and let vi be the value
in [k] which I assigns to node i in Th

d (see Definition 2.1). We design B so that on I the
computation of B will be a state sequence α0, α1, . . . , ατ , where the state αt assigns to
each pebble the value vi of the node i that it is on. (If a pebble is not on any node, then
its value is 1.)

For the initial pebble configuration no pebbles have been assigned to nodes, so the
initial state of B assigns the value 1 to each pebble. In general if B is in a state α
corresponding to configuration Ct, and the next configuration Ct+1 places a pebble j
on node i, then the state α queries the node i to determine vi, and moves to a new
state which assigns vi to the pebble j and assigns 1 to any pebble which is removed
from the tree. Note that if i is an internal node, then all children of i must be pebbled
at Ct, so the state α ‘knows’ the values vj1 , . . . , vjd of the children of i, so α queries
fi(vj1 , . . . , vjd).

When the computation of B reaches a state ατ corresponding to Cτ , then ατ deter-
mines the value of the root (since Cτ has a pebble on the root), so B moves to a final
state corresponding to the value of the root.

The argument for the case of whole black-white pebbling is similar, except now the
value for each white pebble represents a guess for the value vi of the node it is on.
If the pebbling algorithm places a white pebble j on a node at some step, then the
corresponding state ofB nondeterministically moves to any state in which the values of
all pebbles except j are the same as before, but the value of j can be any value in [k]. If
the pebbling algorithm removes a white pebble j from a node i, then the corresponding
state has a guess v′i for the value of i, and either i is a leaf, or all children of i must be
pebbled. The corresponding state of B queries i to determine its true value vi. If vi 6= v′i
then the computation aborts (i.e. all outedges from the state have label v′i). Otherwise
B assigns j the value 1 and continues.

When B reaches a state α corresponding to a pebble configuration Ct for which the
root has a black pebble j, then α knows whether or not the tentative value assigned
to the root is 1. All future states remember whether the tentative value is 1. If the
computation successfully (without aborting) reaches a state ατ corresponding to the
final pebble configuration Cτ , then B moves to the final state corresponding to output
1 or output 0, depending on whether the tentative root value is 1.

Now we consider the case in which C0, . . . , Cτ represents a fractional pebbling com-
putation. If b(i), w(i) are the black and white pebbled values of node i in configuration
Ct, then a state α of B corresponding to Ct will remember a fraction b(i) + w(i) of the
log k bits specifying the value vi of the node i, where the fraction b(i) of bits are veri-
fied, and the fraction w(i) of bits are conjectured. In general these numbers of bits are
not integers, so they are rounded up to the next integer. This rounding introduces at
most two extra bits for each node in Th

d , for a total of at most 2T extra bits, where T
is the number of nodes in Th

d . Since the sum over all nodes of all pebble values is at
most p, the total number of bits that need to be remembered for a given pebble config-
uration is at most p log k + 2T , where T is a constant. Associated with each step in the
fractional pebbling there are 2p log k+2T = O(kp) states in the branching program, one

ACM Journal Name, Vol. V, No. N, Article A, Publication date: YYYY.

A:14 Stephen Cook et al.

for each setting of these bits. These bits can be updated for each of the three possible
fractional pebbling moves (i), (ii), (iii) in Definition 2.6 in a manner similar to that for
whole black-white pebbling.
It is easy to see that in all cases the branching programs described satisfy the thrifty

requirement that an internal node is queried only at the correct values for its children
(or, in the black-white and fractional cases, the program aborts if an incorrect query is
made because of an incorrect guess for the value of a white-pebbled node).

COROLLARY 3.5. #detFstates
h
d(k) = O(k#pebbles(Th

d)) and #ndetFstates
h
d(k) =

O(k#FRpebbles(Th
d)).

4. PEBBLING BOUNDS

4.1. Previous results

We start by summarizing what is known about whole black and black-white pebbling
numbers as defined at the end of Definition 2.6 (i.e. we allow black sliding moves but
not white sliding moves).
The following are minor adaptations of results and techniques that have been

known since work of Loui, Meyer auf der Heide and Lengauer-Tarjan [Loui 1979;
auf der Heide 1979; Lengauer and Tarjan 1980] in the late ’70s. They considered peb-
bling games where sliding moves were either disallowed or permitted for both black
and white pebbles, in contrast to our results below.
We always assume h ≥ 2 and d ≥ 2.

THEOREM 4.1. #pebbles(Th
d) = (d− 1)h− d+ 2.

PROOF. For h = 2 this gives #pebbles(T 2
d) = d, which is obviously correct. In general

we show #pebbles(Th+1
d) = #pebbles(Th

d) + d− 1, from which the theorem follows.
The following pebbling strategy gives the upper bound: Let the root be node 1 and

the children be 2 . . . d+1. Pebble the nodes 2 . . . d+1 in order using the optimal number
of pebbles for Th−1

d , leaving a black pebble at each node. Note that for the black pebble
game, the complexity of pebbling in the game where a pebble remains on the root is
the same as for the game where the root has a black pebble on it at some point. The
maximum number of pebbles at any point on the tree is d − 1 + #pebbles(Th−1

d). Now
slide the black pebble from node 1 to the root, and then remove all pebbles.
For the lower bound, consider the time t at which the children of the root all have

black pebbles on them. There must be a final time t′ before t at which one of the sub-
trees rooted at 2, 3, . . . d+1 had#pebbles(Th

d) pebbles on it. This is because pebbling any
of these subtrees requires at least #pebbles(Th

d) pebbles, by definition. At time t′, all
the other subtrees must have at least 1 black pebble each on them. If not, then there
is a subtree T which does not, and it would have to be pebbled before time t, which
contradicts the definition of t′. Thus at time t′, there are at least #pebbles(Th

d) + d − 1
pebbles on the tree.

THEOREM 4.2. For d = 2 and d odd:

#BWpebbles(Th
d) = ⌈(d− 1)h/2⌉+ 1 (6)

For d even:

#BWpebbles(Th
d) ≤ ⌈(d− 1)h/2⌉+ 1 (7)

When d is odd, this number is the same as when white sliding moves are allowed.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: YYYY.

Pebbles and Branching Programs for Tree Evaluation A:15

PROOF. We divide the proof into three parts: Part I proves (6) when d is odd, Part II
proves (7) when d is even (which implies the upper bound for (6) when d = 2), and Part
III proves the lower bound in (6) when d = 2.

Part I:
We show (6) when d is odd.

For h = 2 this gives #BWpebbles(T 2
d) = d, which is obviously correct. In general for

odd d we show

#BWpebbles(Th+1
d) = #BWpebbles(Th

d) + (d− 1)/2 (8)

from which the theorem follows for this case.
For the upper bound for the left hand side, we strengthen the induction hypothesis

by asserting that during the pebbling there is a critical time at which the root has a
black pebble and there are at most #BWpebbles(Th

d) − (d − 1)/2 pebbles on the tree
(counting the pebble on the root). This can be made true when h = 2 by removing all
the pebbles on the leaves after the root is pebbled.

To pebble the tree Th+1
d , note that we are allowed (d− 1)/2 extra pebbles over those

required to pebble Th
d . Start by placing black pebbles on the left-most (d−1)/2 children

of the root, and removing all other pebbles. Now go through the procedure for pebbling
the middle principal subtree, stopping at the critical time, so that there is a black
pebble on the middle child of the root and at most #BWpebbles(Th

d)− (d− 1)/2 pebbles
on the middle subtree. Now place white pebbles on the remaining (d− 1)/2 children of
the root, slide a black pebble to the root, and remove all black pebbles on the children
of the root. This is the critical time for pebbling Th+1

d : note that there are at most
#BWpebbles(Th

d) pebbles on the tree (we removed the black pebble on the root of the
middle subtree).

Now remove the pebble on the root and remove all pebbles on the middle subtree by
completing its pebbling (keeping the (d− 1)/2 white pebbles on the children in place).
Finally remove the remaining (d − 1)/2 white pebbles one by one, simply by pebbling
each subtree, and removing the white pebble at the root of the subtree instead of black-
pebbling it.

To prove the lower bound for the left hand side of (8), we strengthen the induction
hypothesis so that now a black-white pebbling allows white sliding moves, and the root
may be pebbled by either a black pebble or a white pebble. (Note that for the base case
the tree T 2

d still requires d pebbles.) Consider such a pebbling of Th+1
d which uses as

few moves as possible. Consider a time t at which all children of the root have pebbles
on them (i.e. just before the root is black pebbled or just after a white pebble on the
root is removed). For each child i, let ti be a time at which the tree rooted at i has
#BWpebbles(Th

d) pebbles on it. We may assume

t2 < t3 < . . . < td+1

Let m = (d + 3)/2 be the middle child. If tm < t then each of the (d − 1)/2 subtrees
rooted at i for i < m has at least one pebble on it at time tm, since otherwise the effort
made to place #BWpebbles(Th

d) pebbles on it earlier is wasted. Hence (8) holds for this
case. Similarly if tm > t then each of the (d − 1)/2 subtrees rooted at i for i > m has
at least one pebble on it at time tm, since otherwise the effort to place Th

d pebbles on it
later is wasted, so again (8) holds.

Part II:
We prove (7) for even degree d:

#BWpebbles(Th
d) ≤ ⌈(d− 1)h/2⌉+ 1

ACM Journal Name, Vol. V, No. N, Article A, Publication date: YYYY.

A:16 Stephen Cook et al.

For h = 2 the formula gives #BWpebbles(T 2
d) = d, which is obviously correct. For

h = 3 the formula gives #BWpebbles(T 3
d) = (3/2)d, which can be realized by black-

pebbling d/2+1 of the root’s children and white-pebbling the rest. In general it suffices
to prove the following recurrence:

#BWpebbles(Th+2
d) ≤ #BWpebbles(Th

d) + d− 1 (9)

We strengthen the induction hypothesis by asserting that during the pebbling of Th
d

there is a critical time at which the root has a black pebble and there are at most
#BWpebbles(Th

d)− (d− 1) pebbles on the tree (counting the pebble on the root). This is
easy to see when h = 2 and h = 3.
We prove the recurrence as follows. We want to pebble Th+2

d using d−1more pebbles
than is required to pebble Th

d . Let us call the children of the root c1, . . . , cd. We start
by placing black pebbles on c1, . . . cd/2. We illustrate how to do this by showing how to
place a black pebble on cd/2 after there are black pebbles on nodes c1, . . . cd/2−1. At this
point we still have d/2 extra pebbles left among the original d − 1. Let us assign the
names c′1, . . . c

′
d to the children of cd/2. Use the d/2 extra pebbles to put black pebbles

on c′1, . . . , c
′
d/2. Now run the procedure for pebbling the subtree rooted at c′d/2+1 up

to the critical time, so there is a black pebble on c′d/2+1. Now place white pebbles on

the remaining d/2 − 1 children of cd/2, slide a black pebble up to cd/2, remove the
remaining black pebbles on the children of cd/2, and complete the pebbling procedure
for the subtree rooted at c′d/2+1, so that subtree has no pebbles. Now remove the white

pebbles on the remaining d/2− 1 children of cd/2.
At this point there are black pebbles on nodes c1, . . . , cd/2, and no other pebbles on the

tree. We now place a black pebble on cd/2+1 as follows. Let us assign the names c′′1 , . . . c
′′
d

to the children of cd/2+1. Use the remaining d/2−1 extra pebbles to place black pebbles
on c′′1 , . . . , c

′′
d/2−1. Now run the pebble procedure on the subtree rooted at c′′d/2 up to the

critical time, so c′′d/2 has a black pebble. Now place white pebbles on the remaining

d/2 children of cd/2+1, slide a black pebble up to cd/2+1, remove the remaining black
pebbles on the children of cd/2+1, place white pebbles on the remaining d/2−1 children
of the root, slide a black pebble up to the root, and remove the remaining black pebbles
from the children of the root.
This is now the critical time for the procedure pebbling Th+2

d . There is a black pebble
on the root, d/2− 1 white pebbles on the children of the root, d/2 white pebbles on the
children of cd/2+1, and at most#BWpebbles(Th

d)−d pebbles on the subtree rooted at c′′d/2
(we’ve removed the black pebble on c′′d/2), making a total of at most #BWpebbles(Th

d)

pebbles on the tree.
Now remove the black pebble from the root and complete the pebble procedure for

the subtree rooted at c′′d/2 to remove all pebbles from that subtree. There remain d/2−1

white pebbles on the children of the root and d/2 white pebbles on the children of
cd/2+1, making a total of d − 1 white pebbles. Now remove each of the white pebbles
on the children of cd/2+1 by pebbling each of these subtrees in turn. Finally we can
remove each of the remaining d/2 − 1 white pebbles on the children of the root by a
process similar to the one used to place d/2 black pebbles on the children of the root at
the beginning of the procedure (we now in effect have one more pebble to work with).

