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1 Introduction

1.1 A brief history

Reinforcement learning has long piqued the interest of many due to its vast applicability and its
highly promising potential. With foundational ideas stemming from the traditional theory of artificial
intelligence [18], it’s been undergoing continuous development since the later decades of the 20th
century [24]. When the deep learning revolution occurred in the early 2010s with cornerstone works
by Krizhevsky et. al. [14], Srivastava et. al. [23], and later on Vaswani et. al. [26], many employed
deep neural networks in reinforcement learning to achieve superhuman level game-playing [22, 16],
as well as a multitude of applications in other fields [3, 29, 6]. Thus was born the sub-field of deep
reinforcement learning, and since then a non-small number crossed the event horizon and spiraled
down a dark abyssal alley...

Theorists found themselves with more questions than answers. Now that deep reinforcement learning
has constantly been proving itself with solid empirical performances on tasks that even challenge
humans, the general theory of learning began rapid development, in particular, the development
of frameworks for exploration in reinforcement learning that guarantees with high probability that
deep RL agents explore efficiently. Recently, by imposing various assumptions, Wang et. al. [28]
proposed a provably efficient algorithm in the general function approximation (GFA) setting, a setting
that covers a restriction of the space of affine compositions of neural networks. In this work, as we
take a deeper look into several important components of Wang et. al.’s work, we will later argue
that although they spearhead recent efforts towards a theory for deep reinforcement learning, the
strong assumptions that make up the heart of their proofs hint at the need for a different/alternate
fundamental understanding of the reinforcement learning problem.

1.2 From tabula rasa to linear MDPs

From here onwards, we understand S to be a state space,A to be an action space, H to be the horizon
of an episode, and T = KH where K is the number of episodes played, unless otherwise stated.
Furthermore, P is a transition operator, and r is a reward function. Jaksch et. al. [10] proposed in
2010 the UCLR2 algorithm, achieving a regret of Õ(HS

√
AT ) with the finite state-action space

assumption. After every episode, UCLR2 updates its empirical MDP, computes confidence sets for its
transition models and reward models, and selects an optimistic MDP as well as an optimistic policy to
follow. In 2017, Azar et. al. [5] introduces an optimistic modification of least-squares value iteration
(LSVI), incurring an improved regret of Õ(H

√
SAT + H2S2A), nearing the best known bound

in the tabula rasa setting of Ω(
√
HSAT ). This quickly becomes a problem since many problems

in reinforcement learning are set in a continuous state space, or even a continuous action space,
examples of such are robot arm control and online navigation for self-driving vehicles. A popular
approach is binning, i.e. grouping the continuum into bins and treating such bins as individual states,
however this hands-on approach presumes knowledge of the underlying environment, thus unfit for
many learning tasks where we do not have this luxury. A classical approach would be to use linear
function approximation [24, 25].



In 2019, Jin et. al. published their foundational work [12] on a function approximation OFU approach
when the underlying MDP is linear (or approximately linear), that is, they assume the existence of a
feature map φ : S × A −→ Rd such that for any h ∈ H , there exists d unknown signed measures
µh =

(
µ
(1)
h , . . . , µ

(d)
h

)
over S and an unknown vector θh ∈ Rd such that ∀(s, a) ∈ S ×A, we have

that
Ph(·|s, a) = 〈φ(s, a), µh(·)〉 , rh(s, a) = 〈φ(s, a), θh〉

and w.l.o.g. ‖φ(s, a)‖ ≤ 1 for all s, a, as well as ‖µh(S)‖ , ‖θh‖ ≤
√
d for all h ∈ [H]. They

achieved regret bounds of Õ(d3/2H3/2
√
T ). We remark that here, we let P and r vary according to

the per-episode timestep h, that is, a non-stationary model. However, these same regret bounds apply
in the stationary case as well, as the latter is a trivial modification of the former.

Subsequent works by Cai et. al. [7] and Ishfaq et. al. [9] present exponential gradient updates-inspired
approaches to a slightly modified linear kernel MDP setting, achieving similar bounds. The common
denominator between these works is that when these linear assumptions are in place, the value
function and the quality function (state-action value function) is also linear in the feature map φ, this
readily follows by definition. Thus, one can interpret the algorithm as a search in the space of linear
functions F =

{
f : S ×A −→ R, f(s, a) = 〈φ(s, a), w〉 , w ∈ Rd

}
to find the quality function that

best correspond to the underlying MDP.

