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radii r distributed uniformly random in log r between 0.2 and 50
AU, with masses and order identical to our own Solar System. A

1. INTRODUCTIONconservative stability criterion is imposed by requiring that
adjacent planets are separated by a minimum distance of k

The Titius–Bode ‘‘law,’’times the sum of their Hill radii for values of k ranging from
0 to 8. Least-squares fits of these systems to generalized Bode

ri 5 0.4 1 0.15 3 2i, i 5 2y, 1, ... , 8, (1)laws are performed and compared to the fit of our own Solar
System. We find that this stability criterion and other ‘‘radius-

roughly describes the planetary semi-major axes in astro-exclusion’’ laws generally produce approximately geometrically
spaced planets that fit a Titius–Bode law about as well as our nomical units (AU), with Mercury assigned i 5 2y, Venus
own Solar System. We then allow the random systems the same i 5 1, Earth i 5 2, etc. Usually the asteroid belt is counted
exceptions that have historically been applied to our own Solar as i 5 4. The law fits the planets Venus through Uranus
System. Namely, one gap may be inserted, similar to the gap quite well, and successfully predicted the existence and
between Mars and Jupiter, and up to 3 planets may be ‘‘ig- locations of Uranus and the asteroids. However, (i) the
nored,’’ similar to how some forms of Bode’s law ignore Mer- law breaks down badly for Neptune and Pluto; (ii) there
cury, Neptune, and Pluto. With these particular exceptions, we is no reason why Mercury should have i 5 2y rather than
find that our Solar System fits significantly better than the i 5 0, except that it fits better that way; (iii) the total mass
random ones. However, we believe that this choice of excep-

of the asteroid belt is far smaller than the mass of anytions, designed specifically to give our own Solar System a
planet, so it is not clear that it should be counted as one.better fit, gives it an unfair advantage that would be lost if
The question of the significance of Bode’s law has takenother exception rules were used. We compare our results to
on increased interest with discoveries of extra-solar planetsprevious work that uses a ‘‘law of increasing differences’’ as a
and is also worth reexamination because computer speedsbasis for judging the significance of Bode’s law. We note that
now permit more powerful statistical tests than were pre-the law of increasing differences is not physically based and is
viously possible.probably too stringent a constraint for judging the significance

A partial history of the law and attempts to explain itof Bode’s law. We conclude that the significance of Bode’s law
is simply that stable planetary systems tend to be regularly up to the year 1971 can be found in Nieto (1972). Most
spaced and conjecture that this conclusion could be strength- modern arguments concerning the validity of Bode’s law
ened by the use of more rigorous methods of rejecting unstable can be assigned to one of three broad classes:
planetary systems, such as long-term orbit integrations.  1998

1. Attempts to elucidate the physical processes leadingAcademic Press

to Bode’s law. These are based on a variety of mechanisms,‘‘For a statistician, fitting a three-parameter curve of uncer-
including dynamical instabilities in the protoplanetary disktain form to ten points with three exceptions certainly brings
(Graner and Dubrulle 1994, Dubrulle and Graner 1994,one to the far edge of the known world.’’

— Bradley Efron (1971) Li et al. 1995), gravitational interactions between planetesi-
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mals (Lecar 1973), or long-term instabilities of the plane- 2. METHOD
tary orbits (Hills 1970, Llibre and Piñol 1987, Conway and

2.1. Radius-Exclusion LawsElsner 1988). We shall not comment on these explanations,
except to say that we find none of them entirely convincing. A necessary, but not sufficient, condition for the stability

2. Discussions that ignore physics but try to assess of a planetary system is that its planets never get ‘‘too
whether the success of Bode’s law is statistically significant: close to each other’’ (Lecar 1973). This can be formalized
Good (1969) performs a likelihood test under the null into several ‘‘radius-exclusion laws.’’
hypothesis that the planet distances should be distributed

1. Simple scaling arguments for near-circular, coplanaruniformly random in log r. He includes the asteroid belt,
orbits suggest that a test particle on a stable orbit cannotbut ignores Mercury, Neptune, and Pluto, subjectively as-
approach a planet more closely than k Hill radii for some k,signing (i.e., guessing) a factor of 5 penalty to his likelihood
using the Hill radius h as defined by Lissauer (1987, 1993),ratio for ignoring these planets. He concludes that there

is a likelihood ratio of 300–700 in favor of Bode’s law
being ‘‘real’’ rather than artifactual. Efron (1971) attacks

h 5 HMr, HM 5 S M
3M(

D1
3
, (2)Good’s analysis, in particular his choice of null hypothesis.