Part III:
Finally we give the lower bound for the case d = 2:

#BWpebbles(Th
2) ≥ ⌈h/2⌉+ 1

ACM Journal Name, Vol. V, No. N, Article A, Publication date: YYYY.

Pebbles and Branching Programs for Tree Evaluation A:17

Clearly 2 pebbles are required for the tree of height 2, and it is easy to show that 3
pebbles are required for the height 3 tree.

In general it suffices to show that the binary tree T of height h+ 2 requires at least
one more pebble than the binary tree of height h. Suppose otherwise, and consider a
pebbling of T that uses the minimum number of pebbles required for the tree of height
h, and assume that the pebbling is as short as possible. Let t1 be a time when the root
has a black pebble. For i = 3, 4, 5 there must be a time ti when all the pebbles are on
the subtree rooted at node i. This is because node i must be pebbled at some point,
and if the pebble is white then right after the white pebble is removed we could have
placed a black pebble in its place (since we do not allow white sliding moves).

Suppose that {t1, t3, t4, t5} are ordered such that

ti1 < ti2 < ti3 < ti4

Then t1 cannot be either ti3 or ti4 since otherwise at time ti2 there are no pebbles on
the subtree rooted at node i1 and hence its earlier pebbling was wasted (since the root
has yet to be pebbled). Similarly if t1 is either ti1 or ti2 then at time ti3 there are no
pebbles on the subtree rooted at i4, and since the root has already been pebbled the
later pebbling of this subtree is wasted.

4.2. Results for fractional pebbling

The concept of fractional pebbling is new. Determining the minimum number p of peb-
bles required to fractionally pebble Th

d is important since O(kp) is the best known up-
per bound on the number of states required by a nondeterministic BP to solve FTh

d (k)
(see Theorem 3.4). It turns out that proving fractional pebbling lower bounds is much
more difficult than proving whole black-white pebbling lower bounds. We are able to
get exact fractional pebbling numbers for the binary tree of height 4 and less, but
the best general lower bound comes from a nontrivial reduction to a paper by Klawe
[Klawe 1985] which proves bounds for the pyramid graph. This bound is within d/2+1
pebbles of optimal for degree d trees (at most 2 pebbles from optimal for binary trees).
Our proof of the exact value of #FRpebbles(T 4

2) = 3 led us to conjecture that any
nondeterministic BP computing BT 4

2 (k) requires Ω(k3) states. In section 5 we provide
evidence for that conjecture by proving that any nondeterministic thrifty BP requires
O(k3) states. The lower bound for height 3 and any degree follows from the lower

bound of Ω(k
3

2
d− 1

2) states for nondeterministic branching programs computing BT 3
d (k)

(Corollary 5.2).
We start by presenting a general result showing that fractional pebbling can save

at most a factor of two over whole black-white pebbling for any DAG (directed acyclic
graph). (Here the pebbling rules for a DAG are the same as for a tree, where we require
that every sink node (i.e. every ‘root’) must have a whole black pebble at some point.)
We will not use this result, but it does provide a simple proof of weaker lower bounds
than those given in Theorem 4.4 below.

THEOREM 4.3. If a DAG D has a fractional pebbling using p pebbles, then it has a
black-white pebbling using at most 2p pebbles.

PROOF. Given a sequence P of fractional pebbling moves for a DAG D in which at
most p pebbles are used, we define a corresponding sequence P ′ of pebbling moves in
which at most 2p pebbles are used. The sequence P ′ satisfies the following invariant
with respect to P .

(♠) A node v has a black pebble (resp. a white pebble) on it at time t with respect to P ′

iff b(v) ≥ 1/2 (resp. w(v) > 1/2) at time t with respect to P .

ACM Journal Name, Vol. V, No. N, Article A, Publication date: YYYY.

A:18 Stephen Cook et al.
1

2 3

6 74 5

1

2 3

6 74 5

1

2 3

6 74 5

1

2 3

6 74 5

1

2 3

4 5 6 7

1

2 3

6 74 5

1

2 3

6 74 5

1

2 3

6 74 5

1

2 3

6 74 5

1

2 3

6 74 5

1

2 3

4 5 6 7

1

2 3

4 5 6 7

Fig. 2. An optimal fractional pebbling sequence for the height 3 tree using 2.5 pebbles, all configurations
included (except the empty starting config). The grey half circle means the white value of that node is .5,
whereas unshaded area means absence of pebble value. So for example in the seventh configuration, node 2
has black value .5 and white value .5, node 3 has black value 1, and the remaining nodes all have black and
white value 0.

An important consequence of this invariant is that if at time t in P node v satisfies
b(v) + w(v) = 1 then at time t in P ′ node v is pebbled.
We describe when a pebble is placed or removed in P ′. At the beginning, there are no

pebbles on any nodes. P ′ simulates P as follows. Assume there is a certain configura-
tion of pebbles on D, placed according to P ′ after time t− 1; we describe how P ’s move
at time t is reflected in P ′. If in the current move of P , b(v) (resp. w(v)) increases to
1/2 or greater (resp. greater than 1/2) for some node v, then the current pebble, if any,
on v, is removed and a black pebble (resp. a white pebble) is placed on v in P ′. Note
that this is always consistent with the pebbling rules. If in the current configuration
of P ′ there is a black (resp. white) pebble on a vertex v, and in the current move of P ,
b(v) (resp. w(v)) falls below 1/2, then the pebble on v is removed. Again, this is always
consistent with the pebbling rules for the black-white pebble game and the fractional
black-white pebble game. For all other kinds of moves of P , the configuration in P ′

does not change.
If P is a valid sequence of fractional pebbling moves, then P ′ is a valid sequence of

pebbling moves. We argue that the cost of P ′ is at most twice the cost of P , and that
if there is a point at which the root has black pebble value 1 with respect to P , then

ACM Journal Name, Vol. V, No. N, Article A, Publication date: YYYY.

Pebbles and Branching Programs for Tree Evaluation A:19

there is a point at which the root is black-pebbled in P ′. These facts together establish
the theorem.

To demonstrate these facts, we simply observe that the invariant (♠) holds by induc-
tion on the time t for the simulation we defined. This implies that at any point t, the
number of pebbles on D with respect to P ′ is at most the number of nodes v for which
b(v) + w(v) ≥ 1/2 with respect to P , and is therefore at most twice the total value of
pebbles with respect to P at time t. Hence the cost of pebbling D using P ′ is at most
twice the cost of pebbling D using P . Also, if there is a time t at which the root r has
black pebble value 1 with respect to P , then b(r) ≥ 1/2 at time t, so there is a black
pebble on r with respect to P ′ at time t.

The next result presents our best-known bounds for fractionally pebbling trees Th
d .

THEOREM 4.4.

(d− 1)h/2− d/2 ≤ #FRpebbles(Th
d) ≤ (d− 1)h/2 + 1

#FRpebbles(T 3
d) = (3/2)d− 1/2

#FRpebbles(T 4
2) = 3

We divide the proof into several parts. First we prove the upper bound:

#FRpebbles(Th
d) ≤ (d− 1)h/2 + 1

PROOF. Let Ah be the algorithm for height h ≥ 2. It is composed of two parts, Bh

and Ch. Bh is run on the empty tree, and finishes with a black pebble on the root and
(d− 1)(h− 2) white half pebbles below the root (and of these (d− 1)(h− 3) lie below the
rightmost child of the root). Next, the black pebble on the root is removed. Then Ch is
run on the result, and finishes with the empty tree. Bh and Ch both use (d− 1)h/2 + 1
pebbles.
A′

h is the same as Ah except that it finishes with a black half pebble on the root. It
does this in the most straight-forward way, by leaving a black half pebble after the root
is pebbled, and so it uses (d− 1)h/2 + 1.5 pebbles for all h ≥ 3.
B2: Pebble the tree of height 2 using d black pebbles.
Bh, h > 2: Run A′

h−1 on node 2 using (d− 1)(h− 1)/2 + 1.5 pebbles, and then on node
3 (if 3 ≤ d) using a total of (d−1)(h−1)/2+2 pebbles (counting the half pebble on node
2), and so on for nodes 2, 3 . . . , d. So (d − 1)(h − 1)/2 + 1 + (d − 1)/2 = (d − 1)h/2 + 1
pebbles are used when A′

h−1 is run on node d. Next run Bh−1 on node d + 1, using
(d− 1)(h− 1)/2 + 1 pebbles on the subtree rooted at d+ 1, for (d− 1)h/2 + 1 pebbles in
total (counting the black half pebbles on node 2, . . . , d). The result is a black pebble on
node d+ 1, (d−1)(h−3) white half pebbles under d+1, and from earlier d−1 black half
pebbles on 2, . . . , d, for a total of (d− 1)(h− 2)/2+ 1 pebbles. Add a white half pebble to
each of 2, . . . , d, then slide the black pebble from d+ 1 onto the root. Remove the black
half pebbles from 2, . . . , d. Now there are (d − 1)(h − 2) white half pebbles under the
root, and a black pebble on the root.
C2: The tree of height 2 is empty, so return.
Ch: The tree has no black pebbles and (d− 1)(h− 2) white half pebbles. Note that if

a sequence can pebble a tree with p pebbles, then essentially the same sequence can
be used to remove a white half pebble from the root with p + .5 pebbles. Ch runs Ch−1

on node d + 1, resulting in a tree with only a half white pebble on each of 2, . . . , d.
This takes (d − 1)h/2 + 1 pebbles. Then Ah−1 is run on each of 2, . . . , d in turn, to
remove the white half pebbles. The first such call of Ah−1 is the most expensive, using
(d− 1)(h− 1)/2 + 1 + (d− 1)/2 = (d− 1)h/2 + 1 pebbles.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: YYYY.

A:20 Stephen Cook et al.

. As noted earlier, the tight lower bound for height 3 and any degree:

#FRpebbles(T 3
d) ≥ (3/2)d− 1/2

follows from the asymptotically tight lower bound of Ω(k
3

2
d− 1

2) states for nondetermin-
istic branching programs computing BT 3

d (k) (Corollary 5.2). We do, however, have a
direct proof of #FRpebbles(T 3

2) ≥ 5/2:

PROOF. Assume to the contrary that there is a fractional pebbling with fewer than
2.5 pebbles. It follows that no non-leaf node i can ever have w(i) ≥ 0.5, since the chil-
dren of i must each have pebble value 1 in order to decrease w(i). Since there must
be some time t1 during the pebbling sequence such that both the nodes 2 and 3 (the
two children of the root) have pebble value 1, it follows that at time t1, b(2) > 0.5 and
b(3) > 0.5. Hence for i = 2, 3 there is a largest ti ≤ t1 such that node i is black-pebbled
at time ti and b(i) > 0.5 during the time interval [ti, t1]. (By ‘black-pebbled’ we mean at
time ti − 1 both children of i have pebble value 1, so that at time ti the value of b(i) can
be increased.)
Assume w.l.o.g. that t2 < t3. Then at time t3 − 1 both children of node 3 have pebble

value 1 and b(2) > 0.5, so the total pebble value exceeds 2.5.

. Before we prove the lower bound for all heights, which we do not believe is tight,
we prove one more tight lower bound:

#FRpebbles(T 4
2) ≥ 3

PROOF. Let C0, C1, . . . , Cm be the sequence of pebble configurations in a fractional
pebbling of the binary tree of height 4. We say that Ct is the configuration at time t.
Thus C0 and Cm have no pebbles, and there is a first time t1 such that Ct1+1 has a black
pebble on the root. In general we say that step t in the pebbling is the move form Ct to
Ct+1. In particular, if an internal node i is black-pebbled at step t then both children of
i have pebble value 1 in Ct and node i has a positive black pebble value in Ct+1.
Note that if any configuration Ct has a whole white pebble on some internal node

then both children must have pebble value 1 to remove that pebble, so some configu-
ration will have at least pebble value 3, which is what we are to prove. Hence we may
assume that no node in any Ct has white pebble value 1, and hence every node must
be black-pebbled at some step.
For each node i we associate a critical time ti such that i is black-pebbled at step ti

and hence the children of i each have pebble value 1 in configuration Cti . The time t1
associated with the root (as above) is the first step at which the root is black-pebbled,
and hence nodes 2 and 3 each have pebble value 1 in Ct1 . In general if ti is the critical
time for internal node i, and j is a child of i, then the critical time tj for j is the largest
t < ti such that j is black-pebbled at step t.