However, this setting is still quite restrictive. Even if there are methods that incorporate a misspeficia-
tion error (i.e. imposing the linear MDP assumption on MDPs that are not actually linear), the regret
bound depends linearly on the amount of misspecification (formally defined in [11]), and thus would
prove to be quite problematic in a lot of situations where the linearity assumption is poor.

Wang et. al.’s work tackles this challenge by proposing a working approach in a much broader setting.
They leverage current understandings of the eluder dimension [20] to control the complexity of the
function class

1.3 Notation, general function approximation (GFA)

This subsection establishes the notation and the assumptions that will be used throughout this paper.
As previously stated, let (S,A, P, r,H) be an MDP such that |A| <∞, P : S ×A −→ ∆(S) taking
a state-action pair to a distribution over states, and r : S × A −→ [0, 1]. Assume also that there is
some underlying initial distribution µ ∈ ∆(S).

A (deterministic) policy π chooses an action a based on the current state and current timestep, that is,
π = {πh : h ∈ [H]} such that πh : S −→ A.

Given a policy π, a timestep h ∈ [H], and a state-action pair (s, a) ∈ S ×A, we define the quality of
the policy, or the Q-function, denoted by Qπ = {Qπh : h ∈ [H]} as

Qπh(s, a) = E

[
H∑

h′=h

rh′ |sh = s, ah = a, π

]
that is, the expected rewards from playing the policy until the end of the episode given that we are
currently in state s and play action a. The value of a policy, V , is defined for any s ∈ S and h ∈ [H]
as

V πh (s) = E

[
H∑

h′=h

rh′ |sh = s, π

]

A policy maximixing the expected reward of an entire episode E
[∑H

h=1 rh|π
]

is an optimal policy,
and we denote it by π∗. The optimal policy has quality Q∗ and value V ∗. At the beginning of the
k-th episode, the agent chooses a policy πk =

{
πkh : h ∈ [H]

}
to play, and uses the history of all

trajectories induced by past policies to choose the next policy πk+1 until K episodes are played. The
(frequentist) regret after K episodes from playing policy πk instead of the optimal pi∗ is defined as

Regret(K) =

K∑
k=1

(
V ∗1 (sk1)− V π

k

1 (sk1)
)
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To establish the GFA setting and perform subsequent analyses, we employ the following notation.
For f : S ×A −→ R and v : S −→ R, define

‖f‖∞ = max
(s,a)∈S×A

|f(s, a)|, ‖v‖∞ = max
s∈S
|v(s)|

Given a dataset D = (si, ai, qi)
|D|
i=1 ⊂ S ×A×R, define

‖f‖D =

 |D|∑
t=1

(f(st, at)− qt)2
1/2

and for some Z ⊂ S ×A, define

‖f‖Z =

 ∑
(s,a)∈Z

f(s, a)2

1/2

For a set of functions F ⊆ {f : S ×A −→ R}, given some (s, a) ∈ S ×A, the width of (s, a) is

w(F , s, a) = max
f,f ′∈F

{f(s, a)− f ′(s, a)}

Intuitively, the functional ‖·‖Z can be used as a metric that determines the "difference" between two
functions on a set of state-action pairs, and is at the center of the defintion of the eluder dimension.

Recall a remark made previously, linear MDP algorithms essentially search for a quality function
in the space of linear functions F =

{
f : S ×A −→ R, f(s, a) = 〈φ(s, a), w〉 , w ∈ Rd

}
that best

matches that of the underlying MDP (once this quality function is acceptably approximated, a greedy
policy will be near-optimal). The same logic applies here, except that we can now make the search
space much richer than the space of linear functions. This is the main theme of the following
assumption about search space F .
Assumption 1.1. For any V : S −→ [0, H], there exists a fV ∈ F such that ∀(s, a) ∈ S ×A,

fV (s, a) = r(s, a) + Es′∼P (·|s,a) [V (s′)]

This intuitively means that for function V : S −→ [0, H], applying the Bellman backup op-
erator results in a function which lies in F . It can be shown that when S and A are fi-
nite, F = {f : S ×A −→ [0, H + 1]} satisfies this property, while for linear MDPs, the space
F =

{
f : S ×A −→ R, f(s, a) = 〈φ(s, a), w〉 , w ∈ Rd

}
will also satisfy the assumption.

