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Abstract

It is well known that the Ethernet medium access

control protocol can cause signi�cant short-term un-

fairness through a mechanism known as the Capture

E�ect, and that this unfairness condition is worst in

heavily loaded Ethernets with a small number of ac-

tive nodes. Recently, Ramakrishnan and Yang pro-

posed Capture Avoidance Binary Exponential Back-

o� (CABEB) to provide 1-packet-per-turn round robin

service in the important special case of a 2-node colli-

sion domain. In this paper, we introduce an equal time

round-robin scheme, in which only one node needs to

be modi�ed. In our scheme, the modi�ed node main-

tains a local copy of the attempts counter of the other

node. It uses this information to trigger switching its

medium access policy between the two extremes of ag-

gressively persistent and completely passive. As a re-

sult, the modi�ed node can control the actions of the

other node in such a way that both enjoy fair, low de-

lay, round-robin access to the shared channel.

1 Introduction

1.1 Why a two-node Ethernet?

Nowadays, a single node with a fast Ethernet in-

terface can easily generate tra�c, including all pro-

tocol processing overhead, fast enough to saturate a

10 megabits per second (Mb/s) Ethernet. Further-

more, network tra�c-intensive software | such as re-

mote �le systems, remote graphical user interfaces,

and World Wide Web | is rapidly gaining in pop-

ularity. In the near future, we can expect even more

growth due to multimedia, as interactive audio and

video conferencing systems become widespread.

An inexpensive way to increase the network band-

width available to all nodes, while preserving the in-

vestment in existing Ethernet equipment, is to seg-

ment the network into smaller and smaller collision

domains until, in the limit, we have a switched Eth-

ernet system [9]. Here each node has a direct connec-

tion to a switch port, so that each collision domain

consists of only two nodes: the attached user device

and its associated switch port. In this case, the users

will no doubt expect to be able to send lots of traf-

�c over their dedicated Ethernet connection. Thus,

it is important that a two node Ethernet provides an

acceptable quality of service, even under heavy load.

1.2 The Ethernet Capture E�ect

Although the medium access control protocol

in Ethernet is usually described as 1-persistent

CSMA/CD, in reality it is the Binary Exponential

Backo� (BEB) algorithm, used to reschedule the next

attempt after each collision, that is most responsible

for its behaviour under periods of heavy load | espe-

cially when the number of active nodes is small. As

a result, we now know that heavily loaded Ethernets

are generally stable, but can exhibit severe short-term

unfairness as one busy node [10] (or a small group of

busy nodes, if each one is too slow to saturate the net-

work by itself [6]) \captures" complete control of the

network for considerable periods of time.

Omitting inessential details, the Ethernet medium

access control protocol is summarized in Figure 1.

Notice that the retransmission delay after each col-

lision varies (dramatically!) with the value of the at-

tempts counter, and that attempts is a local variable to

each node. Furthermore, the node pays no attention

to what else is happening on the network when it is

not transmitting: the most important point is that a

successful transmission resets the attempts counter of

the transmitting node, but does not alter the attempts

counter of any other node.

To see how the Capture E�ect works, and for sim-

plicity of argument, we consider a pair of active nodes,

each with a long queue of packets to send. We assume

that, at time 0, each tries to send its �rst packet,

and both attempts counters are 0. Obviously, a col-

lision will occur, and both nodes will increment their
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0. Wait to be given a packet to send.

1. Set attempts := 0.

2. Wait for silence on the network.

3. Wait 96 bit-times, then attempt transmission.

If successful, proceed to Step 0.

4. A collision has occurred.

Increment attempts by 1.

If attempts = 16 return failure.

5. Choose a uniform random integer delay

between 0 and 2

min(10;attempts)

� 1 inclusive.

6. Backo� (sleep) for delay slot-times, where

a slot is 512 bit times.

