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Abstract

Recently, reinforcement learning (RL) has emerged to become the framework of choice for

trial-and-error learning in highly complex, dynamic environments such as game-playing, au-

tonomous driving, and molecular biology [13]. Hierarchical reinforcement learning (HRL) de-

composes a reinforcement learning problem into subtasks via temporal or state abstractions,

where higher-level control invokes lower-level subtasks as if they were primitive actions [34].

HRL benefits especially in situations where the subproblems are small and highly repeti-

tive, as a solution to one subproblem can be recycled to all other subproblems equivalent to

it.

In this thesis, we study the efficiency of a posterior-sampling based hierarchical reinforce-

ment learning algorithm, in particular, guarantees on the regret bounds of the algorithm in

terms of the repeated structures within the environment. We further propose novel regret

bounds in the case of noisy substructures, i.e., when the substructure similarities are imper-

fect, in terms of controls on the levels of the noise. We propose a framework for abstracting

substructure similarities using known techniques from studies of state abstraction in reinfor-

cmement learning and discuss previous results in this new context. Finally, we detail further

expansions to our current work in various reinforcement learning settings.
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Abrégé

Récemment, l’apprentissage par renforcement (RL) est devenu le cadre de choix pour l’apprentissage

par essais et erreurs dans des environnements dynamiques très complexes tels que le jeu, la

conduite autonome et la biologie moléculaire [13]. L’apprentissage par renforcement hiérar-

chique (HRL) décompose un problème d’apprentissage par renforcement en sous-tâches en

utilisant des abstractions temporelles ou d’état, dans lequel le contrôle de niveau supérieur

appelle des sous-tâches de niveau inférieur comme s’il s’agissait d’actions primitives [34]. La

HRL bénéficie en particulier dans les situations où les sous-problèmes sont petits et très

répétitifs, car une solution à un sous-problème peut être recyclée à tous les autres sous-

problèmes qui lui sont équivalents.

Dans cette thèse, nous étudions l’efficacité d’un algorithme d’apprentissage par renforcement

hiérarchique basé sur l’échantillonnage postérieur, en particulier les garanties sur les limites

de regret de l’algorithme en termes des structures répétées dans l’environnement. De plus,

nous proposons de nouvelles limites de regret dans le cas des sous-structures bruyantes, c’est-

à-dire lorsque les similitudes des sous-structures sont imparfaites, en termes de contrôles sur

le niveau de bruit. Nous proposons un cadre pour l’abstraction des similarités de sous-

structure en utilisant des techniques connues dans l’étude de l’abstraction des états dans

le domaine de l’apprentissage par renforcement et nous discutons des résultats préexistants

dans ce nouveau cadre. Enfin, nous détaillons d’autres extensions de notre recherche actuelle

dans divers contextes d’apprentissage par renforcement.
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Notation

Let S be a set. When it is clear from context, we avoid cluttering of notation and use S := |S|

in regret bounds and within complexity operators (O, O).
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Chapter 1

Introduction

Coupled with powerful function approximation tools from the deep learning literature, re-

inforcement learning agents achieved superhuman-level performances in a wide variety of

games, and show promising potential in various other fields of industry [23,24]. In continual

learning, reinforcement learning agents have been developed to adapt to a changing environ-

ment while continually parse and learn new information as they come [10,22,47]. Meanwhile,

theoretical results provide guarantees on the performance of these algorithms, pushing the

boundaries of our fundamental understanding of the discipline and the extent of what is

possible [19, 44]. Very often, theoretical analyses are conditional on one or many assump-

tions about the structure and/or the dynamics of the environment in which their algorithms

operate on. These algorithms leverage aspects of these peculiarities of the environments and

use them to their advantage.

In this thesis, we study hierarchical reinforcement learning, reinforcement learning that lever-

ages the knowledge of highly repeatable and hierarchical substructures innate to the envi-

ronment to achieve better sample efficiency. We will describe an efficient algorithm to solve

environments when the repeated substructures are essentially identical [46]. We propose

a variant of this algorithm and explore how it performs when the repeated substructures

slightly differ from one another. We will show that our proposed algorithm could be ef-

2



ficient as well, and explore further ways in which the substructures could differ from one

another in terms of their structures and dynamics. We will see how ideas from hierarchical

reinforcement learning could be applied in these situations as well.

Chapter 2 provides a brief mathematical introduction to the theory of reinforcement learn-

ing to help the reader familiarize themselves with the field. Chapter 3 dives deeper into ex-

ploration, the open problem for reinforcement learning agents to try out various exploratory

behaviors in a newly encountered environment in order to acquire more knowledge about

it before committing to more exploitative strategies. Chapter 4 presents hierarchical re-

inforcement learning in hierarchical environments as well as in near-hierarchical or “noisy”

environments. We present here our provable efficiency guarantees for the noisy case, and

explore how one can accelerate the algorithm’s runtime by once again leveraging the hi-

erarchical structure of the environment. The efficiency guarantees are formally proven in

Chapter 5. Chapter 6 presents extensions to the hierarchical model by using well-studied

ideas such as MDP homomorphisms and bisimulation to describe more complex ways in

which substructures could differ in a controllable way. Finally, we discuss the results ob-

tained as well as propose several future directions in which we can proceed in Chapter

7.
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Chapter 2

Elementary theory

2.1 Modeling learning by trial and error

At the most fundamental level, reinforcement learning is the mathematical abstraction of

an intelligent agent operating in an environment. At every timestep, the agent observes the

current state it is in within the environment, then chooses an action that it performs. The

agent is then transitioned to another state in the environment as a result of their action

taken. As an example, consider a very methodical colleague navigating a university campus.

Every 10 meters, they have to choose a cardinal direction towards which they will walk the

next 10 meters. Upon making a choice, they proceed with their 10 meter walk, and are then

confronted again with the same question while standing still in this new state.

The agent operating in an environment is a good model for interaction. To model learning,

we introduce an immediate reward signal every time the agent takes action, while making

the agent behave in such a way that expected future rewards are maximized. In the case

of our colleague, assume they are navigating towards building A, but does not know in

which direction it is. To model their process of learning, after every decision they make,

the environment can give an immediate reward signal that is inversely proportional to the

4



remaining distance to building A to incentivize the agent (our colleague) to perform actions

that will result in a lowering of the distance remaining.

Formally put, let S be a state space, and let A be an action space. At timestep t, the agent

in state st ∈ S takes action at ∈ A. They immediately receive a reward rt and are then

transitioned to state st+1. The figure below illustrates this loop.

Figure 2.1: The reinforcement learning cycle.

The environment in which the agent takes actions is modeled by a Markov Decision Process

(MDP).

2.2 Discounted Markov Decision Processes

A Markov Decision Process (MDP) is a mathematical formalization of the agent-environment

interaction described above. We largely follow the same constructions as in [1].

Definition 2.2.1. A (infinite-horizon) discounted Markov Decision Process is a 5-tuple

M = (S,A, PM , rM , γ) specified by:

• A state space S which may be finite or infinite. For the remainder of this chapter, we

assume S is finite.

• An action space A which for the purposes of this thesis, we will assume to be finite.
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• A transition function PM : S ×A −→ ∆(S) where ∆(S) is the probability simplex over

S. We write PM(s′|s, a) to be the probability of transitioning from state s to state s′

when taking action a in the MDP M .

• A reward function rM : S × A −→ [0, 1], the immediate reward associated with taking

action a in state s in the MDP M . When the environment is modeled by stochastic

rewards RM(s, a) instead, we take rM(s, a) = E
[
RM(s, a)

]
.

• A discount factor γ ∈ [0, 1) which defines the horizon for the problem.

Remark 2.2.2. When it is clear from context, we will omit the specification of the MDP in

the transition function and in the reward function, that is, we write r = rM and P = PM

when there is no confusion.

Often times, an initial state distribution µ ∈ ∆(S) might be given, in which case, we sample

our starting state s0 ∼ µ. Otherwise, µ is supported on a single state s0. At each timestep t =

1, 2, . . . , the agent observes its current state st, takes action at, receives an immediate reward

rt = r(st, at), and observes the next state st+1 ∼ P (·|st, at). A sequence of t timesteps:

Ht = (s0, a0, r0, s1, . . . , st, at, rt)

is a history. Let H be the space of all histories.

The agent’s decision making strategy is modeled by a policy.

Definition 2.2.3. A policy is a map π : H −→ ∆(A) from a history to a distribution over

actions A. At timestep t, the agent samples an action at from its policy π(·|Ht). A stationary

policy π : S −→ ∆(A) specifies a decision-making strategy where the agent samples its action

based only on its current state, and a deterministic stationary policy π : S −→ A samples

from a single action.

We now build the tools to formalize the agent’s goal of maximizing future rewards.
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Definition 2.2.4. For an MDP M and a policy π, we define the value function V M,π : S

−→ R as the discounted sum of future rewards:

V M,π(s) = E

[
∞∑
t=0

γtr(st, at)|π, s0 = s

]

where the expectation is with respect to the randomness in state transitions, immediate

rewards, and the stochasticity of π.

The action-value function (or quality function) QM,π : S ×A −→ R is defined similarly:

QM,π(s, a) = E

[
∞∑
t=0

γtr(st, at)|π, s0 = s, a0 = a

]

As r ≤ 1, we have that both the value and the state-action value functions are bounded

above by 1/(1− γ). We will write V M,π = V π and QM,π = Qπ when the MDP is clear from

context.

The goal of a reinforcement learning agent is to find a policy which maximizes the value

function:

argmax
π∈Π

V M,π(s)

where Π denotes the space of policies. In fact, there always exists a stationary deterministic

policy that simultaneously maximizes V M,π(s) for all s. We state the theorem without

proof.

Theorem 2.2.5. Let Π be the space of non-stationary and randomized policies. Define the

optimal value and action-value functions:

V ∗(s) = sup
π∈Π

V π(s)

Q∗(s, a) = sup
π∈Π

Qπ(s, a)
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There exists a stationary, deterministic policy π∗ such that ∀(s, a) ∈ S ×A:

V π∗
(s) = V ∗(s)

Qπ∗
(s, a) = Q∗(s, a)

We refer to such a π∗ as an optimal policy.

Remark 2.2.6. We note that it is possible to have multiple optimal policies for a given

MDP M , i.e. different policies that yield the same value function.

The significance of the above theorem lies in that we can restrict our policy search space to

just policies that are stationary and deterministic without any loss in performance. However,

many algorithms in the literature naturally output an optimal stochastic policy.

On the other hand, when given the optimal action-value function Q∗(s, a), we can recover a

deterministic stationary optimal policy as follows:

π∗(s) = argmax
a∈A

Q∗(s, a)

The optimal action-value function Q∗ tells us the maximum discounted expected returns one

can achieve by selecting each action a ∈ A. It suffices to act greedily with respect to Q∗ to

guarantee having maximal discounted returns at every timestep.

