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Differentiable Rendering is Important!

The ability of calculating gradients are crucial to optimization
- (a) inverse problems, (b) deep learning

Inverse
rendering

neural neural
network 3D scene image network




Differentiable Rendering is Important!

- Render and compare approach o .
distance Optimize scenes via

update to target differentiable renderer

source /

3D scene:
triangle positions
camera pose
materials




Differentiable Rendering is Challenging!

- Computing the gradient of rendering is challenging

Rendering integral includes visibility terms that are not differentiable

I= f f k(x, y)L(x, y)dxdy

Pixel filter Radiance (another integral)

Scene function: f(x,y; ®) = k(x,y)L(x,y)

VI = Vf f(x,y; ®)dxdy

rendered image



Differentiable Rendering is Challenging!

I — //; Z E Can we just use gE; to estimate g}i ?

Monte Carlo samples
Non-differentiable integrand: No ®

Differentiable integrand: Yes @

(8pz/ /apz) (ai/#/ﬁi)

Easy to compute (e.g., automatic differentiation)
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Differentiable Rendering is Challenging!

Pixel integrals // - dx dy
Light integrals / ‘ dw

BSDF integrals / ‘ do




Issues with Automatic Differentiation




Issues with Automatic Differentiation
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Contributions

- This paper proposed a general physically-based differentiable render

glossy reflection mirror reflection shadow global illumination




Contributions

- This paper proposes a general physically-based differentiable renderer
- General differentiable path tracer

* a stochastic approach based on Monte Carlo ray tracing to estimate both the integral and the
gradients of the pixel filter’s integral

- Handling geometric discontinuities

* a combination of standard area sampling and novel edge sampling to deal with smooth and
discontinuous regions

- This paper shows

- The utility of proposed differentiable renderer in several applications (inverse rendering, 3D
adversarial examples)

- Better performance than two previous differentiable renderers (OpenDR & Neural Mesh
Rendering)



Physically-based Rendering

- The Rendering Equation
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The Rendering Equation

Outgoing direction Incoming direction
Lo(X.@) = Lo(X,@0) + dumLi(X, @) Fx (G5, @) &5 - A aw
- S2

A pointin the scene urface norm

All incoming directions
(a sphere)

Credit: https://news.developer.nvidia.com/ray-tracing-essentials-part-6-the-rendering-equation/



https://news.developer.nvidia.com/ray-tracing-essentials-part-6-the-rendering-equation/

The Rendering Equation

fx (@i, wo) |wi - N| dw;

Li(X, @)

Lo(X, @) = Lo (X, &) +/
_ _ o

Outgoing light Incoming light Material Lambert

Credit: https://news.developer.nvidia.com/ray-tracing-essentials-part-6-the-rendering-equation/



https://news.developer.nvidia.com/ray-tracing-essentials-part-6-the-rendering-equation/

Rendering = Sampling

pixel

color change
when blue triangle
moves up?




Key idea: Explicitly integrate the boundaries

pixel

color change
when blue triangle
moves up?




Mathematical formulation

- Model the edge as the step function

- Each pixel is an integral over the step functions

L Dirac delta —_
in triangle zero area) \% J‘S(lx)dx = JVS()C)dAX/é(X)

Step function Dirac delta

color . .
outside triangle

- —

pixel coordinate




Mathematical formulation

* A smooth shading function f multiples to the step function s

/~\ V(s-f)=(Vs)-f+s-(Vf)

color

—_ —

pixel coordinate




1D Derivatives

(the blue area)

x=1
y J x<p?1:05

=0




1D Derivatives
(the blue area)

x=1
derivative w.r.t. p =
y this purple infinitesimal area X<p?1:05
(0.5 dp) 0




Trick: move the discontinuities to the integral boundaries

(the blue area)

x=1
y [ Xx<p?1:05

=0

X=p x=1
= | 14| o3
x=0 xX=

X



1D Derivatives =1
x<p?1:0.5

J x=0

(derivative of blue area w.r.t. p)