Sibling Assumption: We may assume w.l.o.g. (by applying an isomorphism to the
tree) that if i and j are siblings and i < j then ti < tj .
In general the critical times for a path from root to leaf form a descending chain. In

particular

t7 < t3 < t1

For each i > 1 we define bi and wi to be the black and white pebble values of node i at
the critical time of its parent. Thus for all i > 1

bi + wi = 1 (10)

Now let p be the maximum pebble value of any configuration Ct in the pebbling. Our
task is to prove that p ≥ 3

ACM Journal Name, Vol. V, No. N, Article A, Publication date: YYYY.

Pebbles and Branching Programs for Tree Evaluation A:21

After the critical time of an internal node i the white pebble values of its two children
must be removed. When the first one is removed both white values are present along
with pebble value 1 on two children, so

w2i + w2i+1 + 2 ≤ p

In particular for i = 1, 3 we have

w2 + w3 + 2 ≤ p (11)

w6 + w7 + 2 ≤ p (12)

Now we consider two cases, depending on the order of t2 and t7.

CASE I: t2 < t7
Then by the Sibling Assumption, at time t7 (when node 7 is black-pebbled) we have

b2 + b6 + 2 ≤ p (13)

Now if we also suppose that w6 is not removed until after t1 (CASE IA) then when the
first of w2, w6 is removed we have

w2 + w6 + 2 ≤ p

so adding this equation with (13) and using (10) we see that p ≥ 3 as required.
However if we suppose that w6 is removed before t1 (CASE IB) (but necessarily after

t2 < t3) then we have

b2 + b3 + w6 + 2 ≤ p

then we can add this to (11) to again obtain p ≥ 3.

CASE II: t7 < t2
Then t6 < t7 < t2 < t3 so at time t2 we have

b6 + b7 + 2 ≤ p

so adding this to (12) we again obtain p ≥ 3.

. To prove the general lower bound, we need the following lemma:

LEMMA 4.5. For every finite DAG there is an optimal fractional pebbling in which
all pebble values are rational numbers. (This result is robust independent of various
definitions of pebbling; for example with or without sliding moves, and whether or not
we require the root to end up pebbled.)

PROOF. Consider an optimal fractional pebbling algorithm. Let the variables bv,t
and wv,t stand for the black and white pebble values of node v at step t of the algorithm.

Claim: We can define a set of linear inequalities with 0-1 coefficients which suffice
to ensure that the pebbling is legal.

For example, all variables are non-negative, bv,t +wb,t ≤ 1, initially all variables are
0, and finally the nodes have the values that we want, node values remain the same
on steps in which nothing is added or subtracted, and if the black value of a node is
increased at a step then all its children must be 1 in the previous step, etc.

Now let p be a new variable representing the maximum pebble value of the algo-
rithm. We add an inequality for each step t that says the sum of all pebble values at
step t is at most p.

Any solution to the linear programming problem:
Minimize p subject to all of the above inequalities
gives an optimal pebbling algorithm for the graph. But every LP program with ra-

tional coefficients has a rational optimal solution (if it has any optimal solution).

ACM Journal Name, Vol. V, No. N, Article A, Publication date: YYYY.

A:22 Stephen Cook et al.

. Now we can prove the lower bound for all heights:

#FRpebbles(Th
d) ≥ (d− 1)(h− 1)/2− 1/2 = (d− 1)h/2− d/2 (14)

Remark 4.6. We conjecture that the upper bound given in Theorem 4.4 is tight. It
seems like proving this should not be much harder than proving the lower bound for
black-white pebbling Th

d . However we have not even been able to prove the weaker
lower bound (14) directly. The present proof derives the lower bound from Klawe’s
result (Theorem 4.8).

PROOF. The degree d and height h of the tree are fixed throughout this proof, so we
will write just T instead of Th

d .
The high-level strategy for the proof is as follows. We transform T into a DAGG such

that a lower bound for #BWpebbles(G) gives a lower bound for #FRpebbles(T). To an-
alyze #BWpebbles(G), we use a result by Klawe [Klawe 1985], who shows that for any
DAG H that satisfies a certain “niceness” property (Definition 4.12), #BWpebbles(H)
can be given in terms of#pebbles(H) (and the relationship is tight to within an additive
constant less than one). This helps since the black pebbling cost is typically easier to
analyze. In our case, G does not satisfy the niceness property as-is, but just by remov-
ing some edges from G (which cannot increase the black or black/white pebbling cost),
we get a new DAG G′ that is nice. We then compute #pebbles(G′) exactly, which by
Klawe’s result yields a lower bound on #BWpebbles(G′) ≤ #BWpebbles(G), and hence
on #FRpebbles(T).
We first motivate the construction G and show that the whole black-white pebbling

number of G is related to the fractional pebbling number of T .
We will use Lemma 4.5 to show that the following “discretized” fractional pebbling

cost is almost the same as the fractional pebbling cost #FRpebbles when the parameter
c is large enough:

DEFINITION 4.7 (DISCRETIZED FRACTIONAL PEBBLING). For positive integer c, let
#FRpebblesc(H) be the cost of fractionally pebbling H when only the following moves
are allowed:

—For any node v, decrease b(v) or increase w(v) by 1/c.
— For any node v, including leaf nodes, if all the children of v have value 1, then increase
b(v) or decrease w(v) by 1/c.

By Lemma 4.5, we can assume all pebble values are rational, and if we choose c large
enough it is not a restriction that pebble values can only be changed by 1/c. Sliding
moves are not allowed in the discretized game, but it is easy to see that increases the
cost by at most 1 (compared to fractional pebbling with black sliding moves). Hence we
have:

FACT 2. #FRpebbles(T) ≥ #FRpebblesc(T)− 1 for sufficiently large c

Now let c be an arbitrary positive integer. We show how to construct G = Gc.
4 We

will split up each node of T into c nodes, so that the discretized fractional pebbling
game on T corresponds to the whole black-white pebbling game on G.5 Specifically, the
cost of the whole black-white pebble game on the new graph will be exactly c times the
cost of the discretized game on T .

4We don’t write the subscript since c is fixed throughout the argument.
5For an example, see figure 3.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: YYYY.

Pebbles and Branching Programs for Tree Evaluation A:23

Fig. 3. G for the height 3 binary tree with c = 3

The idea is to use c whole-pebble-taking nodes to “simulate” each fractional-pebble-
taking node of T . For example, if c = 20 and we have a configuration of T where node
u has black value 4/20 and white value 6/20, then in the corresponding configuration
of G, 4 (resp. 6) of the 20 nodes dedicated to simulating u are whole black (resp. white)
pebbled. More precisely, in place of each node v of T , G has c nodes v[1], . . . , v[c]; having
any c′ ≤ c of those nodes pebbled simulates v having value c′/c in the discretized frac-
tional pebbling game. In place of each edge (u, v) of T is a copy of the complete bipartite
graph (U, V), where U contains nodes u[1] . . . u[c] and V contains nodes v[1] . . . v[c]. To
clarify: if u is a parent of v in the tree, then all the edges go from V to U in the corre-
sponding complete bipartite graph. Finally, a new “root” is added at height h + 1 with
edges from each of the c nodes at height h.6

So every node in G at height h − 1 and lower has c parents, and every internal (i.e.
non-leaf) node except for the root has dc children. By construction we get:7:

FACT 3. #FRpebblesc(T) ≥ (#BWpebbles(G)− 1)/c

¿From Facts 2 and 3, our goal follows if we can show

#BWpebbles(G) ≥ c((d− 1)(h− 1) + 1)/2 + 1

For that we will use Theorem 4.8 (from [Klawe 1985]), stated below. The statement
of the theorem depends on Klawe’s definition of nice DAGs (Definition 4.12), which is
stated later when we finally get around to proving that a DAG is nice (Proposition
4.12.1).

THEOREM 4.8 ([KLAWE 1985]). If H is a nice DAG, then

#BWpebbles(H) ≥ ⌊#pebbles(H)/2⌋+ 1

6The reason for this is quite technical: Klawe’s definition of pebbling is slightly different from ours in that it
requires that the root remain pebbled. Adding a new root forces there to be a time when all c of the height
h nodes, which represent the root of T , are pebbled. This affects the relationship between #FRpebblesc(T)
and #BWpebbles(G) very slightly, as indicated by Fact 3.
7For clarification, we note that #BWpebbles(G)/c ≥ #FRpebblesc(T).

ACM Journal Name, Vol. V, No. N, Article A, Publication date: YYYY.

A:24 Stephen Cook et al.

Fig. 4. G′ for the height 3 binary tree with c = 3

G is not nice in Klawe’s sense. We will delete some edges from G to produce a nice
DAG G′ and then we will analyze #pebbles(G′). Note that deleting edges cannot in-
crease the black-white pebbling cost, and so we have:

FACT 4. #BWpebbles(G′) ≤ #BWpebbles(G)

The following definition will help in explaining the construction of G′ as well as for
specifying and proving properties of certain paths.

DEFINITION 4.9. For u ∈ G, let T (u) be the node in T from which u was generated
(i.e. T (u)[i] = u for some i ≤ c). For v, v′ ∈ T , we say v <T v′ if v is visited before v′ in
an inorder traversal of T . For u, u′ ∈ G, we say u <G u′ if T (u) <T T (u′) or if for some
v ∈ T, i < j ≤ c have u = v[i], u′ = v[j].

G′ is obtained from G by removing c − 1 edges from each internal node except the
root, as follows (for an example, see Figure 4). For each internal node v of T , consider
the corresponding nodes v[1], v[2], . . . , v[c] of G. Remove the edges from v[i] to its i − 1
smallest and c − i largest children. So in the end each internal node of G′ except the
root has c(d− 1) + 1 children.
By Theorem 4.8 (with H = G′) and Fact 4, it now remains to lower bound

#pebbles(G′) (Proposition 4.9.1 with c even), and then show that G′ is nice (Proposi-
tion 4.12.1).

PROPOSITION 4.9.1. #pebbles(G′) = c((d− 1)(h− 1) + 1)

It will be convenient to rewrite the expression as (c − 1) + c(d − 1)(h − 1) + 1. The
upper bound is attained using a simple recursive algorithm similar to that used for Th

d
(Theorem 4.1).
For the lower bound, consider the earliest time t when all paths from a leaf to the

root are blocked (a path is blocked if at least one of its nodes is pebbled). Figure 5 is an
example of the type of pebbling configuration that we are about to analyze. The last
pebble placed must have been placed at a leaf, since otherwise t−1 would be an earlier
time when all paths from a leaf to the root are blocked. Let PBN be a newly-blocked

ACM Journal Name, Vol. V, No. N, Article A, Publication date: YYYY.

Pebbles and Branching Programs for Tree Evaluation A:25

Fig. 5. A possible black pebbling bottleneck of G′ for the height 3 binary tree with c = 3

path from a leaf to the root (the BottleNeck path). Consider the set

S = {u ∈ G′ | u is a child of a node in PBN and u 6∈ PBN }

of size (c− 1) + c(d− 1)(h− 1).8

CLAIM 1. There is a set of pairwise node-disjoint paths {Pu}u∈S such that for every
u ∈ S, Pu is a path from a leaf to u and Pu does not intersect PBN.

Assuming Claim 1 holds, we get that at time t − 1, for every u ∈ S there must be
at least one pebble on Pu, since otherwise there would still be an open path from a
leaf to the root at time t. Also counting the leaf node that is pebbled at time t gives
(c − 1) + c(d − 1)(h − 1) + 1 pebbles. Hence, to complete the proof of Proposition 4.9.1,
it just remains to prove Claim 1, and for that task we will benefit from a couple more
simple definitions:

DEFINITION 4.10. For u ∈ G′, the left-most (resp. right-most) path to u is the unique
path from some leaf to u that is determined, starting at u, by moving to the smallest
(resp. largest) child at every level.9

DEFINITION 4.11. For any path P from a leaf to a height l node u, for l′ ≤ l let P (l′)
be the height l′ node on P .

Recall the ordering on the nodes ofG (which we extend toG′) from Definition 4.9. For
each u ∈ S at height l, if u is less than (resp. greater than) PBN(l) then make Pu the left-
most (resp. right-most) path to u. Intuitively, we are choosing Pu so that it moves away
from PBN as quickly as possible. Now we need to show that the paths {Pu}u∈S ∪ {PBN}
are pairwise node-disjoint. The following fact is clear from the definition of G′.

8S has c − 1 nodes at height h and c(d − 1) nodes at heights 1, . . . , h − 1. See Figure 5, where the pebbled
nodes are the nodes in S plus one leaf node not in S.
9Equivalently: if u is at height l then the left-most (resp. right-most) path to u is the length l path u1, . . . , ul

such that ul = u and ui is the smallest (resp. largest) child of ui+1 for all i ∈ {1, . . . , l − 1}.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: YYYY.

A:26 Stephen Cook et al.