2.3 Bellman equations and Bellman operators

Bellman equations [7] relate the value functions and the action-value functions. They are

powerful tools that are commonly used in analyzing algorithms. We state them here without

proof. For a more in-depth derivation of these equations, we refer the reader to [39] and

[41].
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Lemma 2.3.1. (Bellman consistency equations and operators) Let π ∈ Π be a stationary

policy. Then, ∀(s, a) ∈ S ×A:

V π(s) = Qπ(s, π(s))

Qπ(s, a) = r(s, a) + γEs′∼P (·|s,a) [V
π(s′)]

Define the Bellman operator for value functions T M,π : (S −→ R) −→ (S −→ R) by its action

on a function f : S −→ R:

T M,π[f ](s) = rM(s, π(s)) + γEs′∼PM (·|s,a) [f(s
′)]

We can also define the Bellman operator for action-value functions in a similar fashion.

Again, when M is understood from context, we omit the superscript.

On top of characterizing any value function, we precisely characterize the optimal action-

value function with the Bellman optimality equation.

Lemma 2.3.2. Let Q : S × A −→ R be a function. We say that Q satisfies the Bellman

optimality equation if ∀(s, a) ∈ S ×A:

Q(s, a) = r(s, a) + γEs′∼P (·|s,a)

[
max
a′∈A

Q(s′, a′)

]

For any function Q of the correct type, Q = Q∗ if and only if Q satisfies the Bellman

optimality equation.

Define the Bellman optimality operator T ∗ : (S × A −→ R) −→ (S × A −→ R) by its action

on a function f : S ×A −→ R:

T ∗[f ](s, a) = r(s, a) + γEs′∼P (·|s,a)

[
max
a′∈A

f(s′, a′)

]
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we write Q = Q∗ ⇐⇒ Q = T ∗Q, in other words, a function Q is an optimal action-value

function if and only if it is a fixed point of the Bellman optimality operator.

2.4 The planning problem: solving MDPs

Given full knowledge of our environment (MDP), we wish to output an optimal policy.

We can work with action-value functions directly, that is, we search for the fixed-point of

the Bellman optimality operator; this is the principal idea behind value iteration. As seen

previously, given the optimal action-value function, we easily recover an optimal policy by

acting greedily with respect to the action taken. On the other hand, we can work directly

with policies, and sequentially output policies that yield increasingly higher value functions;

this is the principal idea behind policy iteration.

As γ < 1, it can be shown that T ∗ is a contraction mapping on the space of functions of type

S × A −→ R bounded above by 1/(1 − γ) endowed with the sup norm ∥·∥∞. This normed

space is indeed a Banach space. Therefore, T ∗ has a unique fixed point by the Banach

fixed-point theorem. A full proof is presented in Appendix A of [41].

Value iteration starts off with any arbitrary function Q0 : S × A −→ R, and repeatedly

applies the Bellman optimality operator to yield a sequence {Q0, Q1, Q2, . . . } converging to

the optimal value function Q∗.

Concretely, we simultaneously update for all pairs (s, a) ∈ S ×A until convergence:

Q(s, a)←− r(s, a) + γ
∑
s′∈S

P (s′|s, a)max
a′∈A

Q(s′, a′)

Policy iteration, on the other hand, repeats the following two steps until convergence:

1. Policy evaluation: with policy πt at timestep t, compute Qπt .

2. Policy improvement: we compute a new improved policy for the next timestep: ∀s ∈

S, πt+1(s) = argmaxa∈AQπt
(s, a).
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It can be shown that the sequences of value functions Qπt is non-decreasing and converge

in sup norm to Q∗. An in-depth analysis of value iteration and policy iteration is given

in [1].

2.5 The control problem and Q-learning

Suppose now that the agent does not have access to any information about the environ-

ment. The control problem consists of simultaneously discover new knowledge about the

environment as well as using that new knowledge to find better policies. This setting appro-

priately models the “learning by trial-and-error” behavior that reinforcement learning seeks

to capture. One would like for the agent to start off with exploratory policies, i.e. policies

that prioritize observing more states and trying newer actions, and slowly opt for more ex-

ploitative policies. Based on current known information about the environment, exploitative

policies maximize expected returns.

Holistic treatments of this subject can be found in [39]. We will present the Q-learning

algorithm, which segue us into the next chapter.

Q-learning consists of repeatedly updating an estimate for the action-value function, while

acting ϵ-greedily with respect to it, that is, at every timestep t, with probability 1− ϵt, the

action at = argmaxa∈AQ(st, a) is chosen while a random action is taken with probability

ϵt.

Recall that at timestep t, the optimal action-value function satisfies Q∗(st, at) = r(st, at) +

γEs′∼P (·|st,at)[maxa′∈AQ∗(s′, a′)]. Denote by Q the estimate for this optimal action-value

function that our algorithm maintains. Upon observing an interaction (st, at, rt, st+1), since

st+1 is a sample from P (·|st, at), we can use rt + γmaxa′∈A Q(st+1, a
′) as the (temporal-

difference learning) target towards which we update our Q estimate in order to “push” Q
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towards Q∗. Given a learning rate schedule αt, we have an update rule for Q:

Q(st, at)←− Q(st, at) + αt

(
rt + γmax

α′∈A
Q(st+1, a

′)−Q(st, at)

)

With every update of our Q estimate, our temporal-difference (TD) target changes. To make

learning more stable, one can consider setting Q− = Q and update towards our stable TD

target rt + γmaxa′∈A Q−(st+1, a
′) for τ amount of timesteps before resetting Q−.

An easy way to introduce exploration into our control scheme is to start off with ϵ0 = 1

(that is, behave completely randomly) and decay ϵt over time with respect to t, stopping at

ϵt = 0.1 for all t ≥ T for some T large. However, as we will see in the next section, this

method of exploration leaves much to be desired.
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Chapter 3

Exploration in Reinforcement

Learning

The treatment of exploration in reinforcement learning is a difficult and lengthy one. As such,

we will primarily be introducing ideas that are relevant for the analysis of noisy hierarchical

reinforcement learning. We borrow the exposition of the subject done in [15]. We also

present the theory in the episodic MDP case.

3.1 Episodic MDPs

An episodic MDP M is a MDP specified by M = (S,A, {PM
h }h∈[H], {rMh }h∈[H], H, µ) where

H is the horizon of the MDP, that is, every episode terminates in H timesteps. We have

transition functions PM
h and reward functions rMh for each timestep, thus making our problem

non-stationary by nature. However, in what follows, we will be studying the setting of

episodic stationary MDPs, that is, there is only one transition function and one reward

function, independent of the timestep.
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Consider now an agent in state s at timestep h ≤ H, following policy π. Its value function

is given by:

V M,π(s) = Eπ

[
H∑
i=h

rM(si, ai)|sh = s,M

]
similarly, its action-value function is given by:

QM,π(s, a) = Eπ

[
H∑
i=h

rM(si, ai)|sh = s, ah = a,M

]

We remark that since the episode necessarily terminates in H steps, there is no need to

discount the rewards. Instead, we take an expectation over future rewards until termination

while proceeding with π. Furthermore, we can convert non-stationary episodic MDPs into

stationary episodic MDPs by mapping its non-stationarities into a state space of size S ×H

where states are duplicated across timesteps.

3.2 Regret

A useful quantity to measure the optimality of an episodic MDP algorithm is the regret.

After K episodes, the regret of an algorithm is:

Regret(K) =
K∑
k=1

(
V ∗(s0)− V πk

(s0)
)

that is, the cumulative difference in value achieved by an improving policy πk with respect

to the optimal policy π∗. Let H denote the horizon of the episodic MDP, and T = HK the

number of timesteps taken up until episode K. An algorithm is generally considered to be

efficient when the regret is sublinear in T .
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3.3 ϵ-greedy revisited

There are a few immediate drawbacks with an ϵ-greedy exploration strategy. Firstly, it is

highly sample inefficient as samples are used exactly once. Furthermore, ϵ-greedy is not

effective in covering the state space. Consider the Riverswim environment [28] in Figure

3.1.

Figure 3.1: The Riverswim environment is a good stress-tester for exploration algorithms.

Undirected exploration schemes usually fail to find the optimal policy due to the exponen-

tially decreasing probability of reaching the final state.

Ideally, the agent would like to reach state 6, where it can keep selecting the option to

transition to the right and earn a reward of 1 for every timestep. We observe that at any

intermediate states 2-5, selecting the right action would only transition the agent to the right

with probability 0.35, while selecting the left action would surely transition the agent left.

The probability of the agent playing a random policy reaching the final state 6 is proportional

to 1/2x, decreasing exponentially as the river gets longer (as we introduce more intermediate

states). A random policy will most likely get stuck on the first few states before ϵt decays

enough for the agent to exploit the sub-optimal policy of just transitioning left for a small

reward of r = 0.01.
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After a lot of testing, it was found that scheduling ϵt as:

ϵt =


1.0 t < 6000

ϵ0
N(st)1/2

otherwise

would result in the optimal policy being found. However, these values are highly problem-

dependent, difficult to find efficiently, and often times require accurate simulations of the

environment which is not possible for many real-world reinforcement learning problems (e.g.

online learning in medicine, autonomous driving). Directed exploration can be achieved

by baking the epistemic uncertainties about the environment into the decision making pro-

cess.

3.4 Optimism in the face of uncertainty (OFU)

The principle of optimism in the face of uncertainty boils down to the philosophy that when

there are unknowns about the world, we can imagine the best possible world (reward-wise)

given the current knowledge and behave accordingly. If we were right about our model, then

there are no regrets as we are already behaving optimally. On the other hand, if the world

is indeed worse than we imagined (reward-wise), then that knowledge is learned and used

into constructing the next optimistic model of the world. In either case, we are not losing

since we are either optimal or acquiring useful knowledge about the environment.