7. Proceed to step 2.

Figure 1: The essential details of the standard Ether-

net protocol.

attempts counters to 1, and independently choose a

uniform random delay of either 0 or 1 slots. If both

nodes happen to pick the same backo�, another col-

lision will occur and both will choose a new uniform

random delay of 0; 1; 2 or 3 slots, and so on. This

pattern continues until the winning node, which we

denote W, succeeds in transmitting its �rst packet af-

ter the kth collision. In this case,W selects the second

packet from its queue and resets its attempts counter,

whereas the losing node, denoted by L, retains the

value k in its attempts counter. If k is large, L's back-

o� delay may be longer than the transmission time

for W's �rst packet, allowingW to transmit another

p � 1 packets before L is even able to make another

attempt.

Now consider what happens at the end of W's pth

packet transmission. Node W is ready to make the

�rst attempt for its p+1st packet (with attempts=0),

and L is ready to make the k+1st attempt for its �rst

packet (with attempts=k). Obviously, another colli-

sion will occur, and both nodes will increment their

respective attempts counters to 1 and k + 1 and exe-

cute another backo� delay. If both of them happen to

choose the same value, they increment their respective

attempts counters to 2 and k + 2, and so on. In the

general case where their respective attempts counters

are j and k + j, it can be shown that the probability

of W winning again is

1

2

j

2

j

X

i=1

2

k+j

� i

2

k+j

= 1�

2

j

+ 1

2

k+j+1

;
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and the probability of another collision is 1=2

k+j

.

Thus W is
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times as likely as L to win this contention, and W's

advantage grows exponentially with increasing k, be-

coming approximately 2

k+1

larger for k >> j. For

example, if k = j = 1, i.e., W has transmitted only

one packet, and its second packet encounters a colli-

sion with L's �rst packet, then W is already 5 times

more likely to win. If k = 2 and j = 1, W is 13 times

more likely to win, and if k = 3 and j = 1 then W is

29 times more likely to win. In this situation, we say

thatW has captured the network. Eventually,W will

probably empty its send queue and then the network

will be completely idle for a time while L �nishes back-

ing o� from the most recent collision. If more packets

arrive inW's transmit queue during this time, L may

be forced to wait even longer, even though the net-

work has seen some idle time. Some time later, L will

�nally begin transmission of its packet queue, prob-

ably capturing the network and locking out W for a

long time.

We de�ne a \run" of packets to be a sequence of

packets transmitted by a single node until another

node gets a successful transmission | i.e., a collision

only terminates a run if the next successful packet

is from a di�erent node. Figure 2 shows the mean

run length and standard deviation of run length in a
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Figure 2: The Ethernet Capture E�ect: Mean and

standard deviation (i.e., the square root of the vari-

ance) of run length for a Poisson-driven two-node sys-

tem with constant sized 256 byte packets, as a function

of throughput in Mb/s.

two-node Ethernet as a function of throughput. (The

statistics are the same for both nodes, taken from sim-

ulations described in the next section.) The system is

a simple one with packets of constant length 256 bytes

and a global Poisson arrival process with equal load

from both nodes; experiments with other arrival pro-

cesses and packet size distributions, including several

derived from packet traces from a real Ethernet, did

not change the qualitative nature of these results. At

a throughput of 9 Mb/s, the mean run length is 214,

indicating that the �rst packet of the deferring node

must wait on average (256�8+96+64)�214 = 472512
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bit-times, or about 47 milliseconds (ms) at the front of

its queue. The 96 bits per packet is the required inter-

packet spacing of the Ethernet standard, and the 64

bits represent the preamble. The standard deviation

of the run length is 363 (larger than the mean!), so

run lengths routinely vary by several times the mean.

Thus, on a highly loaded two-node Ethernet, it is not

uncommon for the �rst packet of a run to wait several

tenths of a second before transmission. Our simula-

tions show that increasing the packet size causes the

access delay to increase slightly less than linearly, and

the mean run lengths to get shorter, simply because

there are more chances (on average, per packet) for

the losing node to jump in.