Indeed, this assumption does approximately hold for the case of affine compositions. That is, when
the Q-function is approximated by a neural network, under several more constraints the assumption
holds, and thus the complexity the RL problem, being searching over the space F that best represents
the underlying Q-function, is dependent on the complexity of this search space. To characterize
this complexity, the authors used the eluder dimension [20], a tool invented in the stochastic bandits
setting, and later on found various applications in RL. For a more in-depth treatment of the eluder
dimension, we refer the reader to [8], and will henceforth assume knowledge of it.

The next assumption relies on the important notion of covering numbers. When (X, d) is a metric
space, an ε-net of X is a subset E ⊂ X such that ∀x ∈ X,∃y ∈ E such that d(x, y) ≤ ε. The
ε-covering number of X is

N (X, ε) = inf {|V | : V is an ε-net}

Assumption 1.2. ∀ε > 0 there exists an ε-cover C(F , ε) ⊆ F with |C(F , ε)| ≤ N (F , ε) such that
∀f ∈ F ,∃f ′ ∈ C(F , ε) with ‖f − f ′‖∞ ≤ ε.
∀ε > 0 there exists an ε-cover C(S × A, ε) ⊆ S ×A with |C(S ×A, ε)| ≤ N (S × A, ε) such that
∀(s, a) ∈ S ×A,∃(s′, a′) ∈ C(S ×A, ε) with maxf∈F |f(s, a)− f(s′, a′)| ≤ ε.

This assumption essentially requires spaces F and the product space S ×A to have bounded covering
numbers. One does indeed remark here that these assumptions are slightly restrictive. For example,
take F to be the space of all affine compositions with intermediate activation. For F to satisfy the
second assumption would require applying certain bounds either the norms of the weights of the
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affine connections or the type of activation function. Otherwise, it can be readily seen that there exists
no finite covers of F .

Taking a step back, there are indeed quite restrictive assumptions, in particular, on the search space
F , being some control of its eluder dimension as well as its covering number. However, as we shall
see in a later section, these are indeed the key pieces that make the algorithm provably efficient.

2 Algorithm, bonus stability

2.1 Design

The algorithm follows the upper-confidence bound (UCB) method, an implementation of the OFU
paradigm. At the end of each episode, it computes a candidate for a Q-value function, and adds to
it a bonus function. The latter scales in a way to incite exploration in directions yet unknown but
deem interesting by the algorithm. The algorithm proceeds thus: at the beginning of episode k ∈ [K],
let the history until the k − 1-th episode be {(sτh, aτh) : h ∈ [H], τ ∈ [k − 1]}, the algorithm sets
QkH+1 = 0, and proceeds backwards as follows: for h = H, . . . , 1,

fkh (·, ·)←− arg min
f∈F

k−1∑
τ=1

H∑
h′=1

(
f(sτh′ , aτh′)−

(
rτh′ + max

a∈A
Qkh+1(sτh′+1, a)

))2

Qkh(·, ·)←− min
{
fkh (·, ·) + bkh(·, ·), H

}
where bkh is a bonus function for that specific episode and timestep. Then, a greedy policy w.r.t. Qkh is
played for the next episode. This is equivalent to the following formulation. If we make the dataset
Dkh =

{(
sτh′ , aτh′ , rτh′ + V kh+1(sτh′+1)

)
: (τ, h′) ∈ [k − 1]× [H]

}
, we can express the optimization

objective as:
fkh ←− arg min

f∈F
‖f‖2Dk

h

In the linear MDP approach, generally UCB methods perform least-squares on the history to compute
a solid guess at the linear parameter of the underlying Q-function. If after every episode, we define
the per-timestep design matrix:

Σkh =

k−1∑
τ=1

φ(sτh, a
τ
h)φ(sτh, a

τ
h)T + λI

then, the bonus scales depending on the inverse of the design matrix. For optimistic sampling
approaches (topic of a later discussion), one would sample normal perturbations that scale with the
inverse of the design matrix as well. This incites exploration in directions yet unknown as columns of
the design matrix scale inversely with the number of times that state has been visited.

