Conceptualize a deep learning model as:
$\overrightarrow{x_{0}} \rightarrow \mathrm{f}_{1} \xrightarrow{\text { Conv2d }}{\overrightarrow{x_{1}}}_{\ldots}^{\vec{x}_{i}}{ }^{\text {Conv2d }} \overrightarrow{\mathrm{f}}_{i+1} \xrightarrow{\overrightarrow{x_{i-1}}} \ldots \xrightarrow{\overrightarrow{x_{n}}}$ loss $\longrightarrow 1$

$$
f\left(\cdot ; \vec{\theta}_{1}, \ldots, \vec{\theta}_{n}\right)=f_{1}\left(\cdot ; \vec{\theta}_{1}\right) \circ \ldots \circ f_{n}\left(\cdot ; \vec{\theta}_{n}\right)
$$

Parameter updates need:
$\left[\nabla_{\vec{\theta}_{1}} l, \ldots, \nabla_{\vec{\theta}_{n}} l\right] \leftarrow[\underbrace{\left.\left.\frac{\partial \vec{x}_{1}}{\partial \vec{\theta}_{1}}\right)^{T} \mid \overline{\nabla_{\vec{x}_{1}} l}, \ldots,\left(\frac{\partial \vec{x}_{n}}{\partial \vec{\theta}_{n}}\right)^{T} \underline{\nabla_{\vec{x}_{n}} l}\right]}$
Could be parallelized if all inputs are available.
Back-propagation (BP) Algorithm:

Limitation of BP on parallel systems:
Idle Working

Step Complexity: O(n)

SCALING BACK-PROPAGATION BY Parallel Scan Algorithm
 Shang Wang ${ }^{1,2} \mid$ Yifan Bail \mid Gennady Pekhimenko ${ }^{1,2}$

SCAN EXPLAINED BY AN EXAMPLE

For a binary, associative operator (example: +), given the

The exclusive scan
produces: $\quad 0+1+3+6+10+15+21+28$
Parallel scan algorithms (Blelloch scan) were developed to compute scan on parallel systems.

BP AS A SCAN OPERATION

Matrix multiplication is also binary and associative!
Define a binary, associative, non-commutative operator:

$$
A \diamond B=B A
$$

We can reformulate BP as calculating:
$\left[\nabla_{\vec{x}_{n}} l, \nabla_{\vec{x}_{n}} l \diamond\left(\frac{\partial \vec{x}_{n}}{\partial \vec{x}_{n-1}}\right)^{T}, \nabla_{\vec{x}_{n}} l \diamond\left(\frac{\partial \vec{x}_{n}}{\partial \vec{x}_{n-1}}\right)^{T} \diamond\left(\frac{\partial \vec{x}_{n-1}}{\partial \vec{x}_{n-2}}\right)^{T}\right.$, $\left.\ldots, \nabla_{\vec{x}_{n}} l \diamond\left(\frac{\partial \vec{x}_{n}}{\partial \vec{x}_{n-1}}\right)^{T} \diamond \ldots \diamond\left(\frac{\partial \vec{x}_{2}}{\partial \vec{x}_{1}}\right)^{T}\right]$
Which is an exclusive scan on the input array:
$\left[\nabla_{\vec{x}_{n}} l,\left(\frac{\partial \vec{x}_{n}}{\partial \vec{x}_{n-1}}\right)^{T},\left(\frac{\partial \vec{x}_{n-1}}{\partial \vec{x}_{n-2}}\right)^{T}, \ldots,\left(\frac{\partial \vec{x}_{2}}{\partial \vec{x}_{1}}\right)^{T},\left(\frac{\partial \vec{x}_{1}}{\partial \vec{x}_{0}}\right)^{T}\right]$
Blelloch scan can be used to scale BP on parallel system!

BPPSA EXPLAINED BY AN EXAMPLE

G: Gradient vector \quad J:Transoseded Jacobian Matrix $\begin{array}{llllllllll} & \mathbf{G}_{7} & \mathbf{J}_{7} & \mathrm{~J}_{6} & \mathrm{~J}_{5} & \mathrm{~J}_{4} & \mathrm{~J}_{3} & \mathrm{~J}_{2} & \mathrm{~J}_{1}\end{array}$

BP as Linear Scan

INSIGHT: SPARSITY IN THE JACOBIANS

A full Jacobian can be prohibitively large to handle. However, the Jacobians of major operators can be extremely sparse:

Guaranteed zeros: deterministic, known ahead of time. Could be used for better SpGEMM performance!

Generate directly into Compressed Sparse Row (CSR):

COMPLEXITY ANALYSIS

n : length of the model; p : \# of workers.
s : Step complexity-\# of steps to finish execution. W: Work complexity-\# of total steps by all workers C: Per-step complexity-Runtime of a single step

$$
\begin{aligned}
& \text { M: Space complexity } \\
& \begin{aligned}
& S_{\text {Blelloch }}(n)= \begin{cases}\Theta(\log n) & p>n \\
\Theta(n / p+\log p) & \text { otherwise }\end{cases} \\
& W_{\text {Blelloch }}(n)=\Theta(n) \\
& M_{\text {Blelloch }}(n)=\Theta\left(\max \left(\frac{n}{p}, 1\right)\right) M_{\text {Jacob }}
\end{aligned} \\
& \text { Break-even: } \frac{C_{\text {BPPSA }}}{C_{\text {Baseline }}}<\Theta\left(\frac{n}{\log n}\right)
\end{aligned}
$$

1. Reduce C: SpGEMM
2. Large n : deep network, long sequential dependency

CONVERGENCE / NUMERICAL STABILITY
Training LeNet-5 on CIFAR-10 (baseline: PyTorch Autograd). The purple dash lines overlap with the yellow solid lines:

(a) Traning loss per iteration.
b) Test loss per beration

The original BP is re-constructed exactly!

PERFORMANCE EVALUATION

Model-RNN: $\vec{h}_{t}^{(k)}=\tanh \left(W_{i h} x_{t}^{(k)}+\vec{b}_{i h}+W_{h h} \vec{h}_{t-1}^{(k)}+\vec{b}_{h h}\right)$ Task-Classify Bitstream: $x_{t}^{(k)} \sim \operatorname{Bernoulli}\left(0.05+c^{(k)} \times 0.1\right)$ Baseline: cuDNN's cudnnRNNBackwardData
Implementation: custom CUDA kernels with PyTorch
Hardware: RTX 2070, RTX 2080Ti (Turing architecture GPUs)
For batch size $\mathrm{B}=16$ and sequence length $\mathrm{T}=1000$ on 2070:

Sensitivity Analysis
Sequence length (T): reflects the model length n .
Mini-batch size (B): reflects the number of (per-sample) workers p.
The speedup on the backward pass:

1. BPPSA scales with n when n is in the same range as p. When $n \gg p$, the performance starts to be bounded by p.
2. BPPSA scales with p.
3. Since \#SMs(2080Ti) > \#SMs(2070), 2080Ti achieves the maximum speedup at a higher T than 2070. As B increases, the speedup on 2080Ti drops at a slower rate than 2070