Translating this philosophy into the context of reinforcement learning, assume we have partial

knowledge of our environment after having played a few episodes in our environment. After

computing the value function based on empirical data, we increase it with respect to the

uncertainties in the environment that have yet to be covered by our empirical data. We take

actions greedily with respect to this optimistic Q estimate instead. Let N(s, a) count the

number of times we’ve been in state s and taken action a, Q estimates for pairs (s, a)’s are

inflated proportionally to 1/N(s, a).
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3.5 Model-based optimistic exploration

The following treatment of this subject assumes the model runs for K episodes, within each

episode runs H timesteps. At episode k ∈ [K] let T = kH, we concatenate data from

individual episodes in a sequential manner and denote the entirety of observed data by

DT = {(st, at, rt)}Tt=0. Consider the empirical MDP M̂T = (S,A, P̂T , r̂T , H, µ) with

P̂T (s
′|s, a) =

∑T
t=1 1 {st = s, at = a, st+1 = s′}

N(s, a)

r̂T (s, a) =

∑T
t=1 rt1 {st = s, at = a}

N(s, a)

We follow the construction of the Bounded Parameter MDP proposed in [38]. Denote byM

the space of all MDPs, let

MT =
{
(S,A, P, r,H) ∈M : r(s, a) ∈ Br

T (s, a), P (·|s, a) ∈ BP
T (s, a)

}
with

Br
T (s, a) = [r̂T (s, a)± βr

T (s, a)]

BP
T (s, a) =

{
p(·|s, a) ∈ ∆(S) :

∥∥∥P (·|s, a)− P̂T (·|s, a)
∥∥∥
1
≤ βP

T (s, a)
}

be our confidence region in the space of MDPs, where our control parameters βr
T and βP

T

guarantee that with probability at least 1− δ, our true MDP lies withinMT . From Hoeffd-

ing’s inequality [16], we compute βr
T , and from Weissman’s inequality for the L1 deviation

of the empirical distribution [45], we compute βP
T :

βr
T (s, a) ∝

√
log(N(s, a)/δ)

N(s, a)
, βP

T (s, a) ∝

√
S log(N(s, a)/δ)

N(s, a)

We perform value iteration to compute the Q estimate of the empirical MDP with added

bonuses βr
T and βP

T as per the principle of Optimism in the Face of Uncertainty. Our updates
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become:

Q(s, a)←− max
r(s,a)∈Br

T (s,a)
r(s, a) + max

P∈BP
T (s,a)

Es′∼P (·|s,a)

[
max
a′∈A

Q(s′, a′)

]
= r̂T (s, a) + βr

T (s, a) + max
P∈BP

T (s,a)
Es′∼P (·|s,a)

[
max
a′∈A

Q(s′, a′)

]

In a sense, we are not updating according to the empirical nor the true MDP, but according to

the MDP withinMT that maximizes the value function, thus resulting in inflated values and

inciting exploration. Methods that inject a deterministic bonus signal into the updates of the

Q estimates are commonly referred to as Upper Confidence Bounds methods (UCB).

In 2010, Jaksch et. al. [4] proved in their seminal work that for the case of episodic MDPs with

stationary transitions and reward functions depend on the level h ∈ [H], their model-based

algorithm UCRL2 described above with high probability suffers a regret of Õ(HS
√
AT +

H2SA) where Õ hides logarithmic terms. They also prove a theoretical lower bound for the

regret of any reinforcement learning algorithm to be Ω(
√
HSAT ).

Further refinements to this regret bound came in 2017 when Azar et. al. [5] proved a regret

bound of Õ(H
√
SAT + H2S2A) of their algorithm UCBVI by isolating all the additional

bonuses to the Q estimate update into one single exploration bonus term bT (s, a), essen-

tially performing value iteration on the empirical MDP with inflated rewards r̂T (s, a) +

bT (s, a).

Adding an exploration bonus term loosely dependent on some notion of state-visitation has

since become common practice in applied reinforcement learning [21], achieving very strong

results in a variety of fields such as game-playing, robotics, optimal control, and autonomous

driving [20] [3].

Another very popular method for directed exploration is posterior sampling.
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3.6 Model-based posterior sampling for exploration

Posterior sampling methods are the application of Thompson’s sampling method [43] pro-

posed in 1933, but has quickly emerged in the field of reinforcement learning as a principal

tool to drive exploration. At its core, a distribution over the space of MDPs is maintained at

every episode and updated as the agent further interacts with the environment and collects

more data. After each episode, the posterior is then updated, an MDP is sampled from

the updated posterior, an optimal policy is then computed for the sampled MDP, and then

finally used to play the next episode in the environment.

The intuition behind why posterior sampling works is that at the beginning of the learning

process when few samples are available to the agent, the posterior over MDPs will be quite

uniform and thus, there would be a lot of uncertainty in the MDPs sampled. It is precisely

these uncertainties that will drive the exploration in the early episodes. As more samples

are observed, the posterior distribution concentrates on the true MDP, and thus the agent

naturally converges towards a more exploitative strategy.

Formally, let P0 be the prior distribution over M. At episode k ∈ [K], we sample an

MDP Mk ∼ Pk(·|Dk), and compute an optimal policy πk ∈ argmaxπ∈Π V Mk,πk . Finally,

Dk+1 is observed by executing policy πk. As shown in [15], a Dirichlet prior can be used

for modeling transition probabilities, while a Beta or Normal-Gamma prior is the go-to for

modeling rewards. The authors of [29] proved a regret of Õ(HS
√
AT ) for the posterior

sampling reinforcement learning algorithm using a Dirichlet prior, and argue that posterior

sampling reinforcement learning not only match the theoretical regret bounds that UCB-

based methods, but are also more computationally efficient.

3.7 Optimistic sampling

Authors of [29] reveal a key insight into the workings of posterior sampling. The value

functions of the sampled MDPs are stochastically optimistic with respect to the true MDP
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conditioned on any possible history. Essentially, this regresses posterior sampling into being

a random version of UCB-based algorithms, except not as “optimistic” (since UCB-based

methods directly use the upper bounds to construct exploration bonus terms, this is as

optimistic as can be). In 2019, authors of [33] proved that by randomly perturbing the

observed rewards with Gaussian noise (with appropriate variance tuning), they are able

to approximate sampling from a posterior distribution, all the while being optimistic with

respect to the true MDP’s value function with high probability.

As perturbing collected reward data by Gaussians is a lot easier and efficient to perform

than maintaining posterior distributions over the space of MDPs, optimistic sampling is

emerging to be a strong contender to the well-established UCB paradigm [29]. In addition,

the proof techniques are largely the same as UCB-type proofs in that there is an additional

step to show that the perturbed value function estimates are indeed stochastically optimistic

with respect to the true value function, while most of the concentration arguments are

recycled [17] [44].

3.8 Model-free exploration

Model-based methods that employ some variant of value iteration [4, 5, 33] usually suffer a

time complexity of O(HS2A) due to the planning steps. Solutions such as Optimistic Real-

time dynamic programming (Opt-RTDP) simultaneously play the environment while value

iterating, save the time complexity by a factor of S, and promise adaptability compared to

other algorithms such as UCBVI. However, the space complexity incurred by model-based

methods of O(HS2A) is harder to reduce as one needs to store S2A transitions and SA

rewards.

Optimistic Q-learning [18] performs Q-learning updates directly without the need to rely on

the empirical model. To incite exploration, a bonus term is injected directly into the TD
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target for Q-learning, that is, our Q estimates update towards

rt + γmax
a′∈A

Q(st+1, a
′) + bt

where bt ∝ const ·
√

H3 log(SAT/δ)
N(st,at)

, and the step sizes α)t are of orderO(1/N(s, a)) orO(1/
√
N(s, a)).

One observes that once again, our bonuses inflate the TD targets, making our algorithm up-

date towards an optimistic estimate of the true optimal action-value function. The authors

of [18] showed that Opt-Q-learning with high probability suffers a regret of Õ(H2
√
SAT +

H2SA).

3.9 Exploration in larger state spaces

So far in our exposition of reinforcement learning, we have always referred to values as a

function over the state space. When our state space is finite, one represents the value function

as entries to a S or S×A sized table, and successive updates to the value function essentially

refer to modifying tabular values. However, many real life learning tasks require modeling

the state space as a countably infinite or even a continuous space. Such cases would require

modeling the value function as a parametrized function of the states instead. A typical case

would be representing the value function as a neural network, that is, approximate the true

value function with a neural network f(·, θ) : S −→ R where θ are parameters to the neural

network f . Instead of replacing table values as we do in the finite state space setting, we now

“pull” f(·, θ) towards the true value function V by running gradient descent on the mean-

squared error (MSE) loss between f ’s current value and its TD-target bootstrap r + f(·, θ)

to update the parameters θ.

Empirically, the above process might perform reasonably well in a variety of tasks such

as Atari game playing [27]. However, we are only able to provably guarantee efficiency

when strong assumptions are made, for example when the true value function lives in linear

space (the linear MDP setting) [19], or in spaces we can control (RKHS, bounded eluder-
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dimension) [17,44,48]. Essentially, these assumptions are imposed so that value function and

value function updates are tractable, and thus performance can be bounded and controlled.

Whether or not battle-tested large state space environments in the applied reinforcement

literature (Atari, MuJoCo, etc...) fit these assumptions is another topic of discussion alto-

gether, and it is a remarkable feat that very successful results have been obtained by large

state space algorithms that as of current do not have theoretical guarantees [6, 11].

The theory for exploration in large state spaces will not be covered further in this thesis

as the setting for noisy hierarchical reinforcement learning is that of finite state spaces.

However, we will be proposing possible extensions to the theory when applied in continuous

hierarchical environments in a later chapter.
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Chapter 4

Hierarchical Reinforcement Learning:

planning and learning

In this chapter, we see how HRL arises naturally from compositions of reinforcement learning

problems as well as some standard techniques for agents to learn hierarchical environments.

We present our results in the misspecified setting, i.e. characterizing the expected worst-

case performance of our HRL algorithm when the equivalence of subMDPs assumption is

loosened. Finally, we study the conditions that enable efficient planning in hierarchical

MDPs.

4.1 Cleaner robots and the breakdown of multi-level tasks

Consider a robot agent tasked to clean an apartment building. There are a number of floors

with different layouts to clean, and within each floor there are rooms with different layouts

that the robot must learn to navigate in. Assume now that there are only several possible

layouts for floors, as well as only several possible layouts for rooms. A naive approach would

be to employ a reinforcement learning agent that goes from floor to floor and learns how

to clean each floor individually. A more principled approach would be to break down the
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control sequence of the agent into a higher level control which controls the robot’s navigation

between rooms within a floor, and a lower level control which guides the robot in cleaning

within particular rooms. Thus, the higher level control would dictate the sequence of rooms

to visit such that the robot would be the most efficient, at every room invoking a lower

level control that executes the cleaning process within rooms. Solving the overall cleaning

problem by breaking it down into substeps and a multi-layer control scheme is the heart of

hierarchical reinforcement learning.

Assume now that the room layout labels are given to the robot, i.e. the robot knows which

rooms have the exact same layout, but does not know what the actual layout is (it has to

learn this). One can imagine that if there are few possible room layouts, the higher level

control need only invoke one of few low-level cleaning policies, optimal for each room layout

that it’s learned, thus making the learning a lot more efficient. Furthermore, consider two

rooms A and B that are known to have the exact same layout. Experience accumulated

in room A can be treated as experience learned in room B and vice versa, thus making a

very strong case for data efficiency. One would expect the robot to approach an optimal

hierarchical policy very quickly depending on how many repeated structures there are and

how easy the low level control policies are to learn.