A side e�ect of the Capture E�ect is that extremely

high throughputs can be maintained under heavy traf-

�c conditions, since few packets experience any colli-

sions. The big disadvantage is that the variance of

access delay is enormous: once W gets its �rst packet

through, it can often transmit hundreds of subsequent

packets with essentially zero access delay. However,

there is no long term unfairness problem: L's �rst

packet may experience a huge access delay, but there-

after L, too, transmits many packets with essentially

zero delay. Boggs, Mogul, and Kent [2] devised and

ran several experiments that massively overloaded an

Ethernet. The Capture E�ect was not visible in their

measurements because they only reported the mean

time between a packet getting to the front of its local

queue and the time it is transmitted, i.e., the access

time. Thus, the huge access delay experienced by the

�rst packet in each run is masked when it is averaged

with the negligible access delays experienced by the

large number of other packets in the same run. Fur-

thermore, their de�nition of \delay" does not include

queueing e�ects. Even though only one out of the

many packets sent in a single run spends a long time

at the front of the local transmit queue, the remaining

packets had to wait in the queue until that �rst packet

\got out of the way". In fact, it would be possible for

the deferring node to accumulate enough packets to

over
ow its packet queue, possibly resulting in data

loss.

1.3 Simulation methodology

The results in this paper are obtained by carefully

simulating an Ethernet system at the interface be-

tween the medium access control and physical lay-

ers. We chose simulation over analytical techniques

to permit us to create a more faithful model of the

system, without worrying about the ease and/or avail-

ability of suitable solution techniques. Furthermore,

trace-driven simulation makes it easy to incorporate

actual measured tra�c patterns from a real network

into our study. We chose simulation over direct ex-

perimentation because we did not have the means to

construct hardware prototypes incorporating our pro-

posed changes to the medium access control protocol.

Our simulator was written using a package called

the Smurph Protocol Modelling Environment [7].

Smurph was designed speci�cally to allow easy im-

plementation and testing of MAC layer protocols, by

conveniently handling all details of the physical layer.

Smurph allows realistic topologies to be de�ned, and

can simulate many properties of real-world systems,

like clock drift and physical layer noise. It uses soft-

ware multi-word integers rather than 
oating-point

numbers to model time and for counters. This is done

because the absolute size of roundo� errors in 
oating

point numbers increases with the magnitude of the

number; this e�ect can cause errors in event-timing

and in statistics taken during a long-running simula-

tion. Smurph is written in C++, and requires the user

to implement their protocol as C++ event routines im-

plementing a �nite-state machine. The entire system

is compiled to execute at machine-code speeds. Thus,

it is easy to simulate complex systems for long periods

of simulated time with minimal CPU. Smurph is fast

enough that we routinely ran our simulations for one

hour of simulated time, simulating the transmission of

millions of packets, in about an hour of CPU time on

a Sun SPARCstation IPC.

Our �nite state machine has been written to pre-

cisely conform to the IEEE 802.3 Ethernet Medium

Access Layer [1] down to the bit level | including

all the details of inter-frame spacing, preamble, Start

Frame Delimiter, header and packet size limits. We

validated our simulator by reproducing the setup of

a famous and widely-distributed experiment on a real

Ethernet by Boggs, Mogul, and Kent [2], and getting

identical results in all measurements, within statistical

uncertainties. See Molle [6] for a direct comparison of

the published measurements by Boggs et al. with our

simulation output.

In addition, we have taken packet traces of a local

undergraduate computing facility. For each packet,

we recorded the inter-arrival time (to the nearest mi-

crosecond), size (in bytes), source and destination ad-

dresses. These traces were manipulated (see section

3.2.1) to produce simulated two-node tra�c, and in all

cases the results of our experiments were qualitatively

similar: the Ethernet Capture E�ect always occurs in

systems with two standard nodes, and the protocol

introduced below eliminates the Capture E�ect in all

cases tested.

2 SHEP: The Switched Half-duplex

Ethernet Protocol

2.1 Overview

The standard Binary Exponential Backo� algo-

rithm was intended to work for systems with a large

number of relatively inactive nodes. In systems with

a small number of very active nodes, the losers get

tricked by repeat collisions with the same winner into

(drastically!) overestimating the number of active

nodes. Consequently, they end up backing o� too

far and too quickly whenever congestion occurs, which

leads to the Capture E�ect.

Although other solutions to the Capture E�ect have

been proposed [6, 8], one must install the modi�cation

in all nodes of the network to obtain their full bene�t.