D é) X= x=1
— J 1 + J 0.5
ap x=0 =

X=Pp




Discontinuity derivatives =
differences at discontinuities

0

0
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Discontinuity derivatives =
differences at discontinuities  interior derivative

0

0
e b R,

f — f +
‘the Leibniz’s integral rule”

boundary derivative




Interior derivative

P
op

op

Reynolds transport theorem
[Reynolds 1903]

boundary derivative




Mathematical formulation

- Scene function  f(x,y; D) \
- Pixel Color I= Jgrf(x, y; ®)dxdy color
- Gradient VI = V\er(x, y; ®)dxdy ——

pixel coordinate
a(x,y) = Ax+By+C

- All discontinuities happen in the scene edges

Jx, y; @) = Ha(x, y))f,(x, y; P) + O(—alx, y)fi(x, y; P) iy

[ = ﬂ fx,y; ®)dxdy = Z H@ (al-(x, y)) filx, y; ®)dxdy ~Ji




Mathematical formulation

- Using the Chain rule

\Y H O(a(x, y)(x, y, ®)dxdy = [[ o(a(x,y)) Va(x, y)f(x, y; @)dxdy + ﬂ Vfx,y; ®)0(a(x,y))dxdy

Edge sampling Area sampling

A




Generalization & Scalability

- Generalizable to shadow & interreflection

- Use importance sampling to sample edges and pick points (Hill and Heitz 2017)

light source P 7
p “‘\
\L
h ‘\
u h;
w,‘ -\
Ul inn P \‘\\
blocker V() P
shading point p

select an edge & pick a point

area of a light source




Algorithms

dPT(x,w,):

sample w; | € S? with probability p; ;
y < raylntersect(x, w; ;)
(L;, Ll) <~ dPT(y, — mi,l)

Standard PT
. [(X o, 0,)L w/ symbolic

differentiation
Pi1

d .
d_ir[f;(x’ W; 1, a)o)] Li +f;(x, @; 1, a)o) Li

Pi1

L«

sample w; , € dS? with probability p; ,
Vosi(X, @; ) [((X, @; 5, 0,) AL(X, @, 5)
Dip

return (L + L.(X,w,), L+d%Le(X, (00)>

L <L+

Rendering equation

JRe(®@;)
Lw,) = J ]E(wi, ®,) Li(wi;dd(wi)
S?
Differential rendering equation
d
—L(®,) = J — fre(@y) do(®;)
dﬂ' S? dﬂ'

+ J Vs (@y) Afgg(@;) d7 (@)
0S?



Algorithms

dPT(x,w,):

sample w; | € S? with probability p; ;
y < raylntersect(x, w; ;)
(L, L) < dPT(y, — ;)

Standard PT
. [(X, 0, ®,) L w/ symbolic

differentiation
Pi1

d .
d_ir[f;(x’ W; 1, a)o)] Li +f;(x, @; 1, a)o) Li

Pi1

L «

sample ,; , € 0S? with probability p; ,
Vosi(X, @) [((X, @; 5, 0,) AL(X, @, 5)
Di2

return (L + L.(X,w,), L+d%Le(X, (00)>

L <L+




Experiments — Synthetic examples

- Optimizing 6 triangle vertices

Source Target




Experiments — Synthetic examples

- Optimizing blocker vertices

Target




Experiments — Synthetic examples

camera & teapot material logo translation camera

Source




Experiments — Synthetic examples

- Compare with central finite differences (32 x 32 scenes)

finite differences

(a) triangles (b) shadow (c) teapot




Experiments — Synthetic examples

- Sampling with or without edge importance sampling

scenes 10s, w/o importance samp. 10s, w/ importance samp. 350s, w/o importance samp. 350s, w/ importance samp.