Given an MDP that can be broken down into substructures, a powerful and efficient frame-

work for planning is the options model. When the only knowledge about our environment

is that it has a hierarchical structure, we naturally arrive at a model-based algorithm: after

every episode, we construct a model MDP based on our experiences, and run our options

planning algorithm on it to extract a policy to be used for the next episode.

We establish the framework for our analysis of hierarchical reinforcement learning in the

next few sections. Our HRL setup and preliminary results borrow from [40,46,46].
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4.2 The HRL problem formulation

We now formalize the intuitions provided in the introductory section of this chapter. This

section demonstrates that precisely, small and repeated substructures within the environment

are the conditions for which HRL methods can be a lot more efficient than traditional RL

methods.

Let M = (S,A, P, r, se, s0) be a finite-time horizon MDP where S is a finite state space, A

is a finite action space, P is the transition function, and r is the reward model. We consider

random rewards, that is, upon taking action a in state s, the agent receives a reward of

r(·|s, a) ∈ [0, 1]. State se is an exit state, while state s0 is a starting state, and we let r̄ denote

the expectation of r. The agent starts at state s0 and plays the environment until state se

is achieved, attempts to maximize its expected cumulative reward over T episodes:

max
π

T∑
t=1

E

[
τt∑

h=1

rth|π, st0 = s0

]

where τt is the random variable to denote the time at which the agent enters se during episode

t. We assume that under any policy π ∈ Π, τ ≤ τmax with probability 1 and E [τ ] ≤ H where

h indexes the timesteps within an episode, and t indexes the episodes themselves. We also

denote rth ∼ r(·|sth, ath) the immediate reward obtained during episode t at level h. We now

formalize subproblems as subMDPs.

Definition 4.2.1. Consider a partition of the non-terminal states S \ {se} into L disjoint

subsets L = {Si}Li=1. We define an induced subMDP Mi = (Si ∪ Ei,A, Pi, ri, Ei) as follows:

• Si is the internal state set of the subMDP.

• A is the same action space.

• The exit state set Ei = {e ∈ S \ Si : ∃(s, a) ∈ S ×A s.t. P (e|s, a) > 0}.

• The state space of Mi is Si ∪ Ei.

• Pi and ri are respectively the restriction of P and r to domains Si ×A.
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• The subMDP Mi terminates once it reaches a state in Ei, that is, an exit state.

Given a partition L = {Si}Li=1 of states in the MDP M , consider the set of induced subMDPs,

{Mi}Li=1, define ρ the maximum size of any subMDP and E the set of all exit states as

follows:

ρ = max
i
|Si ∪ Ei| , and E =

L⋃
i=1

Ei,

Each of the subMDPs Mi can be viewed as a subproblem of the original MDP in this way.

We now concretely define an equivalence on subMDPs.

Definition 4.2.2. Let Mi and Mj be two subMDPs. We say that Mi and Mj are equivalent

if and only if there exists a bijection f : Si ∪ Ei −→ Sj ∪ Ej such that f(Si) = Sj, f(Ei) = Ej,

and through f , the subMDPs have the same transition probabilities and rewards at internal

states.

When subMDPs in L can be grouped via this subMDP equivalence relation, solutions to one

subMDP can be re-used to solve every other subMDP equivalent to it. Let K ≤ L be the

number of equivalence classes of subMDPs induced by a particular partition L of M . When

there are no equivalences among the subMDPs, K = L. When there are repeated structures,

K < L.

Traditional analyses of reinforcement learning algorithms are heavily dependent on |S|, the

size of the state space, or a proxy of it. In HRL, regret bounds and sample efficiency will now

depend on M , the maximum size of a subMDP, K, the number of equivalence classes, and E ,

the number of exit states. We expect that HRL algorithms would offer strong improvements

over standard RL algorithms precisely when the original MDP can be decomposed into 1.

many small subproblems and 2. few equivalence classes. This translates to ρK ≪ |S|,

where instead of learning policies or value functions over the entire state space, we learn at

most K options over a maximum of ρ subMDP states per option, and recycle our options to

equivalent MDPs.
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Another important determining factor for improved performances of HRL is the number

of exit states |E|. These are the states that connect subMDPs to each other, and having

a small number of exit states means having a small number of “bottleneck” states in M .

Contributions [25, 35–37] demonstrate in part and/or in full that fewer bottleneck states

enable more computationally efficient planning.

4.3 HRL with posterior sampling-driven exploration

The purpose of HRL is to make use of known hierarchical structures in the problem to

improve the algorithmic efficiency of reinforcement learning agents. The control problem

that we study is thus the following. The agent is to find a value-maximizing policy while

operating in an unknown environment M . The agent is given a partition L = {Mi}Li=1 of

the MDP into subMDPs Mi without knowledge of the sub-transitions Pi’s and sub-rewards

ri’s. Finally, the agent has knowledge that the environment obeys a hierarchical structure,

i.e. the agent is given the groupings of subMDPs (or sub-states) based on their equivalence

classes (implicitly, the agent knows K and M).

Our algorithm applies posterior sampling to hierarchical reinforcement learning (PSHRL)

to guide exploration, as the epistemic uncertainties about the environment is represented

by a probability distribution over MDPs (we refer the reader to Chapter 3 for an exposi-

tion of posterior sampling based methods). As we will see, incorporating the knowledge

of hierarchical structure within the environment into the prior distribution over the space

of MDPs is a lot more natural in posterior sampling than having to compute very precise

upper-confidence bounds that take into account the hierarchical structures. Furthermore,

one can think of PSHRL as working with a posterior that is only supported on hierarchical

MDPs that follow the given structure, thus reducing the model search component of our

model-based algorithm to a smaller one within the space of MDPs. The following algorithm

presents the most general form of the posterior sampling reinforcement learning algorithm

(PSRL) (Algorithm 1 in [46]).
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Algorithm 1: PSRL with a Planner, Sampler, and Inferer
Prior knowledge P0, planning algorithm plan, sampling algorithm sample, inference
algorithm infer;

for episode t = 1,2, . . . , T do
M t ∼ sample(P t);
πt = plan(M t);
execute πt over episode t, observe Dt;
P t+1 = infer(Pt,Dt)

end

In the above, P t encodes a posterior distribution over the space of MDPs, the sampling

algorithm samples M t from P t, the planner computes an optimal policy for M t (e.g. via

value iteration or policy iteration), and the inference algorithm applies Bayes’ rule to update

the posterior according to data from the most recent episode executed.

Posterior sampling hierarchical reinforcement learning essentially encodes the hierarchical

structure directly into the posterior above. Ideally, a planner customized to handle environ-

ments with said hierarchical structure would be used instead of the traditional value iteration

(VI) or policy iteration (PI).

Define the Bayesian regret of an algorithm after the execution of T episodes as:

Definition 4.3.1. For any learning algorithm alg, the Bayesian regret over the first T

episodes is:

BayesRegret(alg, T ) =
T∑
t=1

E
[
V ∗(s0)− V πt

(s0)
]

where V ∗ is the optimal value function for M , V πt is the value function for M under policy

πt, and πt is the policy played by the agent at episode t.

Remark 4.3.2. Minimizing the Bayesian regret is equivalent to maximizing
∑T

t=1 E
[
V πt]

=∑T
t=1 E [

∑τt
h=1 rth].

As opposed to the frequentist regret seen previously in Chapter 2, this regret averages out the

stochasticity in the choice of policies for every episode t. This notion of regret is appropriate
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to the analysis of PSRL and PSHRL since much randomness arises from the episodic policies

being derived from randomly sampled hierarchical MDPs every episode.

In Wen et. al. [46], the authors proved Bayesian regret bounds for PSHRL in terms of the

hierarchical parameters ρ and K:

Theorem 4.3.3. (PSHRL Bayesian regret bound, Theorem 1 of [46]) If P0 exhibits hier-

archical structure with a maximum of ρ states per subMDP and K subMDP equivalence

classes, sample draws from the posterior distribution, and infer applies Bayes’ rule, then:

BayesRegret(PSHRL, T ) ≤ T ·E
[
V ∗(s0)− V π̃(s0)

]
+O

(
H3/2ρ

√
K
√
AT log(AKHτmaxT )

)
where π̃ = plan(M). Hiding logarithmic factors, the bound becomes E

[
V ∗(s0)− V π̃(s0)

]
+

Õ
(
H3/2ρ

√
K
√
AT
)
.

Remark 4.3.4. Recall that the lower bound for reinforcement learning algorithms in the

finite state and action space setting is Ω(
√
HSAT ). UCB-based methods and various pos-

terior and optimistic sampling methods have been shown to enjoy regret bounds as close

as Õ(HS
√
AT ) (more obscure simultaneous training schemes can gain a factor of

√
S).

In particular, the bound of PSRL presented in Osband et. al. (2013) [28] is precisely

Õ(H3/2S
√
AT ).

If we treat M as an entire MDP instead of considering the given partition L, we would have

that K = L = 1, and ρ = S, from 4.3.3 we recover the bound proven in Osband et. al.

(2013). It is clear that when ρ
√
K << S, the PSHRL bound conveys strong improvements

over the standard PSRL regret bound. As highlighted in [46], this improvement has two

components:

1. A replacement of Õ(
√
S) −→ Õ(

√
ρK), as the algorithm need only learn about a smaller

number of distinct states in the hierarchical MDP.
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2. A replacement of Õ(
√
S) −→ Õ(√ρ) because at each state-action pair in the hierarchical

MDP, there is at most M states the agent could transition to (as ρ is the size of the

largest subMDP equivalence class).

We also remark that the bound in 4.3.3 allows for sub-optimality in the planning operator.

If π̃ = π∗, then there is no sub-optimality in the planning algorithm. Otherwise, the sub-

optimality contributes to a linear growth in the regret of the algorithm.

4.4 Noisy PSHRL: motivation

We consider once again our robot cleaner friend from the beginning of the chapter, except

this time we loosen the strict assumption of “equivalent” rooms into “similar” rooms. This

slight difference between the rooms could be the result of slightly misplaced furnitures. One

would like to know to what extent can one still use a hierarchically-driven solution for non-

hierarchical problems (assume the rooms are equivalent anyway and recycle learned options)

over . Specifically, we would like to control the regret of the algorithm based on certain

variables that either evoke a notion of similarity among subMDPs or control the amount of

difference there are between similar subMDPs.

This situation naturally arises in the real world where often times, reward signals are cap-

tured by a sensor that may be naturally subjected to noise or to adversarial attacks. A

reinforcement learning agent operating in a continuous environment might even make mis-

takes in estimating the transition function due to noisy observations and thus confusion

arises on which state it was really transitioned to, inducing noise in the transition estimates.