FACT 5. For any u, v ∈ G′, if u < v then the smallest child of u is not a child of v,
and the largest child of v is not a child of u.

First we show that Pu and PBN are node-disjoint for every u ∈ S. The following
lemma will help now and in the proof of Proposition 4.12.1.

LEMMA 4.11.1. For u, v ∈ G′ with u < v, if there is no path from u to v or from v
to u, then the left-most path to u does not intersect any path to v from a leaf, and the
right-most path to v does not intersect any path to u from a leaf.

PROOF. Suppose otherwise and let P ′
u be the left-most path to u, and P ′

v a path to
v that intersects P ′

u. Since there is no path between u and v, there is a height l, one
greater than the height where the two paths first intersect, such that P ′

u(l), P
′
v(l) are

defined and P ′
u(l) < P ′

v(l). But then from Fact 5 P ′
u(l − 1) 6= P ′

v(l − 1), a contradiction.
The proof for the second part of the lemma is similar.

That Pu and PBN are disjoint follows from using Lemma 4.11.1 on u and the sibling of
u in PBN.
Next we show that for distinct u, v ∈ S, the paths Pu and Pv do not intersect. Let us

first show that Pu does not contain v, and by symmetry we will have that Pv does not
contain u. Suppose for the sake of contradiction that Pu contains v, and WLOG assume
Pu is the left-most path to u (the other case is symmetric). Since u 6= v, there must
be a height l ≤height(u) such that Pu(l − 1) = v and Pu(l) is a parent of v. From the
definition of S, we know PBN(l) is also a parent of v. Since we assumed Pu is the left-
most path to u, it must be that Pu(l) < PBN(l). But then Fact 5 tells us that v cannot be
a child of PBN(l), a contradiction. So we have shown that Pv does not contain u, and by
symmetry Pu does not contain v. Now suppose that Pu and Pv intersect at some node
other than u or v. Then there is a height l, one greater than the height where they
first intersect, such that Pu(l) 6= Pv(l). Now, observe that Pu and Pv are both left-most
paths or both right-most paths, since otherwise in order for them to intersect they
would need to cross PBN (which we showed does not happen). But then from Fact 5
Pu(l − 1) 6= Pv(l − 1), a contradiction.
That completes the proof of Claim 1 and hence of Proposition 4.9.1. We now just need

to prove Proposition 4.12.1 and then apply Klawe’s Theorem 4.8.

DEFINITION 4.12. A DAG H is nice if the following conditions hold:

(1) If u1 and u2 are sibling nodes10 in H then the cost of black pebbling u1 is equal to
the cost of black pebbling u2

(2) If u1 and u2 are siblings, then there is no path from u1 to u2 or from u2 to u1.
(3) If u, u1, . . . , um are nodes none of which has a path to any of the others, then there

are node-disjoint paths P1, . . . , Pm such that Pi is a path from a leaf to ui and there
is no path between u and any node in Pi.

PROPOSITION 4.12.1. G′ is nice.

PROOF. Property 2 is obviously satisfied.
For property 1, the argument used to give the black pebbling lower bound of (c−1)+

c(d− 1)(h− 1) + 1 can be used to give a lower bound of c(d− 1)(h′ − 1) + 1 for the cost
of black pebbling any node at height h′ ≤ h.11 Moreover that bound is easily shown to
be tight.

10i.e. they have a parent in common
11The only change is in the size of the set of nodes S. For the root, which is at height h + 1, S has size
(c− 1) + c(d− 1)(h− 1), whereas for a height h′ ≤ h node, S has size c(d− 1)(h′ − 1).

ACM Journal Name, Vol. V, No. N, Article A, Publication date: YYYY.

Pebbles and Branching Programs for Tree Evaluation A:27

For property 3, we can choose Pi to be the left-most (resp. right-most) path from ui if
ui is less than (resp. greater than) u. We then use Lemma 4.11.1 on each pair of nodes
in {u, u1, . . . , um}.

4.3. White sliding moves

In the definition of fractional pebbling (Definition 2.6) we allow black sliding moves
but not white sliding moves. To allow white sliding moves we would add a clause

(4) For every internal node i, decrease w(i) to 0 and increase the white pebble value of
each child of i so that each child has total pebble value 1.

We did not include this move in the original definition because a nondeterministic
k-way BP solving FTh

d (k) or BT
h
d (k) does not naturally simulate it. The natural way to

simulate such a move would be to verify the conjectured value of node i (conjectured
when the white pebble was placed on i) by comparing it with fi(vj1 , . . . , vjd), where
j1, . . . , jd are the children of i. But this would require the BP to remember a (d + 1)-
tuple of values, whereas potentially only d pebbles are involved.
White sliding moves definitely reduce the number of pebbles required to pebble some

trees. For example the binary tree T 3
2 can easily be pebbled with 2 pebbles using white

sliding moves, but requires 2.5 pebbles without (Theorem 4.4). The next result shows
that 8/3 pebbles suffice for pebbling T 4

2 with white sliding moves, whereas 3 pebbles
are required without (Theorem 4.4).

THEOREM 4.13. The binary tree of height 4 can be pebbled with 8/3 pebbles using
white sliding moves.

PROOF. The height 3 binary tree can be pebbled with 2 pebbles. Use that sequence
on node 2, but leave one third of a black pebble on node 2. That takes 7/3 pebbles.
Put black pebbles on nodes 12 and 13. Slide one third of a black pebble up to node 6.
Remove the pebbles on nodes 12 and 13. Put black pebbles on nodes 14 and 15 – this
is the first configuration with 8/3 pebbles. Slide the pebble on node 14 up to node 7.
Remove the pebble from 15. Put 2/3 of a white pebble on node 6. Slide the black pebble
on node 7 up to node 3. Remove one third of a black pebble from node 6. Put 2/3 of a
white pebble on node 2 – the resulting configuration has 8/3 pebbles. Slide the black
pebble on node 3 up to the root. Remove all black pebbles. At this point there is 2/3 of
a white pebble on both node 2 and node 6. Put a black pebble on node 12 and one third
of a black pebble on node 13 – another bottleneck. Slide the 2/3 white pebble on node
6 down to node 13. Remove the pebbles from nodes 12 and 13. Finally, use 8/3 pebbles
to remove the 2/3 white pebble from node 2.

5. BRANCHING PROGRAM BOUNDS

In this section we prove tight bounds (up to a constant factor) for the number of states
required for both deterministic and nondeterministic k-way branching programs to
solve the Boolean problems BTh

d (k) for all trees of height h = 2 and h = 3. (The bound
is obviously Θ(kd) for trees of height 2, because there are d + kd input variables.) For
every height h ≥ 2 we prove upper bounds for deterministic thrifty programs which
solve FTh

d (k) (Theorem 5.1, (15)), and show that these bounds are optimal for degree
d = 2 even for the Boolean problem BTh

d (k) (Theorem 5.11). We prove upper bounds
for nondeterministic thrifty programs solving BTh

d (k) in general, and show that these
are optimal for binary trees of height 4 or less (Theorems 5.1 and 5.15).
For the nondeterministic case our best BP upper bounds for every h ≥ 2 come from

fractional pebbling algorithms via Theorem 3.4. For the deterministic case our best
bounds for the function problem FTh

d (k) come from black pebbling via the same theo-

ACM Journal Name, Vol. V, No. N, Article A, Publication date: YYYY.

A:28 Stephen Cook et al.

rem, although we can improve on them for the Boolean problem BTh
2 (k) by a factor of

log k (for h ≥ 3).

THEOREM 5.1 (BP UPPER BOUNDS). For all h, d ≥ 2

#detFstates
h
d(k) = O(k(d−1)h−d+2) (15)

#detBstates
h
d(k) = O(k(d−1)h−d+2/ log k), for h ≥ 3 (16)

#ndetBstates
h
d(k) = O(k(d−1)(h/2)+1) (17)

The first and third bounds are realized by thrifty programs.

PROOF. The first and third bounds follow from Theorem 3.4 (which states that peb-
bling upper bounds give rise to upper bounds for the size of thrifty BPs) and from
Theorems 4.1 and 4.4 (which give the required pebbling upper bounds).

To prove (16) we use a branching program which implements the algorithm below.
Here we have a parameterm, and choosingm = ⌈log kd−1−log log kd−1⌉ suffices to show
#detBstates

h
d(k) = O(k(d−1)(h−1)+1/ log kd−1), from which (16) follows. We estimate the

number of states required up to a constant factor.

1) Compute v2 (the value of node 2 in the heap ordering), using the black pebbling
algorithm for the principal left subtree. This requires k(d−1)(h−2)+1 states. Divide the k
possible values for v2 into ⌈k/m⌉ blocks of size m.

2) Remember the block number for v2, and compute v3, . . . , vd+1. This requires k/m ×
kd−2 × k(d−1)(h−2)+1 = k(d−1)(h−1)+1/m states.

3) Remember v3, . . . , vd+1 and the block number for v2. Compute f1(a, v3, . . . , vd+1) for
each of the m possible values a for v2 in its block number, and keep track of the set of
a’s for which f1 = 1. This requires kd−1 × k/m×m× 2m = kd2m states.

4) Remember just the set of possible a’s (within its block) from above (there are 2m

possibilities). Compute v2 again and accept or reject depending on whether v2 is in the
subset. This requires k(d−1)(h−2)+12m states.

The total number of states has order the maximum of k(d−1)(h−1)+1/m and
k(d−1)(h−2)+12m, which is at most

k(d−1)(h−1)+1/(log kd−1 − log log kd−1)

for m = log kd−1 − log log kd−1.

We combine the above upper bounds with the Nec̆iporuk lower bounds in Subsection
5.1, Figure 6, to obtain the following.

COROLLARY 5.2 (TIGHT BOUNDS FOR HEIGHT 3 TREES). For all d ≥ 2

#detFstates
3
d(k) = Θ(k2d−1)

#detBstates
3
d(k) = Θ(k2d−1/ log k)

#ndetBstates
3
d(k) = Θ(k(3/2)d−1/2)

5.1. The Nec̆iporuk method

By applying the Nec̆iporuk method to a k-way branching program B computing a func-
tion f : [k]m → R, we mean the following well known steps [Nec̆iporuk 1966] (see
[Wegener 2000]):

(1) Upper bound the number N(s, v) of (syntactically) distinct branching programs of
type B having s non-final states, each labelled by one of v variables.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: YYYY.

Pebbles and Branching Programs for Tree Evaluation A:29

Model Lower bound for FTh
d (k) Lower bound for BTh

d (k)

Deterministic k-way
branching program

dh−2−1
4(d−1)2 · k2d−1 dh−2−1

3(d−1)2 · k2d−1

log k

Deterministic binary
branching program

dh−2−1
5(d−1)2 · k2d = Ω(n2/(log n)2) dh−2−1

4d(d−1) · k2d

log k = Ω(n2/(log n)3)

Nondeterministic k-
way BP

dh−2−1
2d−2 · k 3d

2
− 1

2

√
log k dh−2−1

2d−2 · k 3d
2
− 1

2

Nondeterministic bi-
nary BP

dh−2−1
2d−2 · k 3d

2

√
log k = Ω(n3/2/ log n) dh−2−1

2d−2 · k 3d
2 = Ω(n3/2/(log n)3/2)

Fig. 6. Size bounds for k large enough, expressed in terms of n = Θ(kd log k) in the binary cases, obtained
by applying the Nec̆iporuk method. Rectangles indicate optimality in k when h = 3 (Cor. 5.2). Improving

any entry to Ω(kunbounded f(h)) would prove L (P (Cor. 3.3).

(2) Pick a partition {V1, . . . , Vp} of [m].

(3) For 1 ≤ i ≤ p, lower bound the number rVi
(f) of restrictions fVi

: [k]|Vi| → R of f
obtainable by fixing values of the variables in [m] \ Vi.

(4) Then size(B) ≥ |R|+∑

1≤i≤p si, where si = min{ s : N(s, |Vi|) ≥ rVi
(f) }.

The Nec̆iporuk method still yields the strongest explicit binary branching pro-

gram size lower bounds known today, namely Ω(n2

(logn)2) for the deterministic case

[Nec̆iporuk 1966] and Ω(n
3/2

logn) for the nondeterministic case ([Pudlák 1987], see

[Razborov 1991]). It is known that the above lower bounds are the best that can be
obtained using the Nec̆iporuk method. For the deterministic case this is stated with
proof hints in [Wegener 1987, P. 422]. An argument for the nondeterministic case is
made in [Beame and McKenzie].

THEOREM 5.3. Applying the Nec̆iporuk method yields Figure 6.