Recall that in the UCB paradigm, as a step-up from the classical extended value iteration introduced
by Jaksch et. al. [10], Azar et. al. [5] introduced the bonus directly to the final computation of the
Q-function, very much like the above. This bonus represents the upper-confidence bound for the
estimate of the Q-function, that is, w.p.a.l. 1− δ for small δ, the chosen Q-function is greater than the
true Q-function for inputs (s, a) ∈ S ×A, and is derived using Chernoff-Hoeffding concentration
techniques on the empirical MDP. Here, however, with the assumption that S is continuous, empirical
MDPs would not work. The authors of [28] recycles a familiar construction from the literature to
overcome this challenge.

Define the value function V kh+1(·) = maxa∈AQ
k
h+1(·, a). Letting Zk =

{(sτh, aτh) : h ∈ [H], τ ∈ [k − 1]} denote the state-action history up until the episode k − 1,
define

Fkh =
{
f ∈ F :

∥∥f − fkh∥∥2Zk ≤ β
}

with a choice of β such that applying the Bellman backup operator to the value function V kh+1 results
in a Q-function remaining within Fkh with high probability, that is,

r(·, ·) + Es′∼P (·|s,a)
[
V kh+1(s′)

]
∈ Fkh
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Now, bkh(·, ·) = w(Fkh , ·, ·) would make a good choice for bonus function, as the width function
maximizes the difference between all pairs of Q-functions within the confidence region, and thus
gives an upper bound on the confidence interval of the estimate of the Q-function.

As the authors remark, the complexity of this bonus function could be extremely high as the state-
action history Zk scales linearly with every episode. Therefore, instead of directly computing the
width of Fkh , they designed their ingenious process of thinning the state-action history Zk into Ẑk

such that the width function w.r.t. F̂kh =
{
f ∈ F :

∥∥f − fkh∥∥2Ẑk ≤ β
}

is approximately equal to

the width function w.r.t. Fkh . In this way, the confidence region is approximately preserved, thus an
application of the Bellman backup operator to the value function V kh+1 would still lie within Fkh with
high probability.

The process of sub-sampling Ẑk from Zk relies on a measure of sensitivity that reveals how much
each state-action in the history contribute to ‖f − f ′‖2Zk , and trimming accordingly. The authors
successfully bound |Ẑk| in terms of the eluder dimension of F times the log-covering nubmer of F .
However, this sensitivity-sampling process is not the topic of this paper’s discussion, and we refer the
reader to the original work for more related discussions.

2.2 Regret

The authors prove that under the assumptions 1.1. and 1.2., w.p.a.l., 1− δ,

Regret(K) ≤
√
ι ·H2 · T

where

ι ≤ C · log2 T

δ
· dim2

E

(
F , δ

T 3

)
· ln
(
N
(
F , δ

T 2

)
/δ

)
· log

(
N
(
S ×A, δ

T

)
· T/δ

)
with C > 0. We notice here that the ι term depends on the eluder dimension of the search class, the
log-covering number of the search class, as well as the log-covering number of the state-action space.
This is indeed due to the sensitivity-sampling process, namely its upper-control on the size of the
surrogate history Ẑk. We also stress here that while we could explicitly write out eluder dimensions
of the space of linear functions as well as their log-covering numbers and obtain a worse regret
bound than those found in the analyses of [11, 7, 9], the regret bound is in its most general form and
encompasses the tabular setting, the linear and linear kernel MDP settings, as well as the generalized
linear function approximation settings.

3 A deeper look into the proof

This section is dedicated to the proof and analysis of key lemmas that make up the proof of the
regret bound theorem of the algorithm proposed by Wang et. al.. In what follows, let V kh (s) =

maxa∈AQ
k
h(s, a) where Qkh = fkh + bkh given by the algorithm, while V π

k

and Qπ
k

are the value
function and the Q-function on the underlying MDP of the greedy policy πk =

{
πkh : h ∈ [H]

}
,

induced by
{
Qkh : h ∈ [H]

}
from the algorithm. One remarks that V k and V π

k

are certainly not the
same, as V k serves as the algorithmic approximate for the true V π

k

on the underlying MDP. We
begin with a regret decomposition and upper control.

Furthermore, to denote the integral Es′∼P (·|s,a)[V ], we sometimes use the notation E [V |s, a].