Furthermore, machine learning engineers might even compromise a bit of optimality for a lot

of performance gains in the form of sample efficiency when applying a HRL algorithm to a

near HRL problem. This next part of the thesis presents a novel characterization of noise in

the context of hierarchical reinforcement learning and shows regret bounds of PSHRL when

applying to near-hierarchical environments.
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4.5 Characterizing noise

This section outlines the novel foundation for the analysis of noisy HRL. Assume that we

are given an MDP M∗ with a partition L = {Mi}Li=1, as well as the information about K

groupings of mutually similar subMDPs. Precisely, we are given G : M −→ [K] such that

for any two similar subMDPs Mi,Mj ∈ L,G(Mi) = G(Mj). We begin with a structural

assumption:

Assumption 4.5.1. Two subMDPs Mi,Mj are similar if there exists a bijection f : Si ∪ Ei

−→ Sj∪Ej such that f(Si) = Sj, f(Ei) = Ej. Furthermore, ∀(s, a) ∈ Si×A, supp(Pi(·|s, a)) =

supp(Pj(·|f(s), a)), that is, the transition functions share support but are not necessarily the

same. The reward distributions ri and rj need not be the same.

This assumption loosens the strong equivalence relation into a notion of similarity that is

structure preserving. This assumption formalizes the intuition that two MDPs are similar

if the MDP graphs have the same vertices and edges when drawn out, but the non-zero

transition probabilities as well as the rewards need not be the same. We now characterize

these similarities precisely. We call the grouping of all subMDPs similar to each other a

“similarity class”.

Let κG : S −→ P(S) be such that κG(s) returns the set of all states similar to s given the

grouping G and the implicit bijections from the previous assumption. We now define controls

on the reward and transition function differences.

Definition 4.5.2. Let k ∈ [K] denote similarity classes. For subMDPs Mi and Mj with

G(Mi) = G(Mj) = k, let fi,j denote the bijection between Mi and Mj, we define:

ζ(k)r (i, j) = max
(s,a)∈Si×A

|r̂i(s, a)− r̂j(fi,j(s), a)|

ζ
(k)
P (i, j) = max

(s,a)∈Si×A
∥Pi(·|s, a)− Pj(·|fi,j(s), a)∥1
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as the upper bound to the difference in rewards and L1 norm of the transition probabilities

for the same state-action pair. Let

ζ(k)r = max
{i,j:G(Mi)=G(Mj)=k}

ζ(k)r (i, j)

ζ
(k)
P = max

{i,j:G(Mi)=G(Mj)=k}
ζ
(k)
P (i, j)

be the upper bound to the difference in rewards and difference in L1 norm of the transition

probabilities for the similarity class k. Finally, define:

ζr = max
k∈[K]

ζ(k)r , ζP = max
k∈[K]

ζ
(k)
P

the upper control for the variability of reward signals and transition probabilities over all

similarity classes.

Intuitively, the values of ζr and ζP control how “un-hierarchical” the MDP M∗ is given a

partition L of the MDP as well as a similarity grouping function G with respect to its rewards

and transitions respectively.

As seen previously, PSHRL can be understood to be sampling candidate MDPs on the smaller

space of MDPs that possess the required hierarchical structure. As t −→ ∞, the posterior

distribution concentrates on a MDP with said hierarchical structure. Since in our noisy case

M∗ is not hierarchical, PSHRL will never be able to concentrate on it. Our algorithm instead

concentrates on a surrogate hierarchical MDP M of M∗. In a sense, we use this surrogate

MDP as a proxy to approximate our performance on the real near-hierarchical MDP (we

use the term near-hierarchical MDP to denote MDPs whose ζr and ζP are small). We now

formally define the hierarchical surrogate with respect to M∗.

Definition 4.5.3. (Hierarchical surrogate MDP) Let M∗ = (S,A, P ∗, r∗, se, s0) be an episodic

near-hierarchical MDP with a subMDP partitioning L = {Mi}Li=1 and a grouping of sub-
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MDPs G :M−→ [K] into K similarity classes. Let d ∈ ∆(S) be any state distribution. We

define the (d-)hierarchical surrogate MDP M = (S,A, P, r, se, s0) of M∗ as follows:

• They share the same state and action space S and A.

• The transition function for any pair (s, a) ∈ S ×A is a weighted average of transition

functions for all pairs (v, a), with v ∈ κG(s) with respect to d, that is,

P (s′|s, a) =
∑

v∈κG(s)

P ∗(s′|v, a) d(v)∑
w∈κG(s)

d(w)
, ∀s, s′ ∈ S, a ∈ A

• Similarly, the reward distribution for any pair (s, a) ∈ S × A is the weighted average

of reward distributions for all pairs (v, a) with v ∈ κG(s) with respect to d, that is:

r(s, a) =
∑

v∈κG(s)

r∗(v, a)
d(v)∑

w∈κG(s)
d(w)

, ∀s ∈ S, a ∈ A

• se and s0 are the exit and starting states respectively.

Intuitively, we are forcing a unified structure for all similar subMDPs weighted by d via

a d-averaging of the dynamics of the similar subMDPs. By construction, the hierarchical

surrogate is necessarily hierarchical. If M∗ is the original near-hierarchical MDP, we write

M to denote the hierarchical surrogate. Analogous to the hierarchical case, let ρ denote the

size of the largest similarity class.

We define a state visitation distribution as follows:

Definition 4.5.4. Let π be a policy. Then, the π-state visitation distribution is denoted by

dπ and is given by:

dπ(s) =
∞∑
i=0

γiP (si = s|π)

that is, conditioned on the dynamics of π, dπ(s) is the probability that the agent is in s at

any given time.
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Often times, reinforcement learning proofs rely on the Markov property of the MDP and

that empirical samples from trajectories are i.i.d. of the true MDP. In the misspecified case,

however, we no longer have this property. Consider two equivalent subMDPs Mi and Mj

of some hierarchical MDP M . Then, an observed reward ri(s, a) in Mi is treated as an

empirical observation from rj(f(s), a) and vice versa as they are both i.i.d. from the same

reward distribution. This is what often is referred to as having better sample efficiency since

one is learning the same empirical knowledge being in either s or f(s). Consider now two

similar subMDPs Mi and Mj. Let si ∈Mi and sj ∈Mj be similar states as per κG. During

an episodic learning process, observations from either si or sj are collected by the execution

of per-episode policies πt. Since our algorithm is hierarchical, the visitation probabilities to

either si or sj are complex, and the observations in those states are averaged according to a

highly complicated and random distribution that depends on the sampling of the candidate

per-episode MDPs M t from which the algorithm runs the planning algorithm to obtain πt.

To circumvent this challenge, we make the following assumption.

Assumption 4.5.5. Assume that we have access to a dπ
∗-sampling oracle that can sample

a state s ∼ dπ
∗ , a reward r∗(s, a) from s and some action a, and sample from the transition

P ∗(·|s, a) to get the next state s′.

In this way, conditioned on our historical data being generated by the oracle, our observations

for similar states si and sj are i.i.d. in the dπ
∗-hierarchical surrogate.

4.6 Online-offline data generation and the noisy PSHRL

algorithm

The proposed model-based noisy PSHRL algorithm generates both online and offline data

every episode. At the start of episode t, the agent uses offline data from all previous episodes

to update the posterior distribution P t−1 −→ P t. With this posterior, the agent samples a

hierarchical MDP M t ∼ sample(P t), and produces πt = plan(Mt). With this new policy,
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the agent runs πt online on the true MDP M∗ until termination at se ∈ S for τt timesteps,

producing the sequence Ot = {xt0, at0, rt0, xt1, at1, rt1, . . . , xtτt , atτt , rtτt , se}. It is with respect

to this online trial done at every episode that the Bayes regret bound will be given in the

next section. Note that the observations made during this online execution cannot be used

to update the posterior distribution since the distribution of states are not i.i.d. with the

dπ
∗ sampling oracle, and therefore the empirical hierarchical MDP models used to construct

confidence sets for the proof do not necessarily concentrate on the hierarchical surrogate M

of M∗. After the online run, the offline data for episode t is produced. At timestep h ≤ τt,

the agent samples sth ∼ dπ
∗|κG(xth), that is, the distribution dπ

∗ restricted to the set of states

equivalent to xth, the state seen at timestep h during the online trial Ot. In state sth, the

agent executes the same action ath = πt(xth) chosen during the online trial, and records the

observed action and next state into rth and s′th. Let Dt = {(sth, ath, rth, s′th)}
τt
h=0 denote the

offline data collected during episode t. Define the union of all offline data as Dt =
⋃t

i=1Dt,

with which the algorithm maintains and updates the posterior distribution over hierarchical

MDPs every episode.

Remark 4.6.1. By this way of firstly sampling Ot, then sampling the offline data according

to states observed in Ot, we are ensuring that the offline observations with which the sam-

pling mechanism samples a new MDP M t every episode remains consistent with the target

hierarchical surrogate. In this way, M t and M are conditionally i.i.d. with respect to Dt.

Algorithm 2: Noisy Offline-Online PSHRL with a Planner, Sampler, and Inferer
Input: Prior knowledge P0, functions plan, sample, infer;
Initialize D0,D′

0 = ∅,D0 = ∅.
for episode t = 1,2, . . . , T do
P t = infer(Pt-1,Dt-1);
M t ∼ sample(P t);
πt = plan(M t);
Run online trial with πt, collect in Ot = {xt0, at0, rt0, xt1, at1, rt1, . . . , xtτt , atτt , rtτt , se};
Generate:
Dt =

{(
sth ∼ dπ

∗|κG(xth), ath ∼ πt(sth), rth ∼ r∗(sth, ath), s
′
th ∼ P ∗(·|sth, ath)

)}τt
h=0

;
Collect Dt = Dt−1 ∪ Dt;

end
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4.7 Efficiency of noisy PSHRL

Define the optimality difference between MDPs Ψ as follows:

Ψ(M,M ′) = E
[
V M,π − V M ′,π′

]
where π = plan(M) and π′ = plan(M ′). In the misspecified or PSHRL setting with the

additional Assumptions 4.5.1 and 4.5.5, the offline-online PSHRL algorithm (Algorithm 2)

enjoys a Bayes regret bound of:

BayesRegret(T ) = O (T (Ψ(M∗,M) + ζr +HζP )) +O
(
H3/2ρ

√
KAT log(AKHτmaxT )

)
= Õ

(
T (Ψ(M∗,M) + ζr +HζP ) +H3/2ρ

√
KAT

)

As with most misspecification cases, we recover a T -linear dependency of our regret bound

on hierarchical parameters ζr and ζP which capture the degree of misspecification. We refer

the reader to Chapter 5 for a complete proof of this bound.

We can control Ψ(M∗,M) by using the L1 deviation between the uniform distribution over

κG(s) and the distribution dπ
∗ restricted on κG(s) to further specify the order of Ψ(M∗,M)

from the construction of the hierarchical surrogate with respect to dπ
∗ . However small this

quantity may be, it cannot be sub-linear in T as Ψ is temporally invariant. As long as the

gap exists, it will necessarily incur a T -linear regret term in the Bayes regret bound.