The Switched Half-duplex Ethernet Protocol is unique

in that it requires changing only one side of the two-

node system, allowing users to upgrade their entire

network by adding one new piece of hardware (i.e., a
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SHEP compatible switch). This backwards compat-

ibility is a signi�cant advantage for our proposal in

comparison to the Capture Avoidance Binary Expo-

nential Backo� algorithm [8] (and even to Full-Duplex

Ethernet), which gives little (or no) bene�t without

updating both ends of the link.

SHEP ful�lls these requirements by following a

strategy somewhat analogous to a trial judge having

a discussion with a rude lawyer who incessantly inter-

rupts the judge. The judge repeatedly asks the lawyer

not to interrupt. Then, when the judge is �nished, the

lawyer is allowed to speak freely for a certain amount

of time. In our case the changed node H at the switch

hub (the judge), controls a round-robin service be-

tween itself and the standard Ethernet node S (the

lawyer). H does this by alternately forcing its own

packets onto the wire, and then leaving the network

wide open. When H decides to have a turn, it trans-

mits its packets and chooses a backo� delay of 0 for

any collisions that occur during its turn. Since S is the

only other node on the network, H can keep track of

the attempts counter of S. After a stochastic amount of

time T this counter will reach a predetermined max-

imum M , at which time H stops transmitting and

allows S to transmit unhindered for the same amount

of time T . Then the cycle is repeated, starting from

H's turn.

2.2 Detailed description

In this section, we present a state machine descrip-

tion of the transmit process used by the hub node H,

which is running the Switched Half-duplex Ethernet

Protocol (SHEP). The internal state variables used

by the SHEP node are:

� otherAttempts: local copy of the attempts counter

of the standard node S.

� otherStartedWaitingAt: the most recent time S's

attempts counter was incremented from 0 to 1. It

marks the formal beginning ofH's turn; H's turn

�nishes a short time after S's collision counter

reaches M .

� weStoppedAt: the time marking the end of the

last packet of H's turn. The di�erence between

this and otherStartedWaitingAt is the time inter-

val H was allowed to transmit, and is the length

of time S will be allowed to transmit unhindered.

This time-based round-robin is intended to be

more fair than a packet-based round-robin ser-

vice schedule in the case that the average size of

one node's packets is di�erent than the other's.

(This is not uncommon depending, for example,

upon whether a node is a �le server, or a client.)

� currentTime: the wall clock time as it appears

at any particular step. One of its uses is in the

computation of when S's turn will �nish because,

to be fair, we need to split the idle time that oc-

curs between the end of H's last packet and the

beginning of S's �rst packet.

The SHEP transmit state machine is presented in the

following pseudocode. In addition, node H's receive

process should set otherAttempts to 0 whenever it re-

ceives a packet.

0. Wait until a packet arrives in the transmit queue.

1. If the network is busy, then the other host is

transmitting, so set otherAttempts := 0. Wait

for silence on the network plus the required inter-

packet gap.

2. Attempt transmission. If a collision occurs:

a) Increment otherAttempts by 1.

b) If otherAttempts = 1, set otherStartedWait-

ingAt to the current time.

c) Abort, jam and wait as in standard Ether-

net, but then proceed to Step 2. (i.e., choose

a 0 backo� delay.)

Otherwise, our packet was successfully transmit-

ted: proceed to Step 3.

3. If otherAttempts � M, or H's queue is empty and

otherAttempts > 0, concede the end of H's turn

by proceeding to Step 4. Otherwise it is still H's

turn, so proceed to Step 0.

4. Concede control of the network to S. We know

that S has a packet to transmit because otherAt-

tempts > 0. Set weStoppedAt to the current time.

Wait for the beginning of S's �rst packet, then

proceed to Step 5. Note that there may be some

idle time while S �nishes backing o�.

1

5. We are now hearing the �rst packet of S's turn.

Set otherAttempts := 0. We split the idle time we

just saw between the turns of the two nodes, and

compute when it will again be H's turn as:

turnLength := weStoppedAt � otherStartedWaitingAt

idleTime := currentTime � weStoppedAt

ourTurnAgainAt := currentTime + turnLength +

idleTime=2.