Lemma 3.1. (Lemma 8 from Wang et. al.) W.p.a.l. 1− δ/2,

Regret(K) ≤ 2

K∑
k=1

H∑
h=1

bkh(skh, a
k
h) + 4H

√
KH · log(8/δ)

This lemma upper bounds the regret by the total sum of bonuses plus an additional trailing term. It
remains to control the bonus sum. To this end, we use the fact that F has bounded eluder dimension,
the focus of the next lemma:
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Lemma 3.2. (Lemma 9 from Wang et. al.) W.p.a.l. 1− δ/4, for any ε > 0,

K∑
k=1

H∑
h=1

1
{
bkh(skh, a

k
h) > ε

}
≤
(
cβ(F , δ)

ε2

)
· dimE(F , ε)

where β = β(F , δ) is chosen so that an application of the Bellman backup operator to Qkh stay in Fkh
with high probability.

Finally, applying this lemma gives us the following.

Lemma 3.3. (Lemma 10 from Wang et. al.) W.p.a.l. 1− δ/4,

K∑
k=1

H∑
h=1

bkh(skh, a
k
h) ≤ 1 + 4H2 dimE(F , 1/T ) +

√
c · dimE(F , 1/T ) · T · β(F , δ)

for some c > 0.

One remarks that applying this control on the regret bound in Lemma 3.1. would result in the the
main regret bound of the algorithm.

Lemma 3.1. hinges on the following lemma which we are not going to prove, but refer the reader
once again to the original authors.

Lemma 3.4. (Lemma 7 from Wang et. al.) W.p.a.l. 1 − δ/4, for all (k, h) ∈ [K] × [H], for all
(s, a) ∈ S ×A,

Q∗h(s, a) ≤ Qkh((s, a) ≤ r(s, a) + Es′∼P (·|s,a)
[
V kh+1(s′)

]
+ 2bkh(s, a)

This lemma essentially states that with high probability, the algorithm over-estimates the Q-function,
and the amount of overestimation is controlled by the bonus function.

3.1 Proof of Lemma 3.1.

Proof. Let δkh := V kh − V π
k

h , define ξkh = E
[
δkh+1|skh, akh

]
− δkh+1 := Es′∼P (·|skh,a

k
h)

[
δkh+1

]
− δkh+1.

Since the computation of V kh is independent of the observation skh at episode k, as it only depends on
the previous k − 1 episodes. Therefore, if we let the filtration induced by the history up until episode
k, timestep h to be Fkh, we have that E

[
ξkh|Fkh

]
= 0, and thus ξkh is a martingale difference sequence

(MDS) satisfying |ξkh| ≤ 2H since |V k − V π
k | ≤ H as V k, V π

k ∈ [0, H]. A straightforward
application of Azuma-Hoeffding yields that w.p.a.l. 1− δ/4:

K∑
k=1

H∑
h=1

ξkh ≤ 4H
√
KH log(8/δ)

We remark here that terms ξkH for k ∈ [K] are all zero. as V kH+1 = V π
k

H+1 = 0 by definition. We
union bound this event with the one in Lemma 3.4 (optimistic with high probability) from now
onwards, thus what remains of the proof occurs w.p.a.l. 1− δ/2.

From Lemma 3.4., as the algorithm is optimistic, we can upper bound V ∗h by V kh for any timestep h
to yield:

Regret(K) ≤
K∑
k=1

(
V k1 (sk1)− V π

k

1 (sk1)
)

A one-step look-ahead gives the general form of the summands:

r(sk1 , a
k
1) + E

[
V k2 |sk1 , ak1

]
+ 2bk1(sk1 , a

k
1)− r(sk1 , ak1)− E

[
V π

k

2 |sk1 , ak1
]

reducing to

2bk1(sk1 , a
k
1) + E

[
V k2 − V π

k

2 |sk1 , ak1
]

6



Therefore, we have the following regret decomposition:

Regret(K) ≤
K∑
k=1

(
2bk1(sk1 , a

k
1) + E

[
V k2 − V π

k

2 |sk1 , ak1
])

=

K∑
k=1

(
V k2 (sk2)− V π

k

2 (sk2) + ξk1 + 2bk1(sk1 , a
k
1)
)

≤
K∑
k=1

(
V k3 (sk3)− V π

k

3 (sk3) + ξk1 + ξk2 + 2bk1(sk1 , a
k
1) + 2bk2(sk2 , a

k
2)
)

≤ . . .