We conjecture a correlation between ζr, ζP and Ψ(M∗,M). The smaller the parameters con-

trolling how un-hierarchical the near-hierarchical MDP M∗ are, the more likely its hierarchi-

cal surrogate M will “resemble”. Conditioned on the conjecture being true, a small-enough

gap makes the noisy PSHRL algorithm a reasonable choice for near-hierarchical environment

learning and solving, as all T -linear terms would be effectively small. Considering the sample

efficiency of the algorithm, it could be that the optimal policy for the hierarchical surrogate

is attained long before the scaling in T of Ψ(M∗,M) and ζr, ζP takes a noticeable effect
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on the performance of the algorithm. As the bounds are given for Bayes regret, this could

translate to the algorithm finding a π such that it performs optimally for most of the time on

M∗ while completely failing at some edge cases with very low probability of reaching.

4.8 Efficient planning with hierarchical structures

Our proof works for any planning algorithm plan to plan on the sampled M t every episode.

Our bound is general even in the case where there are no repeated hierarchical similarities,

that is, K = L = 1, where it is of note that our algorithm vastly increases in efficiency when

there are hierarchical similarities present, evident from the bound and from the informal

condition ρK << |S|. As stated previously, a standard planning algorithm such as value

iteration (VI) works as part of our PSHRL training loop, however we will look into a specific

planning method specifically designed to leverage the hierarchical structures in the MDP for

improved efficiency. This problem has been explored in [40] in the framework of options by

using option models. If options are thought to be solutions to subproblems within the MDP

coupled with subgoals, additional rewards associated with particular states in the MDP, then

hierarchical planning can be thought of as constructing options corresponding to subMDPs.

In this way, one needs to consider the possible combinations of values associated with the exit

states of subMDPs. Taking the cleaning robot as an example, one can make each possible

door in a room a subgoal by giving them a high reward. An option can now be trained inside

the room (within the subMDP) given the additional bonuses attributed to exit states. This

intuition is formalized through the notion of exit profiles [40,46].

Definition 4.8.1. An exit profile J for subMDP Mi is a vector of values J(e), ∀e ∈ Ei.

The structure outside the subMDP is summarized through J for the agent. Any exit profile

J is associated an optimal policy πi,J for the subMDP Mi which we will think of as an

option. Furthermore, the same exit profile J induces the same option for all equivalent

subMDPs.
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Assume now that we have given to each equivalent subMDP class k a set of exit profiles J̃k

and corresponding options for each J ∈ J̃k (this can be computed via traditional VI). We

define an induced high-level MDP MG =
(
SG,AG, P

G, rG
)

such that

• SG = E ∪ {s0}, the union of all exit states with the starting state.

• For each s ∈ SG, if s is a state in subMDP Mi, then its action space AG(s) is the set

of options computed for Mi.

• rG(s, πi,J) is the expected reward obtained from s ∈ Si when πi,J is run until the option

reaches e ∈ Ei.

• PG(e|s, πi,J) gives the probability of transitioning to e ∈ Ei.

The quantities rG(s, πi,J) and PG(e|s, πi,J) form the option model for πi,J , defined as in [40].

We remark here that the exit state of a subMDP is in fact a starting state for another

subMDP from the way subMDP partitioning was defined. PG essentially encodes the proba-

bility of hopping from one particular subMDP to another. Solving the higher-level MDP by

computing options and option models corresponding to sets of exit profiles is called Planning

with Exit Profiles (PEP) [46]:

Algorithm 3: Planning with Exit Profiles (PEP)
MDP M , k sets of exit profiles J̃k, one for each equivalent subMDP class k;
Step 1: Option generation
for k = 1, 2, . . . , K do

For each exit profile J ∈ J̃k, compute πk,J for subMDPs in equiv. class k, and its
associated model

end
Step 2: plan with options
Compute a policy for the induced high-level MG, which induces a policy π̃ for M .;

Return: π̃.

We use VI to both generate options for each exit profile as well as plan on the high-level

MDP MG. For this process to terminate in a finite number of steps, the following assumption

is made:
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Assumption 4.8.2. For M , all its induced subMDPs with exit profiles, and the induced

MG, the transition probability graph corresponding to an optimal policy is acyclic.

VI outputs a value function in n iterations under a proper initialization where n is the

cardinality of the state space.

Now, if in Algorithm 1 we compute πt = plan(M t) with VI, we would have that the com-

putational complexity of VI is O(S2Aρ). On the other hand, denote X = maxk |J̃k|, the

computational complexity of PEP is:

O(KXρ2Aρ) +O(E2Xρ) ≤ O
(
X
[
Kρ2A+ E2

]
ρ
)

Where O(KXρ2Aρ) is the complexity of the option generation process, and O(E2Xρ) is the

complexity of planning on the high-level MDP MG. PEP will be efficient if Xρ2K < O(S2)

and E2X < O(S2A), that is, when subMDPs are small and a small number of exit profiles

is used to find options for each equivalent subMDP class, respectively. Furthermore, we

desire the total number of exit states E to be small as well similar to what was mentioned

in previous sections, where exit states are bottlenecks to efficient learning.

4.9 Exit profiles: quality and suboptimality

From the perspective of an agent navigating a subMDP, the outer MDP structure is summa-

rized through exit profiles. If these exit profiles are not representative of value maximizing

behavior beyond the subMDP, then the options generated in Step 1 of Algorithm 3 are not

optimal for the control problem of the entirety of the environment. The performance of a

PSHRL algorithm using PEP will depend on how good the given exit profiles are, which will

be characterized by a notion of “quality” for exit profiles. Instead of explicitly manufacturing

exit profiles from organically compiling the outside environment’s information into vectors

(this requires full knowledge of the environment which in a control setting, the agent does not
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have access to), PEP instead selects an ϵ-cover of exit profiles such that options generated

by these are near optimal for any possible exit profile.

Let Ji ⊂ [0, H]|Ei| be the space of exit profiles for subMDP Mi, V π
i,J the value of policy π

for exit profile J in subMDP Mi, and V ∗
i,J the value of the optimal policy of Mi w.r.t. exit

profile J .

Definition 4.9.1. The suboptimality of a set of exit profiles J̃ for Mi is

∆i(J̃ ) = max
s∈S0

i ,J∈Ji

(
V ∗
i,J(s)−max

J̃∈J̃
V

πi,J̃

i,J (s)

)

where S0
i is the possible start states of Mi.

Essentially, ∆i(J̃ ) captures the ability of optimal policies for exit profiles within J̃ to ap-

proach optimality in any exit profile. For any exit profile J , there exists some J̃ ∈ J̃ that

induces a ∆i(J̃ )-optimal policy under J (that is, under the subMDP Mi with exit profile

J). Let ∆ = maxi ∆i(J̃ki) where ki is the equivalence class Mi is in, and J̃k’s are sets of exit

profiles given to each equivalence class in Step 1 of Algorithm 3. ∆ is the worst possible gap

in subMDP value among all equivalence classes. Authors in [46] proved the following:

Proposition 4.9.2. If in Step 2 of PEP (Algorithm 3), the agent uses VI with initialization

V = 0 to compute a high-level policy π̃ for MG, then under Assumption 4.8.2, we have that

V ∗(s0)− V π̃(s0) ≤ ∆|E|.

That is, when both the exit profiles given to PEP are of high quality (∆ small) and there

is a small number of possible exit states (E small), then the value function of the high-level

policy π̃ that is computed by PEP is close to the optimal value function. We control ∆ by

selecting aforementioned ϵ-covers of exit profiles.

Definition 4.9.3. A finite set J̃ is a (sup norm) ϵ-cover for J if for any J ∈ J , there exists

a J̃ ∈ J̃ such that
∥∥∥J − J̃

∥∥∥
∞

< ϵ.

We have the following result per [46]:
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Proposition 4.9.4. For subMDP Mi in equivalence class k, if J̃k is an ϵ-cover of Ji ⊂

[0, H]Ei , then ∆i(J̃k) ≤ 2ϵ.

As Ji ⊂ [0, H]Ei is bounded, there always exists a finite ϵ-cover J̃k of Ji such that
∣∣∣J̃k

∣∣∣ ≤
⌊H/ϵ⌋|Ei| exponential in Ei, only computationally efficient when maxi Ei is very small (when

for every subMDP, there are only a very small number of possible exit states).

In terms of regret, PSHRL with a PEP planner suffers a regret of ∆ET + Õ(H3/2ρ
√
K
√
AT )

which is an additional linear temporal dependency on ∆E . Controlling ϵ in selecting an

ϵ-cover essentially allows for the ∆i’s to negligible amounts in the value function estimates.

They are, however, non-negligible, as they induce an at most constant suboptimal difference

every timestep. All in all, for the price of a somewhat controllable suboptimality term

linear in T , when Xρ2K < O(S2) and E2X < O(S2A), one observes significant gains in

computational efficiency.
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Chapter 5

Regret analysis of Algorithm 2

We begin with a regret decomposition into manageable parts, of which we will control indi-

vidually.

5.1 Regret decomposition

Recall that M∗, π∗ are the true MDP and its optimal policy. Given the state distribution dπ
∗

and the similarities among subMDPs, we construct the hierarchical surrogate M , and label

π = plan(M). ζr and ζP are controls over the width of the reward functions and transition

functions in similar subMDPs. We have that:

BayesRegret(T ) =
T∑
t=1

E
[
V M∗,π∗ − V M∗,πt

]
=

T∑
t=1

E
[
V M∗,π∗ − V M,π

]
+

T∑
t=1

E
[
V M,π − V M,πt

]
+

T∑
t=1

E
[
V M,πt − V M∗,πt

]
= TΨ(M∗,M) +

T∑
t=1

E
[
V M,π − V M,πt

]
+

T∑
t=1

E
[
V M,πt − V M∗,πt

]
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We can loosely control the first summation by TΨ(M∗,M) ≤ TH. Consider V M,πt −

V M∗,πt :

V M,πt − V M∗,πt ≤ |r̂M(s, πt(s))− r̂M
∗
(s, πt(s))|

+
∑
s′∈S

(
PM(s′|s, πt(s))V M,πt

(s′)− PM∗
(s′|s, πt(s))V M∗,πt

(s′)
)

≤ ζr +HζP

Therefore,
T∑
t=1

E
[
V M,πt − V M∗,πt

]
≤ Tζr + THζp

Consider finally V M,π−V M,πt . Recall that πt = plan(M t) with M t sampled from the posterior

distribution. Here, we make a crucial observation that is central to our analysis. We use our

sampling oracle to sample rewards and transitions from states according to the distribution

dπ
∗ to build our dataset, which is used in turn to sample an MDP M t for episode t. As the

hierarchical surrogate M is constructed by weighing similar transitions and rewards exactly

according to dπ
∗ , our empirical estimates of the rewards and transitions from our dataset are

exactly i.i.d. estimates for the transitions and rewards in M . At the start of teach episode

t, conditioned on the dataset Dt, M t and M are independent and identically distributed. As

plan :M−→ Π is a deterministic mapping, it follows that the tuples (M,π) and (M t, πt) are

i.i.d., thus E
[
V M,π|Dt

]
= E

[
V Mt,πt |Dt

]
and by the tower property, E

[
V M,π

]
= E

[
V Mt,πt].