Experiments — Inverse rendering

- Optimizing camera pose, light emission and materials

initial guess target reconstructed




Experiments — Inverse rendering

- Optimizing camera pose, light emission and materials

r

optimization target




Experiments — Inverse rendering

- Optimizing camera pose, light emission and materials

camera gradient table albedo gradient light gradient




Experiments — 3D adversarial examples

- Optimizing vertex position, camera pose, light intensity, position

ons:
53% street sign 26.8% handrail 23.3% handrail
6.7% handrail 20.2% street sign 3.4% street sign



Limitations

- Performance (rendering speed & large variance):
- Edge sampling and auto differentiation are slow (bottleneck)
- It is a challenging task to find all object edges and sampling them

- Assumptions:
- Interpenetrating geometries
- parallel edges (non-differentiable)
- Surface only light transport




Contributions (recap)

- Previous works
- Differentiable rendering that targets specific cases (faces, hands, etc.) => hard to generalize
- Fast, approximate general renderers (OpenDR, Neural Mesh Rendering) => simplified models
- challenges: estimating the derivative corresponding to the integral of the rendering equation

- This paper proposes a general physically-based differentiable renderer

- General differentiable path tracer
- Handling geometric discontinuities

- This paper shows

- The utility of proposed differentiable renderer in several applications (inverse rendering, 3D
adversarial examples)

- Better performance than two previously proposed differentiable renderers



Follow-up works

- Addressing the discontinuity problem in the rendering equation

(a) Initial (b) Est. derivative

(a) Integrand with (b) Edge sampling (c) Using changes of

.. discontinuit Li et al. 2018 variables (ours
Handle volumetric light Y [ ] (ours)

transport (Zhang et al., 2019) Re-parameterize the integral
(Loubet et al., 2019)



A Differential Theory of Radiative Transfer
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Challenges

Jre(@;)
Rendering ‘
Interior integral
Differential d d
rendering ——L(@,) = J — fre(@)) do(@;) + J Vasi(@y) Afge(@y) d€(@;) + —L (@)
equation s dm OS2 drz

e Complex scenes
- Discontinuity points (i.e., 0S?) can be expensive to detect

* Scaling out to millions of parameters



Reparameterizing Discontinuous Integrands for Differentiable Rendering

A scene with complex geometry and visibility (1.8M triangles)

ol obgective lunctions hold sigailic ped potential m areas

b Vel 3% N 5, Article 228 Pebicution dute: Noverrber 219,

Gradients with respect to scene parameters that affect visibility




Key Idea: Re-parameterizing Integrals

o

\ Change of variable: X — Xr — P
® e o —eoe >

p Z I = /k(X +p)lxsode

® Same value of the integral

e Same sample positions

¢ Different partial derivatives for MC samples




Key Idea: Re-parameterizing Integrals

Non-differentiable Monte Carlo estimates

Differentiable Monte Carlo estimates

Pixel filter or BRDF




Integrals with Large Support

No useful reparameterization Simple changes of variables make

estimates differentiable

(assumption: infinitesimal translation)




Integrals with Large Support

Sample a convolution of
the integrand

Small convolution kernel

e Estimating the same integral with a different sampling technique



Integrals with Large Support

/\R (@)
Assumption (Small angular support): {(
Removing discontinuities using rotations /{\
= / F(w,0) do = / F(R(, 0), 0) do \ 7 |
2 2
> > (a) Differentiable rotation of
E = l Z f(R(wia 9), 9) ~ T directions
N p(@i, 6o)
: : )
Handling with large support
%
2
/ f(a)) do = / / f(ﬂ) k(u, a)) d’u da), /2 k(ﬂ, OO) dﬂ =1. VweS 9{/// k
S? 52 Js2 S s
I~E= L Z fRi(pi, 0),0) k(R;i(pi, 0), wi(6), 0) 0 ¥
7N p(wi(0),0) pr(ui) (b) Notations for our spherical

convolutions



Results

—t

rd

/

Reference
(Finite differences)

Without

changes of variables




Results

Glossy reflection

Shadows

Refraction

Ours

Reference

(Finite differences)