Remark 5.4. Our Ω(n3/2/(log n)3/2) binary nondeterministic BP lower bound for
the BTh

d (k) problem and in particular for BT 3
2 (k) applies to BP “state-size” defined

here as the number of states in the BP. By comparison, Pudlak’s Ω(n3/2/ log n) lower
bound [Pudlák 1987; Razborov 1991] (for a different Boolean function) applies to the
“edge-size” of the closely related switching and rectifier network model, where “edge-
size” is defined as the number of (labelled) edges in the network. Because switching
and rectifier networks can also use unlabelled edges, any k-way nondeterministic BP
with state-size S can be simulated by a network of edge-size at most kS (regardless of
the BP outdegree). Pudlak’s Ω(n3/2/ log n) bound thus applies as well to the number of
states in a binary nondeterministic BP computing his function, and his bound is the
best that the Nec̆iporuk method can achieve [Beame and McKenzie].

PROOF PROOF OF THEOREM 5.3. We have Nk-way
det (s, v) ≤ vs ·(s+ |R|)sk for the num-

ber of deterministic BPs and Nk-way
nondet(s, v) ≤ vs · (|R|+ 1)sk · (2s)sk for nondeterministic

BPs having s non-final states, each labelled with one of v variables. To see the latter
bound, note that edges labelled i ∈ [k] can connect a state S to zero or one state among
the final states and can connect S independently to any number of states among the
non-final states.

The only decision to make when applying the Nec̆iporuk method is the choice of
the partition of the input variables. Here every entry in Figure 6 is obtained using

ACM Journal Name, Vol. V, No. N, Article A, Publication date: YYYY.

A:30 Stephen Cook et al.

the same partition (with the understanding that a k-ary variable in the partition is
replaced by log k binary variables when we treat 2-way branching programs).

We will only partition the set V of k-ary FTh
d (k) or BT

h
d (k) variables that pertain to

internal tree nodes other than the root (we will neglect the root and leaf variables).
Each internal tree node has d− 1 siblings and each sibling involves kd variables. By a
litter we will mean any set of d k-ary variables that pertain to precisely d such siblings.
We obtain our partition by writing V as a union of

kd · Σh−3
i=0 d

i = kd · d
h−2 − 1

d− 1

litters. (Specifically, each litter can be defined as

{fi(j1, j2, . . . , jd), fi+1(j1, j2, . . . , jd), . . . , fi+d−1(j1, j2, . . . , jd)}
for some 1 ≤ j1, j2, . . . , jd ≤ k and some d siblings i, i+ 1, . . . , i+ d− 1.)

Consider such a litter L. We claim that |R|kd

distinct functions fL : [k]d → R can
be induced by setting the variables outside of L, where |R| = k in the case of FTh

d (k)
and |R| = 2 in the case of BTh

d (k). Indeed, to induce any such function, fix the “de-
scendants of the litter L” to make each variable in L relevant to the output; then, set
the variables pertaining to the immediate ancestor node ν of the siblings forming L to
the appropriate kd values, as if those were the final output desired; finally, set all the
remaining variables in a way such that the values in ν percolate from ν to the root.

It remains to do the calculations. We illustrate two cases. Similar calculations yield
the other entries in Figure 6.
Nondeterministic k-way branching programs computing FTh

d (k). Here |R| = k. In a
correct program, the number s of states querying one of the d litter L variables must
satisfy

kk
d ≤ Nk-way

nondet(s, d) ≤ ds · (k + 1)sk · (2s)sk ≤ ss · k2sk · (2s)sk

since d ≤ s (because FTh
d (k) depends on all its variables), and thus

kd log k ≤ s(log s+ 2k log k) + s2k.

Suppose to the contrary that s < (k
d−1

2

√
log k)/2. Then

s(log s+2k log k)+ s2k < s(
d− 1

2
log k+

log log k

2
+2k log k)+ s2k < s(sk)+ s2k < kd log k

for large k and all d ≥ 2, a contradiction. Hence s ≥ (k
d−1

2

√
log k)/2. Since this holds for

every litter, recalling step 4 in the Nec̆iporukmethod as described prior to Theorem 5.3,
the total number of states in the program is at least

k + kd · d
h−2 − 1

d− 1
· (k d−1

2

√

log k)/2 ≥ dh−2 − 1

2d− 2
· k 3d

2
− 1

2

√

log k.

Nondeterministic binary (i.e. 2-way) branching programs deciding BTh
d (k). Here |R| =

2. When the program is binary, the d variables in the litter L become d log k Boolean
variables. The number s of states querying one of these d log k variables then satisfies

2k
d ≤ N2-way

nondet(s, d log k) ≤ (d log k)s · (2 + 1)2s · (2s)2s < (s log k)s · 24s+2s2

since d ≤ s and thus

kd ≤ s log s+ s log log k + 4s+ 2s2 ≤ 3s2 + 5s log log k.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: YYYY.

Pebbles and Branching Programs for Tree Evaluation A:31

It follows that s ≥ k
d
2 /2. Hence the total number of states in a binary nondeterministic

program deciding BTh
d (k) is at least

kd · d
h−2 − 1

d− 1
· k

d/2

2
≥ dh−2 − 1

2(d− 1)
· k 3d

2 =
dh−2 − 1

2(d− 1)
· (k

d log k)3/2

(log k)3/2
= Ω(n3/2/(log n)3/2)

where n = Θ(kd log k) is the length of the binary encoding of BTh
d (k).

The next two results together with Theorems 5.9 and 5.10 show limitations on the
Nec̆iporuk method that are not necessarily present in the state sequence method. We
include these to support our hope that the latter method and its generalizations have
the potential to break the quadratic limitation in proving lower bounds using the
Nec̆iporuk method.

Let Childrenhd(k) have the same input as FTh
d (k) with the exception that the root

function is deleted. The output is the tuple (v2, v3, . . . , vd+1) of values for the chil-
dren of the root. Childrenhd(k) can be computed by a k-way deterministic BP with

O(k(d−1)h−d+2) states using the same black pebbling method which yields the bound
(15) in Theorem 5.1.

THEOREM 5.5. For any d, h ≥ 2, the best k-way deterministic BP size lower bound
attainable for Childrenhd(k) by applying the Nec̆iporuk method is Ω(k2d−1).

PROOF. The function Childrenhd(k) : [k]m → R has m = Θ(kd). Any partition
{V1, . . . , Vp} of the set of k-ary input variables thus has p = O(kd). Claim: for each
i, the best attainable lower bound on the number of states querying variables from Vi
is O(kd−1).

Consider such a set Vi, |Vi| = v ≥ 1. Here |R| = kd, so the number Nk-way
det (s, v) of

distinct deterministic BPs having s non-final states querying variables from Vi satisfies

Nk-way
det (s, v) ≥ 1s · (s+ |R|)sk ≥ (1 + kd)sk ≥ kdsk.

Hence the estimate used in the Nec̆iporuk method to upper boundNk-way
det (s, v)will be at

least kdsk. On the other hand, the number of functions fVi
: [k]v → R obtained by fixing

variables outside of Vi cannot exceed k
O(kd) since the number of variables outside Vi

is Θ(kd). Hence the best lower bound on the number of states querying variables from
Vi obtained by applying the method will be no larger than the smallest s verifying

kck
d ≤ kdsk for some c depending on d and k. This proves our claim since then this

number is at most s = O(kd−1).

Let SumMod
h
d(k) have the same input as FTh

d (k) with the exception that the root
function is preset to the sum modulo k. In other words the output is v2 + v3 + · · ·+ vd+1

mod k.

THEOREM 5.6. The best k-way deterministic BP size lower bound attainable for

SumMod
3
2(k) by applying the Nec̆iporuk method is Ω(k2).

PROOF. The function SumMod
3
2(k) : [k]m → R has m = Θ(k2). Consider a set Vi in

any partition {V1, . . . , Vp} of the set of k-ary input variables, |Vi| = v. Here |R| = k, so

the numberNk-way
det (s, v) of distinct deterministic BPs having s non-sink states querying

variables from Vi satisfies

Nk-way
det (s, v) ≥ 1s · (s+ |R|)sk ≥ (1 + k)sk ≥ ksk.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: YYYY.

A:32 Stephen Cook et al.

If Vi contains a leaf variable, then perhaps the number of functions induced by setting

variables complementary to Vi can reach the maximum kk
2

. Nec̆iporuk would conclude
that k states querying the variables from such a Vi are necessary. Note that there
are at most 4 sets Vi containing a leaf variable (hence a total of 4k states required to
account for the variables in these 4 sets). Now suppose that Vi does not contain a leaf
variable. Then setting the variables complementary to Vi can either induce a constant
function (there are k of those), or the sum of a constant plus a variable (there are at
most k · |Vi| of those) or the sum of two of the variables (there are at most |Vi|2 of those).
So the maximum number of induced functions is |Vi|2 = O(k4). The number of states
querying variables from Vi is found by Nec̆iporuk to be s ≥ 4/k. In other words s = 1.
So for any of the at least p − 4 sets in the partition not containing a leaf variable, the
method gets one state. Since p − 4 = O(k2), the total number of states accounting for
all the Vi is O(k2).

5.2. The state sequence method

Here we give alternative proofs for some of the lower bounds given in Section 5.1. These
proofs are more intricate than the Nec̆iporuk proofs but they do not suffer a priori from
a quadratic limitation. The method also yields stronger lower bounds for Children42(k)
and SumMod

3
2(k) (Theorems 5.9 and 5.10) than those obtained by applying Nec̆iporuk’s

method (Theorems 5.5 and 5.6).

THEOREM 5.7. #ndetBstates
3
2(k) ≥ k2.5 for sufficiently large k.

PROOF. Consider an input I to BT 3
2 (k). We number the nodes in T 3

2 as in Figure 1,
and let vIj denote the value of node j under input I. We say that a state in a computation

on input I learns vIj if that state queries f Ij (v
I
2j , v

I
2j+1) (recall 2j, 2j +1 are the children

of node j).
Definition [Learning Interval] Let B be a k-way nondeterministic BP that solves
BT 3

2 (k). Let C = γ0, γ1, · · · , γT be a computation of B on input I. We say that a state γi
in the computation is critical if one or more of the following holds:

(1) i = 0 or i = T
(2) γi learns v

I
2 and there is an earlier state which learns vI3 with no intervening state

that learns vI2 .
(3) γi learns v

I
3 and no earlier state learns vI3 unless an intervening state learns vI2 .

We say that a subsequence γi, γi+1, · · · γj is a learning interval if γi and γj are consec-

utive critical states. The interval is type 3 if γi learns v
I
3 , and otherwise the interval is

type 2.
The reason for the assymetry in the above definition is that the initial state γ0 of B

may learn neither vI2 nor vI3 , in which case the initial learning interval is type 2. Since
the tree T 3

2 has a symmetry which interchanges nodes 2 and 3, we may assume w.l.o.g.
that γ0 does not query the function f3 and hence it does not learn vI3 no matter what
the input I. Thus a type 2 learning interval begins with γ0 and/or a state which learns
vI2 , and never learns vI3 until the last state. A type 3 learning interval begins with a
state which learns vI3 and never learns vI2 until the last state.

Now let B be as above, and for j ∈ {2, 3} let Γj be the set of all states of B which
make a query of the form fj(x, y) for some x, y ∈ [k]. We will prove the theorem by
showing that for large k

|Γ2|+ |Γ3| > k2
√
k. (18)

For r, s ∈ [k] let F r,s
yes be the set of inputs I to B whose four leaves are labelled

r, s, r, s respectively, whose middle node functions f I2 and f I3 are identically 1 except

ACM Journal Name, Vol. V, No. N, Article A, Publication date: YYYY.

Pebbles and Branching Programs for Tree Evaluation A:33

f I2 (r, s) = vI2 and f I3 (r, s) = vI3 , and f
I
1 (v

I
2 , v

I
3) = 1 (so vI1 = 1). Thus each such I is a ‘YES

input’, and should be accepted by B.
Note that for fixed r, s, each member I of F r,s

yes is uniquely specified by a triple

(vI2 , v
I
3 , f

I
1) where f I1 (v

I
2 , v

I
3) = 1 (19)

and we assume f I1 : [k]× [k] → {0, 1}, so F r,s
yes has exactly k

2(2k
2−1) members.

For j ∈ {2, 3} and r, s ∈ [k] let Γr,s
j be the subset of Γj consisting of those states which

query fj(r, s). Then Γj is the disjoint union of Γr,s
j over all pairs (r, s) in [k]× [k]. Hence

to prove (18) it suffices to show

|Γr,s
2 |+ |Γr,s

3 | >
√
k (20)

for large k and all r, s in [k]. We will show this by showing

(|Γr,s
2 |+ 1)(|Γr,s

3 |+ 1) ≥ k/2 (21)

for all k ≥ 2. (Note that given the product, the sum is minimized when the summands
are equal.)

