
Solving Capture in Switched Two-Node Ethernets

by Changing Only One Node

Wayne Hayes

University of Toronto

Mart L. Molle

University of California, Riverside



Background: History of Ethernet

• designed when 10 Mb/s was enough band-

width to handle hundreds of hosts

• all hosts share one broadcast medium

• collisions can occur during transmission

=⇒ need a way to resolve collisions

• binary exponential backoff resolves colli-

sions between N hosts in time logN on

average

• if N = 2, successive collisions can trick a

host into backing off for too long, causing

long delays and short-term unfairness



The Standard Ethernet Protocol

When there are packets to send, locally exe-

cute the following:

1. set attempts := 0. Remember this for later; the
attempts counter is reset for every new packet.

2. wait for silence on the network...

3. Attempt transmission! If successful, wait a few
bit-times and then go get another packet. Other-
wise, a collision has occured...

4. increment attempts by 1

5. choose uniform random integer delay between 0
and 2attempts

− 1 inclusive.

6. Sleep for delay slot-times, where a slot is the time
taken to transmit 512 bits.

7. Proceed to step 2.



Why Ethernet breaks with two busy
hosts: The “Capture” Effect.

• Say Alice and Bob each have lots of pack-

ets.

• After k collisions, Alice wins and sends a

packet while Bob goes back to sleep. Al-

ice continues to send packets.

• Bob wakes up while Alice is still sending

packets. They collide after Bob sees the

end of Alice’s pth packet.

• Alice chooses a delay between 0 and 1.

Bob chooses a delay between 0 and 2k
−1.

Guess who wins most of the time?



The Capture effect ... con’t

• Alice wins, Bob goes to k + 1 collisions,

and goes to sleep again

• Bob’s odds of winning decrease exponen-

tially with each collision

• When Alice runs out of packets, Bob’s

attempts counter is high and he’s sleeping

for a long time.

– so the network is completely idle until

he wakes up and starts sending.

– If Alice gets any new packets, they will

get sent even before Bob gets a chance

to send his first packet.



Net effects: (no pun intended, of course)

• large “run lengths” resulting in large vari-

ance of delay (diagram)

• lots of time wasted idling after a run

This is BAAAAAD

• real-time stuff likes short, predictable de-

lay. (eg. realtime audio, video, distributed

computing, even just remote typing.)

• long delays confuse higher level protocols

(and users!) into thinking something is

wrong, when nothing is.



Some really basic ideas:

• Modify one node, the other runs standard

Ethernet

• The standard Ethernet node normally hogs

the network as long as it wants

• The modified node stops this using the

electronic equivalent of a baseball bat

• When the modified node is transmitting,

it can keep track of how many times the

standard node has collided, ie. keep track

of the standard node’s collision counter.

• When Modified node’s turn is over, let

the standard node transmit unhindered for

awhile.



SHEP
Switched Half-duplex Ethernet Protocol

(slightly simplified)

S = Standard Ethernet Node

The modified node runs the following:

0. note the wall-clock time at the beginning of my
turn.

1. When there is a packet to transmit, wait-for-silence
plus the interframe gap, then attempt transmission
as in regular Ethernet.

2. If a collision occurs, always choose a backoff delay
of 0...

3. ... until S’s collision counter reaches a fixed max-
imum maxCC, after an interval of time T .

4. The end of my turn has arrived. Concede con-
trol to S. Be absolutely silent and let S transmit
unhindered for an interval of time T .

5. Proceed to step 0.

Note turn length is stochastic, maxCC is fixed.



• maxCC = 1 seems to be the best choice,

because letting it get bigger increases de-

lays and increases idle time between switch

overs. Exception: long networks – a bit

bigger, maybe 2 or 3.

• When to concede? Some choices:

1. Immediately when S’s collision counter

reaches maxCC

2. Retry once more.

∗ use the idle time that’s likely to occur

immediately after this collision.

∗ strictly bounded delay

3. “Transmit Damnit!” ⇐=

∗ “almost” bounded delay, slightly higher

capacity.



Comparison to CABEB (& others)

• We change only one node, CABEB (BLAM,

full-duplex Ethernet) both nodes need to

be changed to get good results.

• Overload with CABEB against standard

node ⇒ CABEB node hogs bandwidth,

even if standard node offers higher load.

[Tables 6.1-6.3 of Ramakrishnan & Yang]

• Since CABEB is one-packet-per-turn, packet

sizes differ s1, s2 ⇒ relative load forced to
s1
s2 during periods of overload.

• However, SHEP has slightly less capacity

for small packets, since extra collisions &

idle time between turns.



Summary, Conclusions

With two busy nodes running standard Ethernet pro-
tocol, one node can “capture” the network, causing

• significant short-term unfairness

• frequent large delays

SHEP

• efficient, round-robin service

• decreases std. dev. of delay by 2 orders of mag-
nitude

• eliminates large delays

• negligible cost in bandwidth