(Good’s and Efron’s articles are followed by over a dozen
extended ‘‘comments’’ from other statisticians.) Efron

for a planet of mass M, semi-major axis r, and fractionalnotes that the difference between semi-major axes of adja-
Hill radius HM . We shall extend this criterion to two adja-cent planets is an increasing function of distance for all
cent planets with nonzero mass by summing their respec-adjacent planet pairs except Neptune–Pluto. He proposes,
tive Hill radii. There are other plausible ways of combiningwithout physical basis, that this law of increasing differences
adjacent planets: it might be more physically reasonableis a better null hypothesis, the only reason cited being that
to use the sum of the masses to define a single combined

Bode’s law ‘‘predicts’’ increasing differences. Duplicating
Hill radius, although it is not clear that this is preferred

Good’s analysis with this new null hypothesis, he computes when more than two planets are involved. Exponents other
a likelihood ratio in favor of Bode’s law of only 8:5 and than 1/3 may also be reasonable (Wisdom 1980, Chambers
concludes that ‘‘there is no compelling evidence for be- et al. 1996). However, the difference between these ap-
lieving that Bode’s law is not artifactual.’’ Conway and proaches is probably unimportant given the uncertainty in
Zelenka (1988) repeat Efron’s analysis using the law of k, as discussed below.
increasing differences, this time ignoring only Pluto, and 2. For noncircular orbits, we also expect that the aph-
computing a more realistic penalty for doing so. They com- elion distance of the inner planet is less than the perihelion
pute a likelihood ratio of approximately unity, also con- distance of the outer one. In other words, if the ith planet
cluding that Bode’s law is artifactual. We believe that these has semi-major axis ri and eccentricity ei , we expect that
analyses are flawed because there is no physical basis for ri (1 1 ei) , ri11(1 2 ei11). Taking this further, we may
the law of increasing differences; in fact later we will show demand (very conservatively) that the planets are sepa-
that systems that are stable according to our criteria only rated by a Hill radius even at their closest possible ap-
rarely satisfy the law of increasing differences. proach, giving

3. Discussions of other laws that may influence the spac-
ing of the planets. Many of these involve resonances be- ri (1 1 ei 1 HMi

) , ri11(1 2 ei11 2 HMi11
).

tween the mean motions of the planets, such as Molchanov
(1968; but see Hénon 1969), Birn (1973), and Patterson
(1987). A promising development is the recognition that 3. Several authors have argued that boundaries between
planets are capable of migrating significant distances after stable and unstable orbits occur at resonances of the form

j:( j 1 1) (Birn 1973, Wisdom 1980, Weidenschilling andtheir formation (Fernández and Ip 1984, Wetherill 1988,
Davis 1985, Patterson 1987, Holman and Murray 1996).Ipatov 1993, Lin et al. 1996, Trilling et al. 1998). For exam-
Weidenschilling and Davis (1985) argue that two planetsple, this process can explain the resonant relationship be-
are unlikely to form closer than their mutual 2:3 resonancetween Neptune and Pluto (Malhotra 1993, 1995) and may
(because small solid bodies are trapped in the outer j:( j 1explain the spacing of the terrestrial planets (Laskar 1997).
1) resonances of a protoplanet due to gas-induced drag;
once trapped, their eccentricities are pumped up, causingThe present paper combines the first two of these ap-

proaches: we generate a broad range of possible model orbit crossing). For the 2:3 resonance, we can define H2:3

by using Kepler’s third law to define R2:3 5 (3/2)2/3, andplanetary systems and exclude those that are known to be
dynamically unstable. We then ask which of the remaining splitting the distance between two adjacent planets by solv-

ing R2:3 5 1 1 H2:3 1 R2:3 H2:3 .ones satisfy laws similar to Bode’s.
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Combining all three of Hill radii, eccentricities, and the trials that are required to generate a sample hrij8
i50 satisfying

the described radius-exclusion law. We then generate 40962:3 resonance, we obtain
such samples for each of the radius-exclusion laws de-
scribed in Table I. For ei , we use the maximum eccentricityri (1 1 Vi) , ri11(1 2 Vi11), Vi 5 max (H2:3 , ei 1 HMi