Without

changes of variables




Results

Glossy reflection —

Edge sampling
[Li et al. 2018]

Reparameterization

Reference
Finite differences

Mesh subdivision




Challenges

@ﬁ MgM@@ﬁ Gradients

OLE b=t
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Reverse-moGe D

Roughness «

—

Diffuse color

]
]
1

lefuse texture
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Radiative Backpropagation: An Adjoint Method for Lightning-Fast
Differentiable Rendering
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Radiative Backpropagation: An Adjoint
Method for Lightning-Fast Differentiable
Rendering

Merlin Nimier-David, Sébastien Speierer,
Benoit Ruiz, Wenzel Jakob

SIGGRAPH 2020




Radiative Backpropagation

Normal rendering

- Transporting from sensor/light " Radiance Importance

may yield lower variance.

Differentiable rendering

- Transporting from objects is S
completely impractical. UU ﬂ\, _ — &

d from objects d from sensor




Render and Compare

Rendering Target

Scene parameters

The problem: minimize g(f()lc))

xeX

Scene parameters a
| Z

Z = g(.|f(x)) We need: a—x

Objective  Rendering algorithm




Render and Compare

Objective function
Rendering

0z _ oz 3y
ox dJdy 0x

Scene parameters

Sensitivity gradients



Chain Rule

Objective function

0z 0Z | 0fs(x,0,0")

a_ng() o

Scene parameters




Chain Rule

"Derivative shader"

Easy & self-contained



Pipeline Overview

Backpropagate Adjoint rendering
— .,

Roughness «

—

g(y)

Diffuse color

Radiative backpropagation




Radiative Backpropagation

Adjoint rendering \’W

\5

Estimat

Backpropagate to
BSDF parameters

\/

»

Continue propagating
adjoint radiance




Surface Texture Optimization

Initial state Target state



Surface Texture Optimization

Method
e Mitsuba 2
Ours
Ours (biased II)
esmmms Qurs (biased I)

e Qurs (biased I+II)

o
0060520000
000055598

Error

o
>



Volume Density Optimization

Equal time (2.5 min)

0.030
0.025
Reference Initial state 0.020
0.015
Method
0.010 ——  Autodiff-based
Ours
Ours (biased I) Autodiff-based Ours (biased IT)
0.005 = Qurs (biased I)
= Ours (biased I+II)
0.000
10' 10° 10° 10*

Ours (biased I+II) Time (S’ log Scale)



Challenges Remain

Complex light transport Complex geometry & motion



Follow-up works

- Estimate the derivatives of the path integral formulation

7 0.003

0.0

-0.003

Original Derivative with respect to sun location

Path space differentiable rendering (Zhang et al., 2020)



Path Integral for Forward Rendering

1= @ due .
Q)

V X3 X1
Introduced by Veach [1997] ;

Foundation of sophisticated Monte Carlo

algorithms (e.g., BDPT, MCMC rendering) Light path X = (xg, x1, x5, x3)




Differential path integral

Separated interior and boundary components

Reparameterization

Only need to consider silhouette edges

Unbiased Monte Carlo methods

Unidirectional and bidirectional algorithms

No silhouette detection is needed

d df ,
i fdp = | —du+ | gdu
T J)o o dz oQ

Interior

L(m,)




" Positive

Equal-sample
comparison

Negative

Path tracing w/ edge sampling = Reparameterization Path-space, unidir.
[Li et al. 2018, Zhang et al. 2019] [Loubet et al. 2019] [Zhang et al. 2020]




Summary

- Differentiable rendering is challenging
- Discontinuities are everywhere
- Automatic-differentiation is time & space consuming

- Physics-based differentiable rendering

- Dealing with the discontinuities:
- Edge sampling (Li et al. 2018, Zhang et al. 2019)
- Reparameterization (Loubet et al. 2019)
- Path integral formulation (Zhang et al. 2020)

- Dealing with memory issue:
- Radiative Backprop (Nimier-David et al. 2020)
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