Thus, we have:
T∑
t=1

E
[
V M,π − V M,πt

]
=

T∑
t=1

E
[
V Mt,πt − V M,πt

]
For any policy π and any MDP M , denote the Bellman consistency operator by T M,π, and

we have V M,π = T M,πV M,π. We decompose the per-episode regret into per timestep Bellman
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errors using the Bellman consistency operator. Similarly to [28], we have:

(
V Mt,πt − V M,πt

)
(st0) = (T Mt,πt

V Mt,πt − T M,πt

V M,πt

)(st0)

= (T Mt,πt

V Mt,πt − T M,πt

V M,πt

)(st0)± T M,πt

V Mt,πt

(st0)

=
(
T Mt,πt − T M,πt

)
V Mt,πt

(st0) +
∑
s′∈S

PM(s′|st0, πt(st0))
(
V Mt,πt − V M,πt

)
(s′)

±
(
V Mt,πt − V M,πt

)
=
(
T Mt,πt − T M,πt

)
V Mt,πt

(st0) +
(
V Mt,πt − V M,πt

)
(st1) + dt0

= . . .

=
τt−1∑
h=0

(
T Mt,πt − T M,πt

)
V Mt,πt

(sth) +
τt−1∑
h=0

dth

where:

dth =
∑
s′∈S

PM(s′|sth, πt(sth))
(
V Mt,πt

(s′)− V M,πt

(s′)
)
−
(
V Mt,πt

(st,h+1)− V M,πt

(st,h+1)
)

The first factor is the one-step Bellman error under the sampled MDP M t. The second

term represents the randomness in the transitions of the hierarchical surrogate M . In

state sth under the policy πt, the expected value of
(
V Mt,πt − V M,πt)

(st,h+1) is exactly∑
s′∈S P

M(s′|sth, πt(sth))
(
V Mt,πt

(s′)− V M,πt
(s′)
)
. Similarly to [28], conditioned on the hier-

archical surrogate M and the sampled MDP M t, the term
∑τt−1

h=0 dth has expectation zero.

We thus have that:

E
[
V Mt,πt − V M,πt |M t,M

]
=

τt−1∑
h=0

E
[(
T Mt,πt − T M,πt

)
V Mt,πt

(sth)|M t,M
]

where we decomposed the per-episode expected regret (conditioned on M t,M) into per-

timestep Bellman errors (conditioned on M t,M). We now show that with high probability,

M t exists in a confidence set concentrating on the hierarchical surrogate M . The construction
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of these confidence sets will give us the controls for the per-timestep Bellman errors. From

this point onward, our analysis largely borrows from [46].

5.2 Construction of confidence sets

For each episode t, let N t(s, a) denote the number of times action a was taken while either

being in s or in states similar to s, that is, any state in κG(s), in the first t offline episodes. In

other words, N t(s, a) count the occurrences of κG(s) and a in Dt−1, and gets updated at the

end of the episode when we update Dt−1 −→ Dt. Let P̂ t(·|s, a) and r̂t(s, a) be respectively the

empirical transition function and the empirical reward model based on offline observations

in the first t episodes of choosing action a at state s or states similar to s. If N t(s, a) = 0,

we choose r̂t(s, a) arbitrarily in [0, 1] and P̂ t(·|s, a) as an arbitrary distribution subject to

the constraint that P̂ t(s′|s, a) > 0 only if s′ and s are in the same subMDP.

For episode t, the confidence set Mt is given by:

Mt =

{
M̃ :

∥∥∥P̂ t(·|s, a)− P M̃(·|s, a)
∥∥∥
1
≤ β1

(
N t(s, a), t

)
∀s, a,∣∣∣r̂t(s, a)− r̂M̃(s, a)

∣∣∣ ≤ β2

(
N t(s, a), t

)
∀s, a,

and M̃ satisfies the equivalent subMDP restriction

}

Selecting β1 and β2 such that M and M t ∈ Mt with high probability requires the following

concentration lemmas, stated without proof.

Lemma 5.2.1. (Weissman et. al., 2003) [45] Assume p(·) is a distribution over m distinct

events and p̂(·) is an empirical distribution for p from n i.i.d. samples. For any ϵ > 0, we

have

P (∥p(·)− p̂(·)∥1 ≥ ϵ) ≤ (2m − 2) exp

(
−nϵ2

2

)
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Lemma 5.2.2. (Hoeffding, 1963) [16] For the deviation between the true mean r̄ and the

empirical mean r̂ from n i.i.d. samples with support in [0, 1], for any ϵ > 0, we have

P (|r̄ − r̂| ≥ ϵ) ≤ 2 exp
(
−2nϵ2

)

Similar to [4], the lemma below gives precise expressions for β1 and β2. Recall that τmax is

such that ∀t,P(τt > τmax) = 0.

Lemma 5.2.3. For any δ ∈ (0, 1), let β1(n, t) =

(
14ρ log( 2AKτmaxt

δ )
max(1,n)

)1/2

, and β2(n, t) =(
7 log( 2ρAKτmaxt

δ )
2max(1,n)

)1/2

, we have that

P(M ̸∈Mt) = P(M t ̸∈Mt) =
δ

15t6

Proof. (of Lemma 5.2.3) Recall that ρ is the maximum size of the subMDPs, therefore

upper bounds the size of the support of any transition distribution. Thus, we can use

Lemma 5.2.1 with m = ρ. Setting

ϵ =

2 log
(

2ρ20ρAKτmaxt7

δ

)
max(1, n)

1/2

≤

(
14ρ log

(
2AKτmaxt

δ

)
max(1, n)

)1/2

= β1(n, t)

we must have that by Weissman’s inequality,

P
(∥∥∥P̂ t(·|s, a)− PM(·|s, a)

∥∥∥
1
≥ β1(n, t)

∣∣∣M,n i.i.d. samples
)
≤ (2ρ − 2) exp

(
−nβ1(n, t)

2

2

)
≤ 2ρ exp

(
−nϵ2

2

)
= 2ρ exp

(
−n

2

2

max(1, n)
log

(
2ρ20ρAKτmaxt

7

δ

))
≤ 2ρ

δ

2ρ20ρAKτmaxt7

=
δ

20t7ρAKτmax

46



Similarly, set

ϵ =

 log
(

120ρAKτmaxt7

δ

)
2max(1, n)

1/2

≤

(
7 log

(
2ρAKτmaxt

δ

)
2max(1, n)

)1/2

= β2(n, t)

we have that by Hoeffding’s inequality,

P
(∣∣r̂t(s, a)− r̄M(s, a)

∣∣ ≥ β2(n, t)
∣∣∣M,n i.i.d. samples

)
≤ 2 exp

(
−2nβ2(n, t)

2
)

≤ 2 exp
(
−2nϵ2

)
= 2 exp

(
−2n · log (120ρAKτmaxt

7/δ)

2max(1, n)

)
≤ 2 exp

(
− log(120ρAKτmaxt

7)/δ)
)

=
δ

607ρAKτmax

For episode t, N t(s, a) ∈ {0, 1, . . . , t · (τmax − 1)} since there has been t episodes and s (and

its similar states in κG(s)) could’ve been attained at most (τmax− 1) times since the episode

always terminates on se, and each episode generates Dt offline data of max length τmax.

When n = 0 (we do not have any i.i.d. samples observed), the confidence intervals trivially

hold with probability 1. Union bounding over the possible values for N t(s, a) gives:

P
(∥∥∥P̂ t(·|s, a)− PM(·|s, a)

∥∥∥
1
≥ β1(N t(s, a), t)

∣∣∣M) ≤ t·τmax∑
n=1

δ

20t7ρAτmaxK
<

δ

20t6ρAK

and

P
(∣∣r̂t(s, a)− r̄M(s, a)

∣∣ ≥ β2(N t(s, a), t)
∣∣∣M) ≤ t·τmax∑

n=1

δ

607ρAτmaxK
<

δ

60t6ρAK

Since there are K unique subMDP similiarity classes and for each of these classes, a maximum

of ρ states, there are at most ρK similar state classes. We can union bound over the actions
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A and the equivalent state classes as follows:

P (M ̸∈Mt|M) <

ρK∑
1

A∑
1

[
δ

60t6ρAK
+

δ

20t6ρAK

]
= ρAK

[
δ

60t6ρAK
+

δ

20t6ρAK

]
=

δ

15t6

Since the above hold for any M , we have

P(M ̸∈Mt) =

∫
M

P(M)P(M ̸∈Mt|M) <
δ

15t6

Finally, given that M and M t are conditionally i.i.d. on the offline data Dt, we have

P(M t ̸∈Mt) =

∫
Dt

P(Dt)P(M t ̸∈Mt|Dt)

=

∫
Dt

P(Dt)P(M ̸∈Mt|Dt)

= P(M ̸∈Mt)

5.3 Controlling the per-timestep Bellman errors

Recall that we seek to upper bound the expression
∑T

t=1 E
[
V Mt,πt − V M,πt]. Consider:

T∑
t=1

E
[
V Mt,πt − V M,πt

]
<

T∑
t=1

E
[(

V Mt,πt − V M,πt
)
1
[
M,M t ∈Mt

]]
+ 2H

T∑
t=1

P(M ̸∈Mt)

where the desirable event is that both M and Mt are within our confidence region Mt. The

magnitude of the undesirable events are kept as H as E
[
V M,π

]
≤ H for any M,π, since

E [τ ] ≤ H and r is supported on [0, 1]. We take into account both bad events M ̸∈ Mt

and M t ̸∈ Mt as these have equal probabilities from Lemma 5.2.3, double counting the
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intersection event M ∧M t ̸∈Mt. Choose δ = 1/H, we have:

2H
T∑
t=1

P(M ̸∈Mt) < 2H
T∑
t=1

1

15Ht6
≤ 2

15

∞∑
t=1

1

t2
<

1

3

On the other hand,

T∑
t=1

E
[(

V Mt,πt − V M,πt
)
1
[
M,M t ∈Mt

]]
=

T∑
t=1

{
E

[
τt−1∑
h=0

(
T Mt,πt − T M,πt

)
V Mt,πt

(sth)|M t,M

]
1
[
M,M t ∈Mt

]}

When M,M t ∈Mt, we have that

(
T Mt,πt − T M,πt

)
V Mt,πt

(sth) ≤
∣∣∣r̄Mt

(sth, π
t(sth))− r̄M(sth, π

t(sth))
∣∣∣

+
∥∥∥PMt

(·|sth, πt(sth))− PM(·|sth, πt(sth))
∥∥∥
1

∥∥∥V Mt,πt
∥∥∥
∞

≤ 2β2(N t(sth, ath), t) + 2Hβ1(N t(sth, ath), t)

Thus,

T∑
t=1

E
[(

V Mt,πt − V M,πt
)
1
[
M,M t ∈Mt

]]
≤ 2

T∑
t=1

E

[
τt−1∑
h=0

[
β2(N t(sth, ath), t) +Hβ1(N t(sth, ath), t)

]]

Upper bounding t by T , and substituting δ = 1/H, we have that:

β2(N t(sth, ath), t) +Hβ1(N t(sth, ath), t) ≤

√
7 log (2ρAKHτmaxT )

2max(1,N t(sth, ath))
+H

√
14ρ log (2AKτmaxT )

max(1,N t(sth, ath))

≤ O

(
H

√
ρ log(AKHτmaxT )

max(1,N t(sth, ath))

)
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5.4 Self-normalization bounds

For this section, states denoted by s and its variants are understood to be representing all

states in κG(s). We adopt the nomenclature of “similarity state-action pair” to specify when

s in (s, a) represents itself and all states similar to it.