For each input I in F r,s
yes we associate a fixed accepting computation C(I) of B on

input I.
Now fix r, s ∈ [k]. For a, b ∈ [k] and f : [k]× [k] → {0, 1} with f(a, b) = 1 we use (a, b, f)

to denote the input I in F r,s
yes it represents as in (19).

To prove (21), the idea is that if it is false, then as I varies through all inputs (a, b, f)
in F r,s

yes there are too few states learning vI2 = a and vI3 = b to verify that f(a, b) = 1.
Specifically, we can find a, b, f, g such that f(a, b) = 1 and g(a, b) = 0, and by cutting and
pasting the accepting computation C(a, b, f) with accepting computations of the form
C(a, b′, g) and C(a′, b, g) we can construct an accepting computation of the ‘NO input’
(a, b, g).

We may assume that the branching program B has a unique initial state γ0 and a
unique accepting state δACC .

For j ∈ {2, 3}, a, b ∈ [k] and f : [k]× [k] → {0, 1} with f(a, b) = 1 define ϕj(a, b, f) to be
the set of all state pairs (γ, δ) such that there is a type j learning interval in C(a, b, f)
which begins with γ and ends with δ. Note that if j = 2 then γ ∈ (Γr,s

2 ∪ {γ0}) and
δ ∈ (Γr,s

3 ∪ {δACC}), and if j = 3 then γ ∈ Γr,s
3 and δ ∈ (Γr,s

2 ∪ {δACC}).
To complete the definition, define ϕj(a, b, f) = ∅ if f(a, b) = 0.
For j ∈ {2, 3} and f : [k] × [k] → {0, 1} we define a function ϕj [f] from [k] to sets of

state pairs as follows:

ϕ2[f](a) =
⋃

b∈[k]

ϕ2(a, b, f) ⊆ S2

ϕ3[f](b) =
⋃

a∈[k]

ϕ3(a, b, f) ⊆ S3

where S2 = (Γr,s
2 ∪ {γ0})× (Γr,s

3 ∪ {δACC}) and S3 = Γr,s
3 × (Γr,s

2 ∪ {δACC}).
For each f the function ϕj [f] can be specified by listing a k-tuple of subsets of Sj ,

and hence there are at most 2k|Sj | distinct such functions as f ranges over the 2k
2

Boolean functions on [k]× [k], and hence there are at most 2k(|S2|+|S3|) pairs of functions
(ϕ2[f], ϕ3[f]). If we assume that (21) is false, we have |S2| + |S3| < k. Hence by the
pigeonhole principle there must exist distinct Boolean functions f, g such that ϕ2[f] =
ϕ2[g] and ϕ3[f] = ϕ3[g].

Since f and g are distinct we may assume that there exist a, b such that f(a, b) = 1
and g(a, b) = 0. Since ϕ2[f](a) = ϕ2[g](a), if (γ, δ) are the endpoints of a type 2 learning

ACM Journal Name, Vol. V, No. N, Article A, Publication date: YYYY.

A:34 Stephen Cook et al.

interval in C(a, b, f) there exists b′ such that (γ, δ) are the endpoints of a type 2 learning
interval in C(a, b′, g) (and hence g(a, b′) = 1). Similarly, if (γ, δ) are endpoints of a type 3
learning interval in C(a, b, f) there exists a′ such that (γ, δ) are the endpoints of a type
3 learning interval in C(a′, b, g).
Now we can construct an accepting computation for the ‘NO input’ (a, b, g) from

C(a, b, f) by replacing each learning interval beginning with some γ and ending with
some δ by the corresponding learning interval in C(a, b′, g) or C(a′, b, g). (The new ac-
cepting computation has the same sequence of critical states as C(a, b, f).) This works
because a type 2 learning interval never queries v3 and a type 3 learning interval never
queries v2.
This completes the proof of (21) and the theorem.

THEOREM 5.8. Every deterministic branching program that solves BT 3
2 (k) has at

least k3/ log k states for sufficiently large k.

PROOF. We modify the proof of Theorem 5.7. Let B be a deterministic BP which
solves BT 3

2 (k), and for j ∈ {2, 3} let Γj be the set of states in B which query fj (as
before). It suffices to show that for sufficiently large k

|Γ2|+ |Γ3| ≥ k3/ log k. (22)

For r, s ∈ [k] we define the set F r,s to be the same as F r,s
yes except that we remove the

restriction on f I1 . Hence there are exactly k22k
2

inputs in F r,s.
As before, for j ∈ {2, 3}, Γj is the disjoint union of Γr,s for r, s ∈ [k]. Thus to prove

(22) it suffices to show that for sufficiently large k and all r, s in [k]

|Γr,s
2 |+ |Γr,s

3 | ≥ k/ log k. (23)

We may assume there are unique start, accepting, and rejecting states γ0, δACC , δREJ .
Fix r, s ∈ [k].
For each root function f : [k]× [k] → {0, 1} we define the functions

ψ2[f] : [k]× (Γr,s
2 ∪ {γ0}) → (Γr,s

3 ∪ {δACC , δREJ})
ψ3[f] : [k]× Γr,s

3 → (Γr,s
2 ∪ {δACC , δREJ})

by ψ2[f](a, γ) = δ if δ is the next critical state after γ in a computation with input
(a, b, f) (this is independent of b), or δ = δREJ if there is no such critical state. Similarly
ψ3[f](b, δ) = γ if γ is the next critical state after δ in a computation with input (a, b, f)
(this is independent of a), or δ = δREJ if there is no such critical state.

CLAIM: The pair of functions (ψ2[f], ψ3[f]) is distinct for distinct f .

For suppose otherwise. Then there are f, g such that ψ2[f] = ψ2[g] and ψ3[f] = ψ3[g]
but f(a, b) 6= g(a, b) for some a, b. But then the sequences of critical states in the two
computations C(a, b, f) and C(a, b, g) must be the same, and hence the computations
either accept both (a, b, f) and (a, b, g) or reject both. So the computations cannot both
be correct.
Finally we prove (23) from the CLAIM. Let s2 = |Γr,s

2 | and let s3 = |Γr,s
3 |, and let

s = s2 + s3. Then the number of distinct pairs (ψ2, ψ3) is at most

(s3 + 2)k(s2+1)(s2 + 2)ks3 ≤ (s+ 2)k(s+1)

and since there are 2k
2

functions f we have

2k
2 ≤ (s+ 2)k(s+1)

so taking logs, k2 ≤ k(s+ 1) log(s+ 2) so k/ log(s+ 2) ≤ s+ 1, and (23) follows.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: YYYY.

Pebbles and Branching Programs for Tree Evaluation A:35

Recall from Theorem 5.5 that applying the Nec̆iporuk method to Children42(k) yields
a non-optimal Ω(k3) size lower bound and from Theorem 5.6 that applying it to
SumMod

3
2(k) yields a non-optimal Ω(k2) lower bound. The next two results improve

on these bounds using the state sequence method. The new lower bounds match the
upper bounds given by the pebbling method used to prove (15) in Theorem 5.1.

THEOREM 5.9. Any deterministic k-way BP for Children42(k) has at least k4/2
states.

PROOF. Let E4true be the set of all inputs I to Children42(k) such that f I2 = f I3 = +k

(addition mod k), and for i ∈ {4, 5, 6, 7} f Ii is identically 0 except for f Ii (v
I
2i, v

I
2i+1).

Let B be a branching program as in the theorem. For each I ∈ E4true let C(I) be the
computation of B on input I.

For r, s ∈ [k] let Er,s
4true be the set of inputs I in E4true such that for i ∈ {4, 5, 6, 7},

vI2i = r and vI2i+1 = s. Then for each pair r, s each input I in Er,s
4true is completely

specified by the quadruple vI4 , v
I
5 , v

I
6 , v

I
7 , so |Er,s

4true| = k4.
For r, s ∈ [k] and i ∈ {4, 5, 6, 7} let Γr,s

i be the set of states of B that query fi(r, s), and
let

Γr,s = Γr,s
4 ∪ Γr,s

5 ∪ Γr,s
6 ∪ Γr,s

7 (24)

The theorem follows from the following Claim.

CLAIM 1: |Γr,s| ≥ k2/2 for all r, s ∈ [k].

To prove CLAIM 1, suppose to the contrary for some r, s

|Γr,s| < k2/2 (25)

We associate a pair

T (I) = (γI , vIi)

with I as follows: γI is the last state in the computation C(I) that is in Γr,s (such a
state clearly exists), and i ∈ {4, 5, 6, 7} is the node queried by γI . (Here vIi is the value
of node i).

We also associate a second triple U(I) with each input I in Er,s
4true as follows:

U(I) =

{

(vI4 , v
I
5 , v

I
3) if γI queries node 4 or 5

(vI6 , v
I
7 , v

I
2) otherwise.

CLAIM 2: As I ranges over Er,s
4true, U(I) ranges over at least k3/2 triples in [k]3.

To prove CLAIM 2, consider the subset E′ of inputs in Er,s
4true whose values for nodes

4,5,6,7 have the form a, b, a, c for arbitrary a, b, c ∈ [k]. For each such I in E′ an adver-
sary trying to minimize the number of triples U(I) must choose one of the two triples
(a, b, a+kc) or (a, c, a+kb). There are a total of k3 distinct triples of each of the two forms,
and the adversary must choose at least half the triples from one of the two forms, so
there must be at least k3/2 distinct triples of the form U(I). This proves CLAIM 2.

On the other hand by (25) there are fewer than k3/2 possible values for T (I). Hence
there exist inputs I, J ∈ Er,s

4true such that U(I) 6= U(J) but T (I) = T (J). Since U(I) 6=
U(J) but vIi = vJi (where i is the node queried by γI = γJ) it follows that either vI2 6= vJ2
or vI3 6= vJ3 , so I and J give different values to the function Children42(k). But since
T (I) = T (J) if follows that the two computations C(I) and C(J) are in the same state
γI = γJ the last time any of the nodes {4, 5, 6, 7} is queried, and the answers vIi = vJi
to the queries are the same, so both computations give identical outputs. Hence one of
them is wrong.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: YYYY.

A:36 Stephen Cook et al.

THEOREM 5.10. Any deterministic k-way BP for SumMod
3
2(k) requires at least k3

states.

PROOF. We adapt the previous proof. Now Er,s is the set of inputs I to SumMod
3
2(k)

such that for i ∈ {2, 3}, f Ii is identically one except possibly for f Ii (r, s), and v
I
4 = vI6 = r

and vI5 = vI7 = s. Note that an input to Er,s can be specified by the pair (vI2 , v
I
3), so E

r,s

has exactly k2 elements. Define

Γr,s = Γr,s
2 ∪ Γr,s

3

Now we claim that an input I in Er,s can be specified by the pair (γI , vIi), where γI is
the last state in the computation C(I) that is in Γr,s, and i ∈ {2, 3} is the node queried
by γI .
The claim holds because (γI , vIi) determines the output of the computation, which in

turn (together with vIi) determines vIj , where j is the sibling of i.
¿From the claim it follows that |Γr,s| ≥ k for all r, s ∈ [k], and hence there must be at

least k3 states in total.

5.3. Thrifty lower bounds

Recall (Definition 2.4) that a thrifty branching program can only query fi(~x) if ~x is the
correct vector of values for the children of node i.
Theorem 5.11 below shows that the upper bound given in Theorem 5.1 (15) is optimal

for deterministic thrifty programs solving the function problem FTh
d (k) for d = 2 and

all h ≥ 2. Theorem 5.15 shows that the upper bound of k3 given in Theorem 5.1 (17)
is optimal for nondeterministic thrifty programs solving the Boolean problem BTh

d (k)
for d = 2 and h = 4 (it is optimal for h ≤ 3 by Theorem 5.2). We have not been able to
extend this last result to h > 4.

THEOREM 5.11. For any h, k, every deterministic thrifty branching program solving
BTh

2 (k) has at least k
h states.

Fix a deterministic thrifty BP B that solves BTh
2 (k). Let E be the inputs to B. Let

Vars be the set of k-valued input variables (so |E| = k|Vars|). Let Q be the states of B. If
i is an internal node then the i variables are fi(a, b) for a, b ∈ [k], and if i is a leaf node
then there is just one i variable li. We sometimes say “fi variable” just as an in-line
reminder that i is an internal node. For q ∈ Q let var(q) be the input variable that q
queries. Let node be the function that maps each variable X to the node i such that
X is an i variable, and each state q to node(var(q)). When it is clear from the context
that q is on the computation path of an input I, we just say “q queries i” instead of “q
queries the thrifty i variable of I”.