).
for each planet in our Solar System over the past 3 million
years (Quinn et al. 1991). Not surprisingly, the mean num-Some planetary systems in this paper were generated using
ber of trials needed to build a ‘‘valid’’ system that satisfiesplanetary masses and ordering of these masses identical
the radius-exclusion criterion increases as the exclusionto our own Solar System, while others used equal fractional
radii get larger. Our most stringent exclusion criterion isradius exclusion for all planets.
8Hi , which demands that adjacent planets are separatedClearly our results will be highly dependent upon the
by 8 times the sum of their respective Hill radii. We didextent of radius exclusion. For the Hill radius of Eq. (2),
not test more stringent cases because they would be prohib-which was derived for the case of two small planets orbiting
itively expensive in terms of computer time (cf. the ‘‘tri-a massive central object, a value of k 5 2–4 is believed to
als’’ column).leave the two planets in permanently stable orbits (Wether-

For each sample that satisfies the relevant radius-exclu-ill and Cox 1984, 1985, Lissauer 1987, Wetherill 1988, Glad-
sion, we perform a nonlinear least-squares fit of the dis-man 1993). For more than two planets, recent work by
tances ri toChambers et al. (1996) suggests that no value of k gives

permanent stability. Instead, the stability time scale grows a 1 bci, (3)
exponentially with increasing orbit separation, with billion-

which we call a ‘‘generalized Bode law.’’ The fit is per-year stability for our Solar System requiring k * 13. Fur-
formed by minimizing the objective functionthermore, simulations of the stability of test particles in

the current Solar System (Holman 1997) seem to show
that there remain few stable orbits in the outer Solar Sys- x 2 5 O8

i50
Slog(a 1 bci) 2 log ri

si
D2

, (4)
tem other than those near Trojan points. This provides
circumstantial evidence that a small value of k is not

constrained so that a, b . 0 and c . 1. We fit on log renough to separate stable orbits, since the outer planets
rather than r because we want the fractional error of eachare separated from each other by more than 15 Hill radii.
planet to be weighted equally. In the Appendix, we analyti-For these reasons, our experiments use several radius-ex-
cally derive approximations to the standard deviations si.clusion laws, including various combinations of Hill radii,
The initial guess for the parameters in the objective func-2:3 resonances, eccentricities, and k.
tion isIt is easy to see why radius-exclusion laws tend to pro-

duce planetary distances that approximately follow a geo-
metric progression. If a fixed fractional radius exclusion V c0 5

1
8 O

7

i50

ri11

ri
,

is used for every planet, and planets are packed as tightly
as possible according to the radius-exclusion law, then the b0 5 r8/c8

0 ,
physical extent of radius exclusion at distance r is rV, and

a0 5 max(0, r0 2 b0).the resulting planetary separations would follow an exact
geometric progression with semi-major axis ratio (1 1 V)/

To more accurately reflect the various forms of Bode’s(1 2 V). If the planets are packed less tightly, then noise
law, we also attempt fits that ‘‘ignore’’ 1, 2, and 3 planets.is added to the fit.
We do this by performing fits on all (9

j), j 5 0, 1, 2, 3,
possible combinations of ignoring j out of 9 planets, and2.2. Generating and Fitting Planetary Systems
choosing the best fit for each j. We then repeat the entire

Assume that planet i has a fractional radius exclusion procedure, allowing one gap to be inserted between the
of Vi . To construct a sample system that satisfies the radius- two adjacent planets with the largest ri11/ri ratio, to mimic
exclusion law, we generate a list of nine planet distances the gap between Mars and Jupiter. This gives us 8 fits out
distributed uniformly random in log r between 0.2 and 50 of 2 o3

j50 ( 9
j ), 5 260 combinations of ways to ignore planets

AU and then sort them into increasing order hri , for each sample planetary system.
ri11j7

i50 . If the list does not satisfy
3. RESULTS

ri11 2 ri . Vi11 1 Vi, i 5 0, ... , 7,
3.1. x 2 Fits

Results of all the fits for each type of system are pre-then the entire list is discarded and we start over. The
‘‘trials’’ column of Table I lists the average number of such sented in Figs. 1 and 2. Not surprisingly, the best fit for
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FIG. 1. x 2 fits, using Eq. (4). A system with a ‘‘gap’’ has had a virtual planet inserted between the two real planets that are most widely spaced
in log r, to mimic the gap between Mars and Jupiter in our Solar System. The x 2 of our own Solar System is labeled with ‘‘1’’ symbols, and the
means of 4096 random ones are labeled with diamonds. The labels on the horizontal axis correspond to the names described in Table I.

