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People Tracking

Human pose and motion are ambiguous in video
* Occlusion, reflection, resolution, symmetry

* Priors are needed to help resolve these ambiguities

Kinematic models have been used extensively to constrain
tracking and pose estimation

* Model of joint angle limits and of typical poses / motions

* Does not easily model environmental interactions and other
physical subtleties of motion, leading to errors in tracking
(e.g., out of plane rotation, balance irregularities, footskate, ...)



Kinematic models
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= Kinematics: linear, 2"d-order Markov model with Gaussian process
noise and joint angle limits

= Observations: image edge (steerable pyramid)
» Inference: hybrid Monte Carlo particle filter



Kinematic models

[Urtasun, Fleet, Hertzmann & Fua, 2005]

= Kinematics: nonlinear probabilistic model of latent pose manifold
with linear 2"d-order Markov model

» Observations: tracker 2D body parts (WSL tracker)

» Inference: MAP estimation (hill-climbing)



Kinematic models

[Urtasun, Fleet & Fua, 2006]

= Kinematics: Gaussian process latent variable dynamical model
= Observations: tracker 2D body parts (WSL tracker)
= Inference: MAP estimation in sliding window (hill climbing)



Learning prior models

Why are kinematic prior models hard to learn?
= Huge space of possible independent motions
= Environmental interactions make the space much larger

= Changing physical parameters can significantly change
the motion (e.g., mass, stiffness, ...)

Collecting enough mocap data appears impossible



Physics-based dynamical models

Why dynamics?
= Contact (action / reaction)
= Forces
= Changing physical parameters
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Even silly walks obey
basic physical properties.



Physics-based dynamical models

However, dynamics of complex physical models are hard to control
* Two possible solutions: engineering and abstraction

Active control strategies in robotics
typically use ZMP-based stability
criteria

= Highly inefficient
» Characteristically inhuman motion
= Complex to implement

Kawada Industries HRP-2,
Robodex 2003



Models of human locomotion

Passive dynamics
= Efficient, human like walking can be obtained with simple models
= Based on simple, abstracted models of human locomotion
= EXxpresses many salient characteristics of human walking

Fuina. 11 watts total, 3 watts mechanical.




Models of human locomotion

The Monopode
= Very general, widely applicable model

= Capable of exhibiting bipedal walking,
running, standing and jumping

= Also used to model cockroaches,
guadrupeds, kangaroos, etc
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* Impulsive forces act on the mass at
support transfer
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[Srinivasan and Ruina 2006;
Blickhan and Full 1993]




Models of human locomotion

The Anthropomorphic Walker

= 2D model with a point-mass at
the hip for the torso

= Small masses for the legs and
rounded feet

= Torsional spring between the legs
= Can walk completely passively
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[McGeer 1990; Kuo 2001, 2002]



Models of human locomotion

How do we use these models?

* The model parameters (i.e., leg length and mass distribution)
define a set of equations of motion

* For a set of applied forces and an initial condition, the equations
of motion are integrated to find the motion of the model




Components of a stochastic dynamical model

Need a way to express motion diversity (style, speed, ...)
through a stochastic model

= Can’t change the physics, but we can let the forces be
stochastic

Use biomechanics to suggest sensible ways to do this

= For the monopode, can apply noisy force during support
and random impulses at support transfer

» For the anthropomorphic walker, can use a noisy spring
constant model and random impulses at support transfer



Models of human locomotion

Dynamics (partially) constrain pose parameters:
= Stance Position
» Global leg orientation (at least for the stance leg)

Model parameters:

» Per-person scale parameters used to model density over
segment lengths

= Assume fixed mass distribution

These models have no hips, knees, ankles, upper body, etc
= Unconstrained pose variables modeled as 2"d-order Markov



Generative model for people tracking
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d; - Abstracted dynamics, including the leg angles and
velocities, forces, stance leg and positions, etc.

Pt - Pose, including segment sizes and joint angles
Ot - Observations
S - Person-specific scale parameters for segment lengths



Bayesian people tracking

Image Observations: o014 = (01, ..., 0¢)

State: ¢ = [dt, pi

/N

dynamics pose

Posterior (Filtering) Distribution:

p(dt]o1:4) o plog| ) p(dt]01:4-1)
likelihood prediction

Online Inference:

= Particle filter with the prediction density as the
proposal distribution when re-sampling

= Re-sampling occurs only when the effective number
of particles drops below a threshold



Observation likelihood
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T(qﬁ‘z ) Is the perspective projection of point j at time t.

o/ is the associated image measurement



Experimental results

Calibrated video with known ground plane

Hand labeled data
* Could use tracks from WSL or other image trackers

Manual initialization at first frame



Experiment 1: Walking

# of particles: 500 (~30fps)
Resampling Threshold: 50




Experiment 2: Changing Direction

# of particles: 5000 (~5fps)
Resampling Threshold: 300




Experiment 3: Occlusion

Missing data: 30 sequential frames missing points on both legs
# of particles: 500 (~30fps)
Resampling threshold: 50




The End
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