Fix an input I, and let P be its computation path. If q is a state on P we say that
I visits q. Let n be the number of nodes in the tree. We will choose n states on P as
critical states for I, one for each node. Note that I must visit a state that queries the
root (i.e. queries the thrifty root variable of I), since otherwise the branching program
would make a mistake on an input J that is identical to I except12 fJ1 (v

I
2 , v

I
3) := 1 −

f I1 (v
I
2 , v

I
3); hence J ∈ BTh

2 (k) iff I 6∈ BTh
2 (k). So, we can choose the root critical state for

I to be the last state on P that queries the root. The remainder of the definition relies
on the following small lemma:

LEMMA 5.12. For any input J and internal node i, if J visits a state q that queries
i, then for each child j of i, there is an earlier state on the computation path of J that
queries j.

12We assume the root function f1 : [k]× [k] → {0, 1}

ACM Journal Name, Vol. V, No. N, Article A, Publication date: YYYY.

Pebbles and Branching Programs for Tree Evaluation A:37

PROOF. Suppose otherwise, and wlog assume the previous statement is false for
j = 2i. For every a 6= vJ2i there is an input Ja that is identical to J except vJa

2i = a. But
the computation paths of Ja and J are identical up to q, so Ja queries a variable fi(a, b)

such that b = vJa
2i+1 and a 6= vJa

2i , which contradicts the thrifty assumption.

Now we can complete the definition of the critical states of I. For i an internal node,
if q is the node i critical state for I then the node 2i (resp. 2i + 1) critical state for I is
the last state on P before q that queries 2i (resp. 2i+ 1).

We say that a collection of nodes is a minimal cut of the tree if every path from root
to leaf contains exactly one of the nodes. Now we assign a black pebbling sequence to
each state on P , such that the set of pebbled nodes in each configuration is a minimal
cut of the tree or a subset of some minimal cut (and once it becomes a minimal cut, it
remains so), and any two adjacent configurations are either identical, or else the later
one follows from the earlier one by a valid pebbling move. (Here we allow the removal
of the pebbles on the children of a node i as part of the move that places a pebble on i.)
This assignment can be described inductively by starting with the last state on P and
working backwards. Note that implicitly we will be using the following fact:

FACT 6. For any input I, if j is a descendant of i then the node j critical state for I
occurs earlier on the computation path of I than the node i critical state for I.

The pebbling configuration for the output state has just a black pebble on the root.
Assume we have defined the pebbling configurations for q and every state following q
on P , and let q′ be the state before q on P . If q′ is not critical, then we make its pebbling
configuration be the same as that of q. If q′ is critical then it must query a node i that
is pebbled in q. The pebbling configuration for q′ is obtained from the configuration for
q by removing the pebble from i and adding pebbles to 2i and 2i+ 1 (if i is an internal
node - otherwise you only remove the pebble from i).
Now consider the last critical state in the computation path P I that queries a height

2 node (i.e. a parent of leaves). We use rI to denote this state and call it the supercrit-
ical state of I. The pebbling configuration associated with rI is called the bottleneck
configuration, and its pebbled nodes are called bottleneck nodes. The two children of
node(rI) must be bottleneck nodes, and the bottleneck nodes form a minimal cut of the
tree. The path from the root to node(rI) is the bottleneck path, and by Fact 6 it can-
not contain any bottleneck nodes. Since the bottleneck nodes form a minimal cut, each
of the h− 1 nodes on the bottleneck path has one or more distinct bottleneck nodes as
descendants, and node(rI) has two such descendants, namely its two children. Hence
there must be at least h bottleneck nodes.

Here is the main property of the pebbling sequences that we need:

FACT 7. For any input I, if non-root node i with parent j is pebbled at a state q on
P I , then the node j critical state q′ of I occurs later on P I , and there is no state (critical
or otherwise) between q and q′ on P I that queries i.

Let R be the states that are supercritical for at least one input. Let Er be the inputs
with supercritical state r. Now we can state the main lemma.

LEMMA 5.13. For every r ∈ R, there is an surjective function from [k]|Vars|−h to Er.

The lemma gives us that |Er| ≤ k|Vars|−h for every r ∈ R. Since {Er}r∈R is a partition of
E, there must be at least |E|/k|Vars|−h = kh sets in the partition, i.e. there must be at
least kh supercritical states. So the theorem follows from the lemma.

PROOF. Fix r ∈ R and let D := Er. Let isc := node(r). Since r is thrifty for every I in
D, there are values vD2isc and v

D
2isc+1 such that vI2isc = vD2isc and v

I
2isc+1 = vD2isc+1 for every I

ACM Journal Name, Vol. V, No. N, Article A, Publication date: YYYY.

A:38 Stephen Cook et al.

in D. The surjective function of the lemma is computed by a procedure INTERADV that
takes as input a [k]-string (the advice), tries to interpret it as the code of an input in D,
and when successful outputs that input. We want to show that for every I ∈ D we can
choose adv

I ∈ [k]|Vars|−h such that INTERADV(advI)↓ = I (i.e. the procedure terminates
and returns I).
The idea is that the procedure INTERADV traces the computation path P starting

from state r, using the advice string adv
I when necessary to answer queries made by

each state q along the path. By the thrifty property, the procedure can ‘learn’ the values
a, b of the children of i = node(q) (if i is an internal node) from the query fi(a, b) of q.
Each such child that has not been queried earlier in the trace saves one advice value
for the future. By Fact 7 the parent of each of the h bottleneck nodes will be queried
before the node itself, making a total savings of at least h values in the advice string.
After the trace is completed, the remaining advice values complete the specification of
the input I ∈ Er.
In more detail, for each input I in D we consider the execution of the procedure

using the advice string adv
I tailored for I. We maintain a current state q, a partial

function v∗ from nodes to [k], and a set of nodes UL (the L stands for “learned”). Once
we have added a node to UL, we never remove it, and once we have added v∗(i) := a to
the definition of v∗, we never change v∗(i). We have reached q by following the same
computation path that input I follows starting from r. So initially q = r. In general, if
v∗(i) = a↓ (i.e. v∗(i) is defined and has value a) for some a then we have determined

this either from reading some element of advI or by querying the parent of i and using
the thrifty property. Initially v∗ is undefined everywhere. As the procedure goes on, we
may often have to use an element of the advice in order to set a value of v∗; however,
by exploiting the properties of the critical state sequences, when given the complete
advice adv

I for I there will be at least h nodes U I
L that we “learn” without directly

using the advice. Such an opportunity arises when we visit a state that queries some
variable fi(b1, b2) and we have not yet committed to a value for at least one of v∗(2i) or
v∗(2i + 1) (if both then, we learn two nodes). When this happens, we add that child or
children of i to UL. So initially UL is empty. There is a loop in the procedure INTERADV

that iterates until |UL| = h. Note that the children of isc will be learned immediately.
Let v∗(D) be the inputs in D consistent with v∗, i.e. I ∈ v∗(D) iff I ∈ D and vIi = v∗(i)
for every i ∈ Dom(v∗).
Following is the complete pseudocode for INTERADV. We also state the most-

important of the invariants that are maintained.

Procedure INTERADV(~a ∈ [k]∗):

1: q := r, UL := ∅, v∗ := undefined everywhere.
2: Loop Invariant: If N elements of ~a have been used, then |Dom(v∗)| = N + |UL|.
3: while |UL| < h do
4: i := node(q)
5: if i is an internal node and 2i 6∈ Dom(v∗) or 2i+ 1 6∈ Dom(v∗) then
6: let b1, b2 be such that var(q) = fi(b1, b2).
7: if 2i 6∈ Dom(v∗) then
8: v∗(2i) := b1 and UL := UL + 2i.
9: end if
10: if 2i+ 1 6∈ Dom(v∗) and |UL| < h then
11: v∗(2i+ 1) := b2 and UL := UL + (2i+ 1).
12: end if
13: end if
14: if i 6∈ Dom(v∗) then

ACM Journal Name, Vol. V, No. N, Article A, Publication date: YYYY.

Pebbles and Branching Programs for Tree Evaluation A:39

15: let a be the next unused element of ~a.
16: v∗(i) := a.
17: end if
18: q := the state reached by taking the edge out of q labeled v∗(i).
19: end while
20: let ~b be the next |Vars| − |Dom(v∗)| unused elements of ~a.
21: let I1, . . . , I|v∗(D)| be the inputs in v∗(D) sorted according to some globally fixed

order on E.
22: if ~b is the t-largest string in the lexicographical ordering of [k]|Vars|−|Dom(v∗)|, and

t ≤ |v∗(D)|, then return It.
13

Note that the algorithm may hang at line 18 if q is a terminal state. This can only
happen if the advice string ~a does not correspond to any input in D.
If the loop finishes, then there are at most |E|/|kDom(v∗)| = k|Vars|−|Dom(v∗)| inputs in

v∗(D). So for each of the inputs I enumerated on line 21, there is a way of setting ~a so
that I will be chosen on line 22.

Recall we are trying to show that for every I in D there is a string adv
I ∈ [k]|Vars|−h

such that INTERADV(~a)↓ = I. This is easy to see under the assumption that there is
such a string that makes the loop finish while maintaining the loop invariant; since
the loop invariant ensures we have used |Dom(v∗)| − h elements of advice when we
reach line 20, and since line 20 is the last time when the advice is used, in all we use
at most |Vars| − h elements of advice. To remove that assumption, first observe that

for each I, we can set the advice to some adv
I so that I ∈ v∗(D) is maintained when

INTERADV is run on ~aI . Moreover, for that advI , we will never use an element of advice
to set the value of a bottleneck node of I, and I has at least h bottleneck nodes. Note,
however, that this does not necessarily imply that U I

L (the h nodes UL we obtain when

running INTERADV on adv
I) is a subset of the bottleneck nodes of I. Finally, note that

we are of course implicitly using the fact that no advice elements are “wasted”; each is
used to set a different node value.

COROLLARY 5.14. For any h, k, every deterministic thrifty branching program solv-
ing BTh

2 (k) has at least
∑

2≤l≤h k
l states.

PROOF. The previous theorem only counts states that query height 2 nodes. The
same proof is easily adapted to show there are at least kh−l+2 states that query height
l nodes, for l = 2, . . . , h.

THEOREM 5.15. Every nondeterministic thrifty branching program solving BT 4
2 (k)

has Ω(k3) states.

PROOF. As in the proof of the Theorem 5.7 we restrict attention to inputs I in which
the function fi associated with each internal node i satisfies fi(x, y) = 1 except possibly
when x, y are the values of its children. For r, s ∈ [k] let Er,s be the set of all such inputs
I such that for all j ∈ {4, 5, 6, 7}, vI2j = r and vI2j+1 = s (i.e. each pair of sibling leaves
have values r, s), and f1 is identically 1 (so I is a YES instance). Thus I is determined
by the values of its 6 middle nodes {2, 3, 4, 5, 6, 7}, so

|Er,s| = k6

Let B be a nondeterministic thrifty branching program that solves BT 4
2 (k), and let Γ

be the set of states of B which query one of the nodes 4, 5, 6, 7. We will show |Γ| = Ω(k3).

13See after this code for argument that |v∗(D)| ≤ k|Vars|−|Dom(v∗)|.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: YYYY.

A:40 Stephen Cook et al.

For r, s ∈ [k] let Γr,s be the set of states of Γ that query fj(r, s) for some j ∈ {4, 5, 6, 7}.
We will show

|Γr,s|+ 1 ≥ k/
√
3 (26)

Since Γ is the disjoint union of Γr,s for all r, s ∈ [k], it will follow that |Γ| = Ω(k3) as
required.
For each I ∈ Er,s let C(I) be an accepting computation of B on input I. Let tI1 be

the first time during C(I) that the root f1 is queried. Let γI be be the last state in Γr,s

before tI1 in C(I) (or the initial state γ0 if there is no such state) and let δI be the first
state in Γr,s after tI1 (or the ACCEPT state δacc if there is no such state).
We associate with each I ∈ Er,s a tuple

U(I) = (u, γI , δI , x1, x2, x3, x4)

where u ∈ {1, 2, 3} is a tag, and x1, x2, x3, x4 are in [k] and are chosen so that U(I)
uniquely determines I (by determining the values of all 6 middle nodes). Specifically,
x1 = vIi , where i is the node queried by γI (or i = 4 if γI = γ0).
Let S(I) denote the segment of the computation C(I) between γI and δI (not counting

the action of the last state δI). This segment always queries the root f1(v2, v3), but does
not query any of the nodes 4, 5, 6, 7 except γI may query node i.

Below we partition Er,s into three sets Er,s
1 , Er,s

2 , Er,s
3 according to which of the nodes

v2, v3 that S(I) queries. (The tag u tells us that I lies in set Er,s
u .)

