
BACK-PROPAGATION ALGORITHM

SCALING BACK-PROPAGATION BY

PARALLEL SCAN ALGORITHM
Shang Wang1,2 | Yifan Bai1 | Gennady Pekhimenko1,2

Worker #1

l f1

Conv2d

...

Worker #i+1

fi+1 ... loss

Conv2d

Forward Pass

Conceptualize a deep learning model as:

l f1

Conv2d

... fi+1 ... loss

Conv2d

Back-propagation (BP) Algorithm:

Could be parallelized if all inputs are available.

Parameter updates need:

Backward Pass

Strong Sequential Dependency along i

Limitation of BP on parallel systems:

Worker #i

fi

Worker #i+1

fi+1

Worker #i-1

fi-1

Working Idle

Ti
m

e

Gradients #i+1

PRIOR WORKS: PIPELINE PARALLELISM

PipeDream, SOSP’19:

Worker #i

fi

Worker #i+1

fi+1

Worker #i-1

fi-1 Gradients #i

Worker #i

fi

Worker #i+1

fi+1

Worker #i-1

fi-1 Gradients #i-1

Backward Pass

Step Complexity: Θ(n)

1 2 3 4 1 5 2 6 3 7 4

1 2 3 4 1 2 5 3 6 4 7

1 2 3 1 4 2 3 5 4 6 5

1 1 2 2 3 3 4 4 5 5 6

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

GPipe, abs’1811.06965:

Worker #1

#2

#3

#4

Idle Forward Backward

Space Complexity

#1

#2

#3

#4

Limitations!

Accuracy Loss:

2.9% for Top-1

SCAN EXPLAINED BY AN EXAMPLE

For a binary, associative operator (example: +), given the

input array:

+

1

+

2

+

3

+

4 5 6 7 8

The exclusive scan

produces: 0 1 3 6 +
10 +

15 +
21 28

Parallel scan algorithms (Blelloch scan) were developed to

compute scan on parallel systems.

BP AS A SCAN OPERATION

Matrix multiplication is also binary and associative!

Define a binary, associative, non-commutative operator:

We can reformulate BP as calculating:

Which is an exclusive scan on the input array:

Blelloch scan can be used to scale BP on parallel systems!

Operands swapped for non-commutativity!

BPPSA EXPLAINED BY AN EXAMPLE

G J : Gradient Vector :Transposed Jacobian Matrix

INSIGHT: SPARSITY IN THE JACOBIANS

A full Jacobian can be prohibitively large to handle.

However, the Jacobians of major operators can be

extremely sparse:

First three ops of

VGG-11 on CIFAR-10

Convolution ReLU Max Pooling

Sparsity 0.99157 0.99998 0.99994

Generation Speedup 8.3×103 X 1.2×106 X 1.5×105 X

Guaranteed zeros: deterministic, known ahead of time.

Could be used for better SpGEMM performance!

0 0 0

0 0 0

0 0 0 0

0 0

Conv2d_Grad([1, 0, 0, 0])

Conv2d_Grad([0, 1, 0, 0])

Conv2d_Grad([0, 0, 1, 0])

Conv2d_Grad([0, 0, 0, 1])

Generate directly into Compressed Sparse Row (CSR):

Conv2d, W

1 2 0 3

0 1 2 2 4

data

indices

indptr

COMPLEXITY ANALYSIS

CONVERGENCE / NUMERICAL STABILITY
Training LeNet-5 on CIFAR-10 (baseline: PyTorch Autograd).

The purple dash lines overlap with the yellow solid lines:

PERFORMANCE EVALUATION
Model—RNN:

Task—Classify Bitstream:

Baseline: cuDNN’s cudnnRNNBackwardData

Implementation: custom CUDA kernels with PyTorch

For batch size B=16 and sequence length T=1000 on 2070:

2.17X speedup on

the overall training

time.

Sensitivity Analysis:
Sequence length (T): reflects the model length n.

Mini-batch size (B): reflects the number of (per-sample) workers p.

The speedup on the backward pass:

The overall training speedup:

1. BPPSA scales with n when n is in the same range as p.

When n >> p, the performance starts to be bounded by p.

1

2

BP as Linear Scan

Parallel BP as Blelloch Scan

2logn

The original BP is re-constructed exactly!

Hardware: RTX 2070, RTX 2080Ti (Turing architecture GPUs)

2. BPPSA scales with p.

3. Since #SMs(2080Ti) > #SMs(2070), 2080Ti achieves the

maximum speedup at a higher T than 2070. As B increases,

the speedup on 2080Ti drops at a slower rate than 2070.

Activations Weights

n: length of the model; p: # of workers.

S: Step complexity—# of steps to finish execution.

W: Work complexity—# of total steps by all workers.

C: Per-step complexity—Runtime of a single step.

M: Space complexity

Examples

Therefore, instead of

calculating the Jacobians

column-wise:

Break-even:

 1. Reduce C: SpGEMM

 2. Large n: deep network, long sequential dependency

4.53X speedup on

the backward pass

runtime.