From steps 5, 6 and 7, we always watch to see

if S's turn is over, at which time we proceed to

Step 0. Otherwise we wait for the end of S's �rst

packet, and proceed to Step 6.

6. There is silence on the network but it is still

S's turn. If the end of its turn arrives, go to

Step 0. Otherwise wait to hear the next packet.

If the inter-packet gap + some small grace pe-

riod expires

2

, without seeing another transmis-

sion from S, then assume S has no more packets

to send, and proceed to Step 0. Otherwise we see

a new packet, and proceed to Step 7.

7. We are now hearing a packet from S other than

the �rst one of its turn. If our turn arrives, pro-

ceed to Step 0. Otherwise wait for the end of this

packet and proceed to Step 6.

1

In the unlikely event that S somehow doesn't transmit the

packet, this step of the SHEP protocol should implement some

sort of timeout.

2

We used twice the 96 bit-time inter-packet gap as our grace

period, as does Molle [6].
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2.3 Discussion

Some qualitative observations of this protocol ex-

hibit some of its properties. First, there is the obvious

fairness of an equal-time round-robin service schedule.

Second, although there is no strict upper bound on the

length of a turn, it is clear that service is far more pre-

dictable than standard Ethernet, since the time bound

on the length of a turn is much more strict than simply

allowing long run lengths. Third, the \predictability"

of delivery is controlled by the single parameter M ,

the predetermined maximum attempts counter of the

standard node. Fourth, the protocol is striking in its

simplicity.

There is a slight cost in throughput at high load due

to the extra collisions and idle time in this protocol.

The cost is highest with the smallest packets (maxi-

mum capacity of 5 Mb/s for 64 byte packets compared

to about 7 Mb/s for standard Ethernet), since pro-

portionally less time is spent servicing them than in

inter-packet gaps and idle time between turns. This

cost quickly becomes negligible with packets only 2 to

4 times the minimumsize (maximumcapacities of 7 vs.

8.5 Mb/s and 8.2 vs. 8.9 Mb/s, respectively) and is al-

most immeasurable with the largest packets (about 9.5

vs. 9.6 Mb/s). We believe the large cost for tiny pack-

ets is unimportant because a 64-byte Ethernet packet

contains almost no user information, and it is di�cult

to imagine an application requiring continuous back-

to-back packets containing little information.

3

There is some choice as to exactly when node H

should concede control of the network. If guaranteed

access delays are important, then two possible choices

are (1) concede immediately after M collisions, and

(2) attempt transmission of the current packet one

more time after theM th collision. (The motivation for

choice 2 is that there is likely to be some idle time any-

way, so we should attempt to use it even though there

is a slight chance of another collision.) A third choice

is (3) Re-attempt transmission of the current packet

as many times as necessary to get it through, even

though this will occasionally raise otherAttempts sig-

ni�cantly aboveM, causing an occasional long idle pe-

riod after the end ofH's turn. Either of choices 1 or 2

will guarantee an upper bound on the length of a turn

when the other node is waiting to transmit, since S's

collision counter will never get above M or M +1, re-

spectively, and this puts an upper bound on the length

of H's turn, and thus S's. If a completely predictable

turn length is not a paramount issue, then analysis

and experiment has shown that choice 3 is slightly

better than the others, since it decreases the mean

idle time between turns (and, therefore, increases the

capacity) at little loss in predictability for the access

times. The code in step 2 listed above implements

the third choice, as do all simulations reported in this

paper.

3

Note that although 72-byte packets are common on modern

networks, they are not common enough to come in long back-

to-back streams that would saturate a 2-node network.

3 Simulation results

3.1 Poisson tra�c

We ran thousands of long Smurph [7] simulations of

two-node systems consuming several CPU-years on a

collection of 70 SPARCstation IPCs. We did simula-

tions duplicating the experiments of Boggs et al. [2],

including varying the number of nodes running stan-

dard Ethernet protocol while validating our simulator.