our own Solar System always occurs when a gap is added there is no radius-exclusion law (left edge of each figure),
the x 2 for the Solar System is always substantially less (bybetween Mars and Jupiter, while Mercury, Neptune, and

Pluto are ignored. Even for our own Solar System, the fit a factor 3–6) than the mean of the random systems with
the same number of ignored planets; this is consistent withdepends slightly on the radius-exclusion law, since this

affects the denominator si (see Appendix); for the three the conclusion that the Solar System satisfies a generalized
Bode law significantly better than ones that are uniformlycases in which the radius exclusion for each planet is identi-

cal in log r (M0, MJ, 2:3), the best fit for our Solar System random in log r. However, as we apply more stringent
radius-exclusion laws (moving right in each figure), the x 2is identically
values for the Solar System become quite similar to the
mean of the random systems, indicating that the Solar0.450 1 0.132 3 2.032i, i 5 0, 1, ... , 8,
System is no closer to a generalized Bode law than random
ones that satisfy radius exclusion. This situation changeswith x 2 values of 0.003, 0.005, and 0.009, respectively. This

result can be compared to the original Bode’s law, Eq. (1). in the bottom row of Fig. 1, which shows the case where
a gap is allowed. In particular, in the case with three planetsConsider the case where no gaps are allowed, and up

to three planets may be ignored (top row of Fig. 1). When ignored and one gap, our Solar System’s best x 2 value is

TABLE I
The Various Radius-Exclusion Laws Used

Name Description Trials Ex R LID(%) LID R Ex(%)

M0 Each planet has zero mass 1 0.4 100
1Hi Hill radii corresponding to planets of our Solar System 1.92 0.8 93.3
2Hi Like 1Hi , except radius exclusion of 2 Hill radii 3.94 1.6 87.2
MJ All planets have Jupiter’s fractional Hill radius 7.88 1.9 49.3
4Hi Like 1Hi , except radius exclusion of 4 Hill radii 19.3 4.5 57.6
Hei Adjacent planets no closer than Hi 1 ei 44.1 3.4 23.1
2:3 Adjacent planets no closer than the 2:3 resonance 230 10.5 24.8
23e Adjacent planets no closer than max(Hi 1 ei , H2:3) 479 9.7 16.9
8Hi Like 1Hi , except radius exclusion of 8 Hill radii 2820 11.7 1.7

Note. The table is ordered by the ‘‘trials’’ column, which is the 4096-sample average number of Monte-Carlo trials
required from a log-uniform distribution to find a sample that satisfies the corresponding radius exclusion criterion. The
last two columns (see Section 4) compare agreement between exclusion laws and the law of increasing differences (LID)
for a nine-planet system: specifically, how often the listed exclusion law produces a system satisfying LID (second-last
column), and vice versa (last column).
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FIG. 2. The quantile of the Solar System’s x 2, i.e., the fraction of the 4096 random systems that have a x 2 better (i.e., smaller) than that of the
Solar System. We include the cases both with and without a gap (‘‘G’’ and ‘‘N’’, respectively). The labels on the horizontal axis correspond to the
names described in Table I.

consistently 1–1.5 orders of magnitude smaller than the increasing the strength of the radius exclusion shifts the
distribution to the right, because we are forcing more spacemean of the random systems. We suggest that this is be-

cause the particular exceptions we investigated were histor- between planets. The peak of the histogram is sharpest
with the strongest radius exclusion (8Hi) and no exceptions,ically designed specifically to make our Solar System fit

better. In a different planetary system, other exceptions because the regions allowed to contain planets are tightly
squeezed by the exclusion. If we allow a gap (cf. the twoor even entirely different (and arbitrary) exception rules

could be envisaged; for example, the planets could be split bottom figures compared to the two top ones), Eq. (3)
effectively models an extra planet, so the distribution shiftsinto two groups, one group satisfying one rule, while the

other group satisfies another. The possibilities for inventing slightly toward smaller c values. Finally, increasing the
number of exceptions (cf. the two right figures comparedexception rules are essentially endless.

