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[Bertalmio et al., 2000]
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& Image and Video Denoising
movie frame with “film grai_n” denoised frame
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Thanks to Kevin Manbeck and Jay Cassidy (MTI)
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BROWN

Image and Video Denoising

movie frame with “film grain” denoised frame

True image \ /“Noisy” observation
p(x]y) o p(y[x) - p(x)

\

Likelihood of noisy imagey  Prior probability
given true image X of true image x

Thanks to Kevin Manbeck and Jay Cassidy (MTI)
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el Low-level Vision & MRFs

BROWN

® Other applications of interest:

® Stereo
® Optical flow

® Super-resolution

® Both likelihood and prior commonly
formulated as Markov random field (MRF).

® Consider two model types here:

® Classical pairwise MRFs

® More expressive high-order MRFs.
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Review: Factor Graphs
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Pairwise Markov Random Fields (MRFs)

BROWN

e.g.,[Geman & Geman, 1984]
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Input image
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p(X|y) = H\I!L T, Yi) H Up(z;,x;)
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recovered image T

likelihood
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B Pairwise Potentials
p(xly) = H\IJL T, Yi) H Up(z;,x;)
neighbors
likelihood - .
prior

® What are the potential functions in low-
level vision applications?

® [ikelihood:
® Application specific
® Often a simple Gaussian, e.g.:

1 2
207 (zi—=yi)

Ur(zi,y;) e

Stefan Roth
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@ Pairwise Potentials (Il)

BROWN

® Prior:

® (Gaussian potentials:

Up(z;,2;) = e 32 (@7

=10 |
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Log-histogram of the image gradient

[Ruderman, 1997], [Huang & Mumford, 1999]
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Pairwise Potentials (ll)

® Prior:

® (Gaussian potentials:

Up(z;,2;) = e 32 (@7

® “Robust” potentials (e.g., t-distribution):

1 —
Up (s, x)) = (1 oy (2 —%')2>

® non-convex energy

® Not covered here: Parameter estimation
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denoising

—_—

%

® Pairwise MRFs do not capture the rich
spatial structure of natural images:

® |nteractions are too local.

® How do we resolve that!

® Turn to richer, high-order models for the prior.
® E.g. Fields of Experts [Roth & Black,2005].
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o High-order MRF Models

BROWN

® |ikelihood model stays the same.

® Simplest case: Prior has 2x2 factors (cliques).

® larger factors possible (e.g. 3x3, or 5x5)

XC, = (:Ela yl)

(4,Y4)

(3717 L2,X3, £E4)

XC4

XC5
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o Fields of Experts
[Roth & Black, 2005]

® Model high-order factor using Product of
Experts [Hinton, 1999].

Expert distribution
® Formalization: /

Tp(xc) ch(J X O

- W N

Example filters

)
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BN Review: Probabilistic Inference

® Our goals are:

® to compute marginals of the posterior,

® or to compute an assignment that maximizes the
posterior (MAP).

® | oopy belief propagation is very popular
for approximate inference [Weiss, 1997]:

® Sum-product BP for (approximately) computing
marginals.

® Max-product BP for (approximately) computing
MAP assignments.
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& Loopy BP on Factor Graphs

BROWN

® Equivalent to standard loopy BP on
pairwise graphs, but more general.

® [wo types of messages:

® From variable node 7 to factor node C: nz’—>C’(33i)

® From factor node C to variable node i: m¢o_;(x;)

® Belief for variable node i
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Variable Node to Factor Node

BROWN

7%_>C(£Uz') X H mC/_>¢($i)
C’eN()\C

® Very easy to compute for discrete
variables.

® Applies to sum-product and max-product.
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Factor Node to Variable Node

BROWN
(" )
me—qi(x;) X Z Ueo(xo) H ni—c(x;)
X\ T4 Z/EN(C)\’L
sum-product BP

\_

(" )
mce—i(r;) x max Vo (xco) H ny ()
X0 \®s i EN(C)\i
Q
max-product BP T

® Often expensive to compute: Have to sum
or max over a potentially huge space.
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% Computational Burden

® Per message cost (/V - number of discrete
bins, often as many as 256)

® Pairwise model:  O(N?)
® mxm factors: (’)( Nm2)
® VWhat can we do to make this tractable?

® Pairwise model: Apply distance transform
[Felzenszwalb & Huttenlocher, 2004].

® 2x2 factors: Restrict the number of bins.
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@ Distance Transform
[Felzenszwalb & Huttenlocher, 2004]

® Max-product (actually min-sum) with
pairwise models.

® Speed up message computation using
distance transform techniques:

® Convex, symmetric potentials U(ry,x2) = U'(|oy — x2])

® Can compute the lower envelope
of potentials in linear time.

® Allows us to compute message
in O(N) instead of O(N?).
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Distance Transform (ll)

® Can be extended to combinations of

convex potentials, e.g. truncated Gaussians. \ /

® Very fast, but slightly disappointing results:
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Non-convex Potentials

® What could be the problem!?

® (Gaussian or truncated Gaussian
potentials do not match the statistics .|
of natural images well.

® We could use non-convex
potentials, e.g. a t-distribution.

® But: Distance transform doesn’t apply
to non-convex potentials!
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o
Key Ildea

® Approximate non-convex potentials as the
lower envelope of several convex potentials:
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® Closed form expression for t-distributions:

)2
—log ¥ (x; — xj;,0) = inf (%2 ;UJ) 24+ z—a+ alogaz
z o
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oo Details

® Closed form for a number of “robust”
potentials [Black & Rangarajan, | 996].

® Fit a given number of quadratics to
potential by minimizing KL-divergence.

® Computational burden of message
computation (q - number of quadratics):

O(q- N)
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g & Denoising Results
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High-order Models

® Decent performance with non-convex
pairwise potentials.

® But: High-order potentials promise to be
more powerful.

® Can we do unmodified BP on the factor
graph even for 2x2 factors!

® No, each message requires 232 computations.
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Key ldea

® For most pixels, we don’t really need to
represent the entire [0..255]| range.

® Limit computations to smaller range |a..b|

® Determine a and b individually per pixel.

® Denoising: Use neighborhood of pixels + noise
scale.

® Other applications: First approximate with
pairwise model.

® Optional: Discretize |a..b| coarsely.
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Results

Sy
.
N0|sy image Den0|sed W|th t- Den0|sed W|th 2x2
distrib. potential FoE
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truncated Studentt Student-t 7% FoE

Gaussian approximation

Evaluation on 10 different images: Significant PSNR
improvements (FoE over Student-t over truncated Gaussian)
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BN Running Time

® Pairwise graph (256x256 image):
® Standard algorithm: ~3 min / iteration

® Distance transform with truncated Gaussian:
~5 sec / iteration

® Distance transform with approximated non-

convex potential: ~30 sec / iteration
® High-order graph (256x256 image):
® Restricted value range: ~|6 min / iteration

CIAR Summer School August 18,2006 Stefan Roth



Summary

® MRFs are a popular model for image
processing, optical flow estimation, stereo
etc.

® | oopy belief propagation for approximate
inference has enjoyed enormous popularity.

® | BP has a large computational complexity,
especially for high-order models.

® Not always practical.
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Summary (ll)

® Pairwise models:

® Distance transform speed-up for convex
potentials.

® Approximate non-convex potentials as lower
envelope of several convex ones.

® High-order models:

® Standard algorithm impractical.

® Restrict the value range individually for every
pixel.
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