Our results accurately duplicated all their measures

within statistical uncertainties. More validation de-

tails can be found in Molle [6], which used the same

Smurph �nite state machine for its standard Ether-

net as was used for SHEP results. We also varied the

distance between the two nodes, the load, the distribu-

tion of load between nodes, the time between back-to-

back packets from the same node, the distribution of

packet sizes, and the tra�c patterns (including trace-

driven packet sizes and arrival times, as described in

section 3.2.1.) In all cases, the results were qualita-

tively identical to the results we present below: with

two standard nodes, the Capture E�ect is observable

even at loads well below saturation and the e�ect gets

much worse as the load approaches saturation; use of

SHEP eliminates the Capture E�ect and provides ef-

�cient round-robin service.

We found through experiment that the best choice

for the maximum collision counter M is 1, except on

very long networks where anM of 2 or 3 may be used.

We were quite surprised because this value ofM seems

rather small, but our simulations clearly show that us-

ing values greater than 1 only negligibly increases the

maximum throughput while substantially increasing

variance of delay. Both these e�ects are due to the in-

creased idle time between the end of H's turn and the

beginning of S's turn, while S �nishes its �nal backo�.

To substantially increase throughput requires setting

M greater than about 10, which simply results in high

mean run lengths and high variance of delay, similar

to the Capture E�ect.

Figure 3 is the same as Figure 2 with the addition

of statistics for SHEP. SHEP's fairness is such that the

two nodes have identical statistics, so we only show the

statistics for one node. The mean run lengths are of

order 2, rather than 200. The standard deviation de-

creases as the load increases, signifying almost perfect

round-robin service. Figure 4 shows the mean access

delay for both the standard protocol and SHEP. SHEP

o�ers slightly lower access delay until the very high-

est loads. Furthermore, the delay graph is the same

for both nodes. Figure 5 shows the global standard

deviation of delay for both protocols. The standard

deviation of delay for SHEP is more than an order of

magnitude smaller than that of the standard protocol.

Figure 6 shows the single largest observed access delay

for the standard protocol and for the SHEP protocol.

The di�erence is about two orders of magnitude. It is

the rare but huge access delays in the standard pro-

tocol that cause the most trouble to higher-level pro-

tocols, and to users. SHEP completely eliminates the

e�ect.

Finally, we mention two other related results. First,

if there is more than one standard node on a network
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Figure 3: This is Figure 2 with the same run length

statistics included for when one node runs the SHEP

protocol, vs. throughput. Note the vertical axis is log-

arithmic, as are all �gures in this paper. The mean run

length and its standard deviation are almost 2 orders

of magnitude smaller at high load. For both protocols,

the statistics are only shown for one node, because for

a given protocol the statistics are identical for both

nodes. In the case of two nodes running the standard

Ethernet protocol, this is obvious by symmetry; it is

by design in SHEP. Note the slightly lower capacity

of SHEP (8.3 Mb/s) vs. the standard protocol (9.0

Mb/s).
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SHEP Avg Delay

Figure 4: Comparison between the mean access delay

in milliseconds for the standard protocol and SHEP.

SHEP gives lower delay until the very highest loads.

The graph is also the same for both nodes.
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Figure 5: Comparison of the standard deviation of ac-

cess delay in milliseconds for both the standard Ether-

net protocol and SHEP. SHEP gives an order of mag-

nitude smaller standard deviation of delay. Again, this

graph is the same for both nodes.
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Figure 6: Single maximum observed access delay dur-

ing our simulation, in milliseconds, for both proto-

cols. With SHEP, the maximum observed delay at a

throughput of 8.3 Mbits/s was only 4 milliseconds, as

compared to about 300 ms for the standard protocol.
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with 1 SHEP node, the system will not crash, and in

fact the presence of the SHEP node slightly decreases

delay variances of all nodes, although the e�ect is far

less than in an actual two-node system. See Molle [6]

for a protocol which allows good fairness e�ects for

more than 2 nodes.

Second, extremely poor performance would result

if more than one SHEP node attempted to control

the same collision domain: both will quickly get into

the \attempt transmission" state and, thereafter, lit-

tle progress will be made as each tries to beat the

other into submission with repeated 0-delay backo�s.