Figure 2 shows the Solar System’s quantile—the fraction to the two left ones) causes the distribution to spread out
and flatten (because there are fewer constraints), and shiftof random systems with the same exceptions that have a

x 2 better (i.e., smaller) than that of the Solar System. A to the right (because the planets that get ignored most
often are the inner and outer ones—cf. Fig. 6). One shouldsmall quantile would indicate that the Solar System fits

Bode’s law better than most random systems. Our Solar not read too much into the fact that the values of c for
stringent radius exclusion laws tend to cluster around theSystem’s quantile is not exceptional if no gap is allowed,

ranging from about 0.15 to 0.7, and only mildly exceptional value of 2.0, which is the value for our own Solar System.
This value is biased by our decision to fit 9 planets betweenif a gap is allowed (*0.04), and generally becomes less

exceptional as the random planetary systems are chosen 0.2 and 50 AU, because (50/0.2)1/8 5 1.99.
Scatter plots of b vs a are presented in Fig. 5. The mostwith increasingly stringent radius-exclusion laws (moving

right in each figure). The rightmost case, labeled 8Hi , gives obvious feature is that most systems appear above the line
a 1 b P 0.2; this is expected because 0.2 is the smallestanomalously low quantiles in several cases. This probably

reflects the fact that our evaluation of the normalization orbital radius that we allow. As we increase the exclusion
from Hi to 8Hi (cf. the two bottom figures compared toof x 2 (see Appendix) is only approximate when the planets

have different radius exclusions, and the approximation the two top ones), the scatter decreases for the same reason
worsens with increasing exclusion.

One could also argue that the main asteroid belt should
‘‘count’’ as an object. Figure 3 shows the Solar System’s
quantile for this case, with no exceptions allowed. In this
case, the Solar System’s x 2 value shows that it fits Bode’s
law better than 90%–98% of the random systems. However,
this result is not particularly significant, given that the case
we are examining is still, to some extent, tailored to the
properties of our Solar System.

3.2. Distributions of a, b, and c

Although our chief concern in this paper is with how
well random planetary systems fit Eq. (3), we can also
discuss the values of the fitting parameters a, b, and c that FIG. 3. The quantile of the Solar System, compared to 4096 random
we obtained. ones, when no exceptions or gaps are allowed, but the main asteroid belt

is included as a ‘‘planet’’ at radius 2.8 AU.The distribution of c is shown in Fig. 4. In general,
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FIG. 4. Normalized histogram of the value of the fitting parameter c from Eq. (3). In each of these figures, the number of exceptions (i.e., the
number of planets that are ignored in the fit) and the number of gaps (always 0 or 1) are held constant while we plot the distribution for various
radius-exclusion laws as discussed in Section 2.1. The graphs that have 1 and 2 exceptions can be well approximated by interpolating between the
left and the right figures.

the distribution of c becomes more peaked in Fig. 4: the (Lissauer 1993), then if all the planets are equally massive,
they should be uniformly distributed in Ïr. We thereforesystems are more tightly constrained by the exclusion law.
performed our entire suite of experiments again, this timeThe value of the parameter a in Eq. (3) is zero in about
trying to fit an a 1 bci law to planetary systems with an25% of the samples, in which case Bode’s law corresponds
underlying random distribution that is uniform in Ïr. Weto a geometric sequence.
find that most of the above results are qualitatively un-Finally, there was no observable correlation of a, b, or
changed. For example, in the case with no exceptions andc with x 2.
no gap, the fit of the random systems worsens, so that our

3.3. Other Observations Solar System’s quantile gets better, but only by about 0.05
to 0.15. In the case of three exceptions and a gap, the Solar

A histogram of which planet gets ignored when there is System’s quantile is almost the same in the Ïr distribution
one exception and no radius exclusion is shown in Fig. 6. as in the log r distribution. Furthermore, as radius exclusion
The innermost and outermost planets are ignored most increases, the effect of the underlying distribution is sup-
often, which is expected since a planet with only one neigh- pressed because radius exclusion is biased toward ac-
bor is less constrained than those with two. cepting planetary systems that follow a roughly geometric

The placement of the gap is approximately uniform be- progression. We conclude that our comparisons are not
tween all planet pairs, for all types of systems. Adding a strongly affected by the assumption that the underlying
gap produced a better fit in about 65% of all cases. distribution is uniform in log r.