≤
K∑
k=1

H−1∑
h=1

ξkh +

K∑
k=1

H∑
h=1

2bkh(skh, a
k
h)

The statement of the lemma immediately follows, as we already obtained the upper control to the
term in ξkh.

®

3.2 Proof of Lemma 3.3.

We assume now we have Lemma 3.2. to show Lemma 3.3..
Remark 3.5. We highlight here that Lemma 3.2. is an extremely technical lemma that relies on
smart constructions of ε-independent sequences in order to use the ε-eluder dimension of F as an
upper bound to the quantity of interest. We again refer the curious reader to the original work, as we
would like to stay focused on the main branch of thought for the proof of the overall regret bound
claim.

Proof. We use bkh := bkh(skh, a
k
h) as a shorthand, and arrange them into b1 ≥ b2 ≥ · · · ≥ bT .

Conditioning on the events of Lemma 3.2., we have that when bt ≥ 1/T , so will b1, . . . , bt−1, and
thus

t ≤
K∑
k=1

H∑
h=1

1
{
bkh > bt

}
≤
(
cβ(F , δ)

b2t

)
· dimE(F , bt)

but dimE(F , bt) ≤ dimE(F , 1/T ). Call the longest sequence which has length equal to the eluder
dimension eluder-defining, i.e. it is the longest sequence which bears the property that defines the
eluder dimension. We readily see that an ε-eluder-defining sequence can also be an ε′-eluder-defining
sequence for ε′ ≤ ε, as it would also satisfy the properties of the ε′-eluder dimension.

Isolating for bt, we have that

bt ≤
(

t

dimE(F , 1/T )
−H

)−1/2√
cβ(F , δ)

To proceed with computing
∑T
t=1 bt, we split the sum in two parts. When t ≤ dimE(F , 1/T ) ·H ,

we upper-bound bt with 4H (Q-functions are bounded), whereas when t > H dimE(F , 1/T ), the
authors breezed through some complicated combinatorial arguments to show that

T∑
t=1

bt ≤ 1 + 4H2 dimE(F , 1/T ) + 2
√
c · dimE(F , 1/T ) · T · β(F , δ)

We recognize the factor of 4H stated previously in the final expression.

®

Thus, we are now ready to piece Lemmas 3.1 and 3.3. together for the overall regret bound.
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3.3 Regret bound proof

Proof. We have that the algorithm enjoys a regret of

Regret(K) ≤ min

{
KH, 2

K∑
k=1

H∑
h=1

bkh + 4H
√
KH log(8/δ)

}
By collecting all constants onto a term κ > 0, we obtain

Regret(K) ≤ κmin
{
KH,H2 dimE(F , 1/T ) +

√
dimE(F , 1/T ) · T · β(F , δ) +H

√
KH log(1/δ)

}
w.p.a.l. 1− δ. ®

3.4 Comments

The term β(F , δ) is chosen so that the Bellman backup operator updates fall within Fkh (defined
previously) with high probability. In particular, this scalar is decided via the sensitivity sampling
process that we decided to omit. Precisely, this coefficient is given in Algorithm 3 of Wang et. al.
and scales as follows:

β(F , δ) = Õ
(
H2 · log2(T/δ) · dimE(F , δ/T 3) · ln(N (F , δ/T 2)/δ) · log(N (S ×A, δ/T ) · T/δ)

)
We notice here the H2 dependency, as well as the dependency on the eluder dimension of F and the
log-covering numbers of F and S ×A. Substituting this value into our final expression in the regret
bound proof (3.3) yields the general theorem made in [28].

In general, proofs of UCB-based algorithms such as those of [11, 7] employ very similar patterns.
They start off with a regret decomposition into martingale difference sequences involving δkh :=

V kh − V π
k

h plus additional terms for the bonuses as well as the policy optimization step. In our case,
the policy optimization (greedy w.r.t. Qkh) step contributes to the overall regret via δkh. Then, we look
to apply the high probability guarantee that our estimates are optimistic to upper-bound the regret into
something we can work with, in our case, that would be rewriting it in terms of the sum of bonuses.
We ended up with only having to control the latter, as the martingale difference sequence was handled
by Azuma-Hoeffding.