Although we could modify SHEP to be less aggres-

sive (for example, in SHEP.5 the node transmits with

probability 0.5 at every slot), a better solution would

be to ensure that only one host is using SHEP, using

either the Spanning Tree Algorithm for bridges or the

link based auto-negotiation protocol in the 100BaseT

standard. This is because our experiments have shown

that modifying SHEP to SHEP.5 is a poor compro-

mise: using SHEP.5 instead of SHEP in combination

with a standard Ethernet node hurts performance,

whereas if both nodes can be non-standard then better

performance is available using other protocols, such as

CABEB [8], that are speci�cally optimized for 2-node

co-operation.

3.2 Packet trace driven tra�c

3.2.1 Packet trace environment

The traces were taken on the University of

Toronto's Undergraduate Computing Disciplines Fa-

cility (CDF), which consists of two separate Ethernets

on two 
oors. Our trace machine was on the second


oor Ethernet, which connects 28 Sparc IPC worksta-

tions, one SPARCserver 490 �le server, one SPARC-

server 690 model 140 compute server, a smart console

attached to the �le server, plus the trace machine,

which was passive the vast majority of the time. Any

other addresses appearing in the traces (including all

the machines downstairs) were mapped into one node

called the \Outside" node. Each workstation has a

200MB local disk containing /tmp, a swap partition

and all of the standard Unix binaries. Student home

directories are on the �le server, accessed via NFS.

Typical tra�c on the network consists of NFS ac-

cesses, remote interactive logins, remote X-Window

tra�c, and occasional distributed ray tracing using

PVM [4]. Traces were taken intermittently over many

weeks using the tcpdump program, tuned for low pro-

cessing overhead. Usages on the network varied from

the facility full of students doing programming assign-

ments, to having 35 remote Matlabs [5] and Xmaples

[3] on the compute server, to days of many students

playing Xtrek and NetTrek games. The average packet

size was usually about 140 bytes, roughly bimodal be-

tween the smallest and largest packet sizes. Each trace

lasted 1 hour, with the load average ranging from

2% one evening to over 60% on occasion. A typical

trace with a 1-hour average load of 7% would have 1-

minute averages varying usually between 1% and 20%,

and never observed over 70%. Loads were distributed

across nodes very asymmetrically, with the �le server

being the source and destination of the greatest num-

ber of packets, followed by either the compute server

or the NetTrek game server. Most other nodes had

negligible loads in comparison. We do not attempt to

correct for propagation delay, because our network is

small | the maximum delay between any two nodes

does not exceed about 200 feet (less than 4 bit times).

These traces are still not ideal, because they only

include successful transmissions, i.e., packet depar-

tures. Even though we can subtract the transmis-

sion time from the packet departure time to get its

beginning-of-transmission time, there is still the pos-

sibility that the packet participated in deferrals or col-

lisions before its �nal successful transmission. Thus,

the calculated beginning-of-transmission time is only

an upper bound on the arrival time. We attempted to

minimize this e�ect by discarding entire traces whose

average load was above 10% Ethernet capacity. Even

so, many of the remaining traces were during hours of

interesting student tra�c.

Since the traces only include successful transmis-

sions (i.e., the �nal output of the medium access con-

trol algorithm), driving the inputs to the model from

a single trace �le will produce no collisions in the sim-

ulation. We also want to produce simulated high load

tra�c. Our solution was to \overlay", or merge mul-

tiple traces into one to achieve higher loads. Finally,

to produce two-node tra�c, the �le server was node 0,

and the compute server plus all the workstations were

wrapped into node 1.

3.3 Trace driven simulation results

Figure 7 shows the throughput as a function of of-

fered load for this simulated two-node system. For

both protocols, it shows the total throughput from

both nodes, as well as the individual throughputs of

the two nodes. The same tra�c pattern (i.e., same set

of merged traces) was used in both tests. In the SHEP

case, node 0 (the �le server) ran the SHEP protocol,

while node 1 ran the standard Ethernet protocol. The

�le server consistently has more tra�c to send than

the other node. It can also be seen that at high load,

it is the �le server that accounts for most of SHEP's

lost capacity. This is probably because it has more

data to send, and an equal-time round-robin service

favours the less busy node. Figure 8 compares the

mean run length of the two protocols, showing both

nodes in each case. The standard protocol averages up

to 100 packets per run, while SHEP averages about

3 for the �le server, and 2 for the (less busy) other

node. Figure 9 compares the standard deviation of the

run length for both nodes and both protocols, clearly

showing that the standard protocol consistently has

runs lengths well into the hundreds of packets, while

SHEP maintains a fair, round-robin schedule at any

o�ered load, limiting run lengths to about 3 for the

�le server, and 2 for the other node.