It is prudent to show that our results are not strongly
dependent upon the assumption that the underlying distri- 4. THE LAW OF INCREASING DIFFERENCES
bution is uniform in log r. If instead we assume a disk
surface density that scales as r23/2, which roughly corre- Efron (1971) and Conway and Zelenka (1988) have

noted that the distance between planets in the Solar Systemsponds to the expected density in the protoplanetary disk



RANDOM PLANETARY SYSTEMS AND TITIUS–BODE LAWS 555

FIG. 5. Scatter plots of the fitting parameters b and a from Eq. (3). In Figs. i–iv, a is exactly zero in 47, 26, 47, and 5% of the cases, respec-
tively.

is an increasing function of distance for all adjacent pairs we assume the law of increasing differences then the suc-
cess of Bode’s law is unsurprising.except Neptune–Pluto; the ‘‘major’’ satellites of Jupiter,

Saturn and Uranus also satisfy this relation (Conway and We are uncomfortable with this law because it has no
physical basis. For example, there is no dependence onZelenka 1988). They propose that this ‘‘law of increasing

differences’’ is a reasonable null hypothesis to use when planetary mass, which is unrealistic. We also note that the
law does not apply to all satellites around any planet andtesting the statistical significance of Bode’s law. They note

that a pure log-uniform distribution produces increasing that there is no natural way to define what constitutes a
‘‘major’’ satellite. This concern has prompted us to exam-differences only a small percentage of the time and that if
ine the relation between radius-exclusion laws and the law
of increasing differences. Table I shows the occurrences
of agreement between the law of increasing differences
and radius exclusions. As Table I shows, (i) a system that
satisfies radius exclusion rarely satisfies the law of increas-
ing differences; (ii) one that satisfies the law of increasing
differences will often satisfy all but the most stringent ex-
clusion laws. We also observed that (iii) the number of
trials required to find a random log-uniform sample that
satisfies the law of increasing differences is 1 to 2 orders
of magnitude larger than that for radius exclusion; (iv)
random planetary systems that satisfy the law of increasing
differences have x 2 values that are 1.3 to 3 times smaller
than ones generated using radius exclusion.

FIG. 6. A histogram showing the fraction of systems in which planet
For these reasons, we believe that the law of increasingi is ignored, as a function of i, when one exception is allowed and there

differences is a much more restrictive assumption thanis no radius exclusion. The distribution does not change significantly in
other systems. radius-exclusion laws, and in the absence of any physical
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justification, it does not form a sound basis from which to Xi 5 i/(n 1 1), s 2
X

i
5

i(n 2 i 1 1)
(n 1 1)2(n 1 2)

, i 5 1, .... , n, (5)
judge the validity of Bode’s law.

which we then scale to the interval [log(0.2), log(50)] used in this paper.5. DISCUSSION AND CONCLUSIONS
Radius exclusion makes the allowed intervals between planets smaller,
thus compressing the uniform standard deviations, Eq. (5), by a factor

We have measured the deviation from Bode’s law of Ci . To compute Ci , assume ri 5 1 and that all the planets have the same
planetary systems whose distances are distributed uni- fractional Hill radius H and perfectly fit a Bode’s law with exponent

c 5 b and a 5 0. It is easy to show thatformly random in log r, subject to radius exclusion con-
straints. We find that, as radius exclusion becomes more
stringent, the systems tend to fit Bode’s law better. We Ci 5

log(b)
log(b) 1 log(1 2 H) 2 log(1 1 H)

, (6)
compare these fits to that of our own Solar System. We
find that, when no exceptions or gaps are allowed, our

finally givingSolar System fits marginally better than random systems
that follow weak radius-exclusion laws, but fits no better,

s 2
i 5 (sx

i
/Ci )2, (7)or even worse, than those that satisfy more stringent but

still reasonable radius exclusions. If one gap is allowed to
which we substitute into Eq. (4). When distance is measured in log r andbe added, and up to three planets are ignored, then our
all planets have the same radius exclusion, Eq. (6) is exact; otherwise itSolar System fits significantly better than random ones is only approximate.

built with weak radius exclusions and marginally better
than ones with strong radius exclusions; however, this mod-
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