Let node j ∈ {2, 3} be the parent of node i (where i is defined above) and let j′ ∈ {2, 3}
be the sibling of j.

—Er,s
1 consists of those inputs I for which S(I) queries neither v2 nor v3.

—Er,s
2 consists of those inputs I for which S(I) queries vj′ .

—Er,s
3 consists of those inputs I for which S(I) queries vj but not vj′ .

To complete the definition of U(I) we need only specify the meaning of x2, x3, x4. The
idea is that the segment S(I) will determine (using the definition of thrifty) the values
of (at least) two of the six middle nodes, and x1, x2, x3, x4 will specify the remaining four
values. We require that x1, x2, x3, x4 must specify the value of any node (except the root)
that is queried during the segment, but the state that queries the node determines the
values of its children.
In case the tag u = 1, the computation queries f1(v2, v3), and hence determines v2, v3,

so x1, x2, x3, x4 specify the four values v4, v5, v6, v7.
In case u = 2, the computation queries fj′ at the values of its children, so x1, x2, x3, x4

do not specify the values of these children, but instead specify v2, v3.
In case u = 3, x1, x2, x3, x4 do not specify the value of the sibling of node i and do not

specify vj′ , but do specify vj and the values of the other level 2 nodes.

Claim: If I, J ∈ Er,s and U(I) = U(J), then I = J .
Inequality (26) (and hence the theorem) follows from the Claim, because if |Γr,s|+1 <

k/
√
3 then there would be fewer than k6 choices for U(I) as I ranges over the k6 inputs

in Er,s.
To prove the Claim, suppose U(I) = U(J) but I 6= J . Then we can define an accept-

ing computation of input I which violates the definition of thrifty. Namely follow the
computation C(I) up to γI . Now follow the segment of C(J) between γI and δI , and com-
plete the computation by following C(I). Notice that the segment of C(J) never queries
any of the nodes 4, 5, 6, 7 except for vi, and U(I) = U(J) (together with the definition
of Er,s) specifies the values of the other nodes that it queries. However, since I 6= J ,
this segment of C(J) with input I will violate the definition of thrifty while querying at
least one of the three nodes v1, v2, v3.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: YYYY.

Pebbles and Branching Programs for Tree Evaluation A:41

6. CONCLUSION

The Thrifty Hypothesis (page 4) states that thrifty branching programs are optimal
among k-way BPs solving FTh

d (k) (the Tree Evaluation Problem for balanced degree d
trees of height h). This implies that the black pebbling method is optimal for the deter-
ministic case. Proving this would separate L from P (Corollary 3.3). Even disproving
the hypothesis would be interesting, since it would show that one can improve upon
this obvious application of pebbling.

Open Problem 1 Prove or disprove the Thrifty Hypothesis.

Corollary 5.2 gives tight lower bounds for FTh
d (k) for trees of height 3, thus prov-

ing the Thrifty Hypothesis for this case. The next important step is to extend these
bounds to height 4 trees. The upper bound given in Theorem 5.1 (15) for the height
4 function problem FT 4

d (k) for deterministic BPs is O(k3d−2). If we could match this
with a similar lower bound when d = 4 (e.g. by using a variation of the state sequence
method in Section 5.2) this would yield Ω(k10) states for the function problem and
hence (by Lemma 2.3) Ω(k9) states for the Boolean problem BT 4

4 (k). Since the input
length n = O(k4 log k), this would break the Nec̆iporuk Ω(n2) barrier for branching
programs (see Section 5.1).

Open Problem 2 Establish the complexity of deterministic branching programs solv-
ing the Tree Evaluation Problem for height 4 trees.

For nondeterministic BPs, the upper bound given by Theorem 5.1 for the Boolean
problem for height 4 trees is O(k2d−1). This comes from the upper bound on fractional
pebbling given in Theorem 4.4, which we suspect is optimal. For h = 4 and degree d = 3,
the corresponding lower bound for nondeterministic BPs for BT 4

3 (k) would be Ω(k5).
Since the input length n = O(k3 log k), a proof would break the Nec̆iporuk Ω(n3/2)
barrier for nondeterministic BPs.

Open Problem 3 Establish the complexity of nondeterministic branching programs
solving the Tree Evaluation Problem for height 4 trees.

The next two problems seem to be more accessible than the first three.

Open Problem 4 Improve Theorem 4.4 to get exact bounds on the number of pebbles
required to fractionally pebble Th

d , preferably with a direct proof.

The above problem is important since we conjecture that fractional pebbling algo-
rithms yield optimal nondeterministic thrifty algorithms for tree evaluation (and in-
deed optimal with ‘thrifty’ omitted).

Open Problem 5 Generalize Theorem 5.15 to get good lower bounds for nondetermin-
istic thrifty BPs solving BTh

2 (k) for h > 4.

The proof of Theorem 5.11, which states that deterministic thrifty BPs require at
least kh states to solve BTh

2 (k), is taken from [Wehr 2010]. That paper also proves the
same lower bound for the more general class of ‘less-thrifty’ BPs, which are allowed to
query fi(a, b) provided that either (a, b) correctly specify the values of both children of
i, or neither a nor b is correct.

[Wehr 2010] also calculates (k + 1)h as the exact number of states required to solve
FTh

2 (k) using the black pebbling method, and proves that this number cannot be
beaten by any k-way deterministic BP when h = 2. In fact, we have not been able
to beat this BP upper bound by even one state, for any h and any k using any method.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: YYYY.

A:42 Stephen Cook et al.

Open Problem 6 Prove or disprove the hypothesis that for all h ≥ 2 and for all suffi-
ciently large k, every deterministic BP solving FTh

2 (k) requires at least (k+1)h states.14

In [Wehr 2011], Wehr generalizes the Tree Evaluation Problem to the DAG Evalu-
ation problem DEk

G for each rooted DAG G and k ≥ 2, and proves that every thrifty
deterministic BP solving DEk

G has at least kp states, where p is the black pebble cost
of G (i.e. the minimum number of pebbles required to black-pebble the root of G). This
generalizes our Theorem 5.11, which applies to the case that G is a balanced binary
tree. (Wehr uses his result to prove an exponential lower bound on the size of se-
mantic incremental branching programs solving GEN, answering an open question in
[Gál et al. 2008].)
This suggests generalizing the thrifty hypothesis to rooted DAGs. This would imply

that for each rooted DAG G with black pebble cost p, every deterministic k-way BP
solving DEk

G has Ω(kp) states, where the constant implied by Ω depends on G. The
obvious deterministic k-way BPs coming from the black pebbling algorithm for G that
uses the minimum number of pebbles p have Θ(kp) states. We do not know how to do
better than this for any G.

Open Problem 7 Find a rooted DAG G and a family 〈Bk〉 of deterministic k-way BPs,
where Bk solves DEk

G and has o(kp) states.

ACKNOWLEDGMENT

James Cook played a helpful role in the early parts of this research.

REFERENCES

AUF DER HEIDE, F. M. 1979. A comparison between two variations of a pebble game on graphs. Master’s
thesis, Universität Bielefeld, Fakultät für Mathematik.

BEAME, P. AND MCKENZIE, P. A note on Nec̆iporuk’s method for nondeterministic branching programs. In
preparation.

BEAME, P., SAKS, M., SUN, X., AND VEE, E. 2003. Time-space tradeoff lower bounds for randomized com-
putation of decision problems. Journal of the ACM 50, 154–195.

BORODIN, A. AND COOK, S. 1982. A time-space tradeoff for sorting on a general sequential model of com-
putation. SIAM J. Comput. 11, 2, 287–297.

BORODIN, A., RAZBOROV, A., AND SMOLENSKY, R. 1993. On lower bounds for read-k-times branching
programs. Computational Complexity 3, 1–18.

BRAVERMAN, M., COOK, S., MCKENZIE, P., SANTHANAM, R., AND WEHR, D. 2009a. Branching programs
for tree evaluation. In 34th International Symposium, Mathematical Foundations of Computer Science.
LNCS Series, vol. 5734. Springer, 175–186.

BRAVERMAN, M., COOK, S., MCKENZIE, P., SANTHANAM, R., AND WEHR, D. 2009b. Fractional pebbling
and thrifty branching programs. In Foundations of Software Technology and Theoretical Computer Sci-
ence (FSTTCS 2009). LIPIcs, 109–120.

COOK, S. 1974. An observation on time-storage trade off. J. Comput. Syst. Sci. 9, 3, 308–316.

COOK, S. AND SETHI, R. 1976. Storage requirements for deterministic polynomial time recognizable lan-
guages. J. Comput. Syst. Sci. 13, 1, 25–37.

EDMONDS, J., IMPAGLIAZZO, R., RUDICH, S., AND SGALL, J. 2001. Communication complexity towards
lower bounds on circuit depth. Computational Complexity 10, 3, 210–246. An abstract appeared in the
32nd IEEE FOCS (1991).

GÁL, A., KOUCKÝ, M., AND MCKENZIE, P. 2008. Incremental branching programs. Theory Comput.
Syst. 43, 2, 159–184.

GOLDREICH, O. 2008. Computational Complexity: A Conceptual Perspective. Cambridge University Press.

HÅSTAD, J. AND WIGDERSON, A. 1993. Composition of the universal relation. Advances in Computational
Complexity Theory, AMS-DIMACS 13, 119–134.

14Wehr [unpublished note] has shown that (k+1)h is exactly optimal among deterministic thrifty read-once
BPs solving FTh

2 (k). The upper bound comes from black pebbling.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: YYYY.

Pebbles and Branching Programs for Tree Evaluation A:43

KARCHMER, M., RAZ, R., AND WIGDERSON, A. 1995. Super-logarithmic depth lower bounds via direct sum
in communication complexity. Computational Complexity 5, 191–204. An abstract appeared in the 6th
Structure in Complexity Theory Conference (1991).

KLAWE, M. 1985. A tight bound for black and white pebbles on the pyramid. J. ACM 32, 1, 218–228.

LENGAUER, T. AND TARJAN, R. 1980. The space complexity of pebble games on trees. Inf. Process.
Lett. 10, 4/5, 184–188.

LOUI, M. 1979. The space complexity of two pebble games on trees. Tech. Rep. LCS 133, MIT, Cambridge,
Massachussetts.

MAHAJAN, M. February 2007. Polynomial size log depth circuits: between NC1and AC1. Bulletin of the
EATCS 91, 30–42.

NEC̆IPORUK, È. 1966. On a boolean function. Doklady of the Academy of the USSR 169, 4, 765–766. English
translation in Soviet Mathematics Doklady 7:4, pp. 999-1000.

NORDSTRÖM, J. 2009. New wine into old wineskins: A survey of some pebbling classics with supplemental
results. Available on line at http://people.csail.mit.edu/jakobn/research/.

PATERSON, M. AND HEWITT, C. 1970. Comparative schematology. In Record of Project MAC Conference on
Concurrent Systems and Parallel Computations. 119–128. (June 1970) ACM. New Jersey.

PUDLÁK, P. 1987. The hierarchy of boolean circuits. Computers and artificial intelligence 6, 5, 449–468.

RAZBOROV, A. 1991. Lower bounds for deterministic and nondeterministic branching programs. In 8th In-
ternat. Symp. on Fundamentals of Computation Theory. 47–60.

SUDBOROUGH, H. 1978. On the tape complexity of deterministic context-free languages. J. ACM 25, 3,
405–414.

TAITSLIN, M. 2005. An example of a problem from PTIME and not in NLogSpace. In Proceedings of Tver
State University. Applied Mathematics, issue 2, Tver State University, Tver Series, vol. 6(12). 5–22.

WEGENER, I. 1987. The Complexity of Boolean Functions. Wiley-Teubner series in computer science. B. G.
Teubner & John Wiley, Stuttgart.

WEGENER, I. 2000. Branching Programs and Binary Decision Diagrams. SIAM Monographs on Discrete
Mathematics and Applications. Soc. for Industrial and Applied Mathematics, Philadelphia.

WEHR, D. 2010. Pebbling and branching programs solving the tree evaluation problem. MSc research paper,
Department of Computer Science, University of Toronto, Feb, 2010, arXiv:1002.4676.

WEHR, D. 2011. Lower bound for deterministic semantic-incremental branching programs solving GEN. (14
Jan, 2010), arXiv:1101.2705.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: YYYY.

	Introduction
	Summary of Contributions
	Relation to previous work
	Organization

	Preliminaries
	Branching programs
	One function is enough
	Pebbling

	Connecting TMs, BPs, and Pebbling
	Pebbling Bounds
	Previous results
	Results for fractional pebbling
	White sliding moves

	Branching Program Bounds
	The Neciporuk method
	The state sequence method
	Thrifty lower bounds

	Conclusion