Figures 10 and 11 compare the mean access delay

and its standard deviation, respectively. These Fig-

ures tell roughly the same story as Figures 4 and 5:

SHEP has slightly lower mean access delay and dras-

tically lower variance of access delay. Finally, Figure

12 shows the single maximum access delay for both

protocols, and like Figure 6 shows that SHEP limits
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Figure 7: Throughput as a function of o�ered load

in Mb/s for trace-driven simulation. Curves labelled

\Std" represent a standard 2-node Ethernet; ones la-

belled \SHEP" represent when node 0 runs the SHEP

protocol, while node 1 runs the standard Ethernet pro-

tocol. Note that the load is asymmetric; node 0 (the

�le server) transmits more information than node 1

(the rest of the workstations, which form our simu-

lated \other node" in our two-node system). Also, it

is clear here that the SHEP protocol has a slightly

lower throughput at high load.

the maximum access delay to almost two orders of

magnitude smaller than the standard protocol.

There are no qualitative changes to the �gures if we

swap protocols being run on the two nodes (i.e., the

�le server as a standard node and the other node run-

ning SHEP). The only two non-negligible quantitative

changes are that both run length curves (Figure 8)

slope down, and the access delay standard deviations

(Figure 11) reach a little higher to about 0.8ms at the

highest loads.

4 Comparison with CABEB

Last year, Ramakrishnan and Yang introduced

the Capture Avoidance Binary Exponential Backo�

[8]. The most obvious and important di�erence from

CABEB is that SHEP requires only one node be

changed. Referring to Tables 6.1 through 6.3 of [8],

if a similar update is attempted with CABEB, the

CABEB node gains a signi�cant throughput advan-

tage against the standard node. With 64 byte pack-

ets, the CABEB node gets a throughput of 4.1 vs. 3.5

Mb/s for the standard node. Although SHEP has a

capacity of only 5.0 Mb/s with 64 byte packets, we

believe a network saturated both ways with 64-byte

packets is unrealistic. Even with 1500 byte packets,

the CABEB node gets 5.4 vs. 4.4 Mb/s for the stan-

dard node, whereas SHEP allows equal access. In the

case of asymmetrical o�ered loads, their Table 6.3 in-

dicates that a CABEB node will send most of its pack-

ets, at the expense of the standard node, even if the

standard node has a higher o�ered load.

If both nodes are updated with CABEB, we believe
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Figure 8: Mean run lengths for each node using the

standard Ethernet protocol, and SHEP.
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Figure 9: Run length standard deviations of each node

for both protocols.

0.1

1

1 2 3 4 5 6 7 8 9

Std Node 1
SHEP Node 1
Std Node 0
SHEP Node 0

Figure 10: Mean access delay in milliseconds (ms) for

each node for both protocols.
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Figure 11: Access delay standard deviation (ms) for

each node, both protocols.
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Figure 12: Single maximum observed access delay

(ms) over an hour for both protocols.

SHEP still o�ers some advantages. Since CABEB im-

plements a 1-packet-per-turn round-robin, a high but

asymmetrical load with packet sizes s

1

and s

2

means

that the ratio of the throughputs is forced to a con-

stant of �

s

2

s

1

. On the other hand, SHEP is more dy-

namic, allowing each host to use as much bandwidth

as it needs until the network becomes saturated, at

which point it enforces equal time for each host.

5 Conclusions

We have presented a solution to the two-node Eth-

ernet Capture E�ect in which only one node needs

to be changed. This protocol has the advantages of

simplicity, fairness, slightly reduced delay, and drasti-

cally reduced variance of delay and maximum delay,

all at a minor cost in capacity. We have simulated

thousands of two-node systems with various combina-

tions of many parameters and found these results to

be consistent across all systems considered.
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