The usage of eluder dimensions is indeed more apparent in the sensitvity sampling portion of the
paper, as it is used to control the size of the surrogate dataset Ẑk. However, it does have its place in
the later portion of the proof: it is via the crucial Lemma 3.2. that we recognize the importance of
the boundedness of dimE F , ε, the entire proof of Lemma 3.3. would not make sense as the upper
bound to bt is essentially∞.

4 A Thompson sampling approach?

Inspired by recent developments of optimistic sampling techniques by Zanette et. al. [30] and
Ishfaq et. al. [9], one could modify Wang et. al.’s algorithm to instead sample bonuses from a
normal distribution, and then taking the max Q-function. This approach stems from the posterior
sampling literature, where one is theoretically sampling from the posterior over the space of all MDPs.
However, as Abeille et. al. pointed out in [2], it suffices to sample from any distribution with certain
concentration and anti-concentration properties to approximate this intangible and computationally
intractable posterior. In practice, posterior sampling methods are preferred over UCB-based methods,
primarily due to the approximation shortcut via sampling perturbations from normal distributions
instead of computing large numbers of UCB bonuses.

Back to our proposed modification, let M ∈ N be the number of samples, we sample random
functions ξk,mh for m = 1, . . . ,M such that for inputs (s, a), ξk,mh (s, a) ∝ N(0, κ · w(F , s, a)

with κ > 0. In this way, we obtain m Q-functions
{
Qk,mh = fkh + ξk,mh : m ∈ [M ]

}
and update

according to Qkh = min
{

maxm∈[M ]

{
Qk,mh

}
, H
}

. Here, κ and M are chosen so that the function

Qkh is optimal with constant probability, that is, it upper bounds the true Q-function with constant
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probability, much in the same way Wang et. al.’s work does. One usually argues that optimistic
sampling bears strong resemblance to UCB and is essentially no different from UCB, however
the method is inherently grounded in posterior sampling as perturbations are generated randomly,
and in a sense, one is still sampling from an approximate posterior. However, despite being more
application-friendly, this approach is yet to be proven an efficient exploration algorithm, as there are
currently no known bounds. However, we speculate that modifying works of Ishfaq et. al. [9] as
well as very recent works currently under blind review at ICLR 2021 and thus cannot be cited here,
one might be able to control regrets of the above algorithm with eluder dimensions and log-covering
numbers in the same way that Wang et. al.’s proofs.

5 Conclusion and future work

We have seen a few key pieces to the proof of the general regret bound of the work by Wang et. al.
[28], in particular, the regret decomposition and bounding each component individually. We also saw
the importance of the boundedness assumption of the eluder dimension of the search space F , as it
is key to making various lemmas work as well as appears in the bound to the overall regret of the
algorithm. We pointed out that UCB proofs follow a very similar pattern, and suggest that one can
potentially look into laxing the various assumptions of this paper and apply the same patterns for
more general provably efficient algorithms, as long as one can make a statement about the search
space.

The assumptions are indeed restrictive, the general class of neural networks (without any further
conditions) enjoy infinite eluder dimensions for any ε, as well as infinite log-covering numbers.
Furthermore, the log-covering numbers of the state-action space is in general either unknown or
computationally intractable. Neural networks are significant due to their universal approximation
properties, and if one has a theory for general neural networks, one has the holy grail to provable
efficiency in reinforcement learning. Unfortunately, the marginal return from relaxing the assumptions
bit by bit to still employ eluder dimension and log-covering numbers type proofs might be diminishing,
as these notions are inherently combinatorial and might not be rich enough to formulate a more
general theory for exploration in reinforcement learning, as we can already see from the above. This
calls for the development of alternate frameworks of analysis of reinforcement learning algorithms,
or a richer way of characterizing some notion of “width” to a search space.

It could also be interesting to employ these techniques in the development and analysis of information-
directed sampling methods, methods that incite exploration based on some notion of information
gain, for the linear MDP setting as well as the GFA setting. It’s been shown in [13, 21] that they are a
promising paradigm that, when carefully designed, could help tackle RL settings with heteroscedastic
rewards. Not having as much attention as the popular UCB and Thompson sampling paradigms of
value/policy optimization-based algorithms, there is definitely room for development.
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