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Conceptualize a deep learning model as: 
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Back-propagation (BP) Algorithm: 

Could be parallelized if all inputs are available. 

Parameter updates need: 

Backward Pass 

Strong Sequential Dependency along i 

Limitation of BP on parallel systems: 
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PRIOR WORKS: PIPELINE PARALLELISM 

PipeDream, SOSP’19: 
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Backward Pass 

Step Complexity: Θ(n) 
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GPipe, abs’1811.06965: 
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Limitations! 

Accuracy Loss: 

2.9% for Top-1  

SCAN EXPLAINED BY AN EXAMPLE 

For a binary, associative operator (example: +), given the 

input array: 
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The exclusive scan 

produces: 0 1 3 6 + 
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15 + 
21 28 

Parallel scan algorithms (Blelloch scan) were developed to 

compute scan on parallel systems. 

BP AS A SCAN OPERATION 

Matrix multiplication is also binary and associative! 

Define a binary, associative, non-commutative operator: 

We can reformulate BP as calculating: 

Which is an exclusive scan on the input array: 

Blelloch scan can be used to scale BP on parallel systems! 

Operands swapped for non-commutativity! 

BPPSA EXPLAINED BY AN EXAMPLE 

G J : Gradient Vector :Transposed Jacobian Matrix 

INSIGHT: SPARSITY IN THE JACOBIANS 

A full Jacobian can be prohibitively large to handle. 

However, the Jacobians of major operators can be 

extremely sparse: 

First three ops of 

VGG-11 on CIFAR-10 

Convolution  ReLU  Max Pooling  

Sparsity  0.99157  0.99998  0.99994  

Generation Speedup  8.3×103 X  1.2×106 X  1.5×105 X  

Guaranteed zeros: deterministic, known ahead of time. 

Could be used for better SpGEMM performance! 
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Generate directly into Compressed Sparse Row (CSR): 
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COMPLEXITY ANALYSIS 

CONVERGENCE / NUMERICAL STABILITY 
Training LeNet-5 on CIFAR-10 (baseline: PyTorch Autograd). 

The purple dash lines overlap with the yellow solid lines: 

PERFORMANCE EVALUATION 
Model—RNN: 

Task—Classify Bitstream: 

Baseline: cuDNN’s cudnnRNNBackwardData 

Implementation: custom CUDA kernels with PyTorch 

For batch size B=16 and sequence length T=1000 on 2070: 

2.17X speedup on 

the overall training 

time. 

Sensitivity Analysis: 
Sequence length (T): reflects the model length n. 

Mini-batch size (B): reflects the number of (per-sample) workers p. 

The speedup on the backward pass: 

The overall training speedup: 

1. BPPSA scales with n when n is in the same range as p. 

When n >> p, the performance starts to be bounded by p. 
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BP as Linear Scan 

Parallel BP as Blelloch Scan 

2logn 

The original BP is re-constructed exactly! 

Hardware: RTX 2070, RTX 2080Ti (Turing architecture GPUs) 

2. BPPSA scales with p. 

3. Since #SMs(2080Ti) > #SMs(2070), 2080Ti achieves the 

maximum speedup at a higher T than 2070. As B increases, 

the speedup on 2080Ti drops at a slower rate than 2070. 

Activations Weights 

n: length of the model; p: # of workers. 

S: Step complexity—# of steps to finish execution. 

W: Work complexity—# of total steps by all workers. 

C: Per-step complexity—Runtime of a single step. 

M: Space complexity 

Examples 

Therefore, instead of 

calculating the Jacobians 

column-wise: 

Break-even: 

 1. Reduce C: SpGEMM 

 2. Large n: deep network, long sequential dependency 

4.53X speedup on 

the backward pass 

runtime. 