We seek to control the following expression:

E

[
T∑
t=1

τt−1∑
h=0

√
1

max(1,N t(sth, ath))

]

We define a special identity function that identifies similar state classes. Let Id : (S ×A)×

(S × A) −→ {0, 1} be such that for any arbitrary (s, a) ∈ S × A, Id((s′, a′), (s, a)) returns 1

only if s′ ∈ κG(s) and a′ = a. Trivially, s ∈ κG(s). We have that

T∑
t=1

τt−1∑
h=0

√
1

max(1,N t(sth, ath))
=
∑
(s,a)

T∑
t=1

τt−1∑
h=0

√
Id((sth, ath), (s, a))

max(1,N t(s, a))

where the outer sum over (s, a) is understood to be going over each similarity state-action

pair once instead of going over each individual state-action pair. For any (s, a), we have the

following decomposition:

T∑
t=1

τt−1∑
h=0

√
Id(sth, ath), (s, a))

max(1,N t(s, a))
=

T∑
t=1

τt−1∑
h=0

√
Id(sth, ath), (s, a))

max(1,N t(s, a))
1
[
N t(s, a) ≤ τmax

]
+

T∑
t=1

τt−1∑
h=0

√
Id(sth, ath), (s, a))

max(1,N t(s, a))
1
[
N t(s, a) > τmax

]
To maximize the first summand, we observe that since each episode lasts a maximum of τmax

timesteps, the agent would need to loop over the same similarity state-action pair (s, a) for

the offline data Dt, thereby maximally accumulating the counting function for two successive

episodes and fail the 1 [N t(s, a) ≤ τmax] check starting from the third successive episode. Let

t be the first episode where we encounter the similarity state-action pair (sth, ath), assume

that for the next 2 episodes, the only data collected are (κG(sth), ath). If (s, a) is such that
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Id((sth, ath), (s, a)) = 1, then max(1,N t(s, a)) = 1 and max(1,N t+1(s, a)) = τmax as the

counting function N t only gets updated at the end of each episode when Dt is updated.

Thus, we have that:

T∑
t=1

τt−1∑
h=0

√
Id(sth, ath), (s, a))

max(1,N t(s, a))
1
[
N t(s, a) ≤ τmax

]
≤

T∑
t=1

τt−1∑
h=0

Id ((sth, ath), (s, a))1
[
N t(s, a) ≤ τmax

]
< 2τmax

as we upper-bound 1
τmax

< 1 during the next-episode accumulation.

Consider now the second summand. We begin with an auxillary inequality:

Lemma 5.4.1. For n > τmax > τt and j < τt, we have that 1
n
≤ 2

n+j
.

Assume now that N t(s, a) > τmax, and (s, a) has been observed jt ≤ τt times in Dt. We

have

T∑
t=1

τt−1∑
h=0

√
Id((sth, ath), (s, a))

max(1,N t(s, a))
1
[
N t(s, a) > τmax

]
≤

T∑
t=1

jt∑
j=1

√
1

N t(s, a)
1
[
N t(s, a) > τmax

]
≤

T∑
t=1

jt∑
j=1

√
2

N t(s, a) + j
1
[
N t(s, a) > τmax

]
≤

NT+1(s,a)∑
n=1

√
2

n
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where we applied Lemma 5.4.1., and that
∑T

t

∑jt
j 1 = N T+1(s, a). Thus, we have that for

any similarity state-action pair (s, a):

T∑
t=1

τt−1∑
h=0

√
Id(sth, ath), (s, a))

max(1,N t(s, a))
=

T∑
t=1

τt−1∑
h=0

√
Id(sth, ath), (s, a))

max(1,N t(s, a))
1
[
N t(s, a) ≤ τmax

]
+

T∑
t=1

τt−1∑
h=0

√
Id(sth, ath), (s, a))

max(1,N t(s, a))
1
[
N t(s, a) > τmax

]
≤ 4τmax +

NT+1(s,a)∑
n=1

√
2

n

≤ 4τmax +

∫ NT+1(s,a)

0

√
2n−1/2 dn

= 4τmax + 2
√

2N T+1(s, a)

Recall that K is the number of similarity classes. Let M∗
i be any subMDP from similarity

class i from the true MDP M∗, write S∗
i for the state space of M∗

i . Define S̄∗ =
∑K

i=1 S∗
i ,

the sum of “distinct” internal states where the distinction is with respect to the similarity

relation. Thus, summing over all similarity state-action pairs (s, a) once, we have

∑
(s,a)

T∑
t=1

τt−1∑
h=0

√
Id(sth, ath), (s, a))

max(1,N t(s, a))
≤ 4τmaxS̄A+ 2

√
2
∑
(s,a)

1 ·
√
N T+1(s, a)

≤ 4τmaxS̄A+ 2
√
2

√∑
(s,a)

1

√∑
(s,a)

N T+1(s, a)

4τmaxS̄A+ 2
√
2
√

S̄A
√∑

(s,a)

N T+1(s, a)
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where we applied the Cauchy-Schwarz inequality. Thus,

E

[
T∑
t=1

τt−1∑
h=0

√
1

max(1,N t(sth, ath))

]
= E

∑
(s,a)

T∑
t=1

τt−1∑
h=0

√
Id((sth, ath), (s, a))

max(1,N t(s, a))


≤ 4τmaxS̄A+ 2

√
2
√
S̄A · E

√∑
(s,a)

N T+1(s, a)


≤ 4τmaxS̄A+ 2

√
2
√
S̄A ·

√√√√√E

∑
(s,a)

N T+1(s, a)


≤ 4τmaxS̄A+ 2

√
2
√
S̄A ·

√√√√ T∑
t=1

E [τt]

= 4τmaxS̄A+ 2
√
2
√
S̄ATH

5.5 Regret

Putting it all together, we have

BayesRegret(T ) =
T∑
t=1

E
[
V M∗,π∗ − V M∗,πt

]
=

T∑
t=1

E
[
V M∗,π∗ − V M,π

]
+

T∑
t=1

E
[
V M,π − V M,πt

]
+

T∑
t=1

E
[
V M,πt − V M∗,πt

]
= O (TΨ(M∗,M)) +O (T (ζr +HζP )) +O

(
H
√
ρ log (AKHτmaxT )

[
τmaxS̄A+

√
S̄AHT

])
= O (T (Ψ(M∗,M) + ζr +HζP )) +O

(
H3/2

√
ρS̄AT log(AKHτmaxT )

)

Given that S̄ ≤ ρK by construction, we have that

BayesRegret(T ) = O (T (Ψ(M∗,M) + ζr +HζP )) +O
(
H3/2ρ

√
KAT log(AKHτmaxT )

)
= Õ

(
T (Ψ(M∗,M) + ζr +HζP ) +H3/2ρ

√
KAT

)
where Õ hides logarithmic factors. The proof is complete.
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Chapter 6

Generalizing noise

We explore several ways in which we can generalize the similarity proposed in Chapter

4. This chapter is mostly qualitative and serves more as a conversation starter about the

possible ways in which we could generalize noise and compare these generalizations.

6.1 Structural misspecification

In Chapter 4, we characterized noise as slight fluctuations in the reward and transition dis-

tributions for state-action pairs in the same similarity class with misspecification parameters

ζr and ζP for reward and transition respectively. More specifically, we required that if s and

s′ are similar states, then P (·|s, a) and P (·|s′, a) have the same support modulo the similarity

relation. Visually, this means that the graph representation of similar subMDPs are struc-

turally identical while the weights on the edges (reward and transition probabilities) could

differ, with the understanding that a directed edge exists between two states x and x′ when

P (x′|x, a) > 0 for some a ∈ A. A possible way to describe structural misspecification (i.e.

similar subMDPs need not share the same graph representation) is to elect a representative

subMDP for each similarity class, and solve for the union of all representative subMDPs put

together. This can potentially be done via MDP homomorphisms.
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6.2 MDP homomorphisms

MDP homomorphisms are dynamic-preserving morphisms in the space of MDPs and its

internal structures. The idea was proposed in 2003 in [31] with the purpose of creating

a tool to study abstractions of MDPs. Specifically, it was a language to describe strong

symmetries and other types of special structures in an environment when the labels of the

actions may not match perfectly.

Definition 6.2.1. (Ravindran & Barto, 2003) A MDP homomorphism h :M −→M from

M = (S,A, P, r) to M ′ = (S ′,A′, P ′, r′) is a tuple of surjections ⟨f, {gs : s ∈ S}⟩ with

h(s, a) = (f(s), gs(a)) where f : S −→ S ′ and gs : A −→ A′ such that r(s, a) = r′(f(s), gs(a))

and P (f−1(f(s′))|s, a) = P ′(f(s′)|f(s), gs(a)).

This definition requires that the rewards and transition probabilities agree (homomorphi-

cally), while we would want to incorporate slight fluctuations in reward and transition dis-

tributions as well. For this purpose, a more fitting structure is the approximate MDP

homomorphism presented in [32], where the similarity is constrained by two parameters ζr

and ζP , analogous to those same parameters that were used in our characterization of noise

in Chapter 4. Although defined slightly differently, these parameters for approximate MDP

homomorphisms control the level of difference between rewards of behaviors taken in similar

states and transition probabilities when behaving in similar states respectively.

Denote the true (near-hierarchical) MDP by M∗ = (S∗,A∗, P ∗, r∗). Let it be given that{
M

(k)
j

}J

j=1
are all subMDPs belonging to the same similarity class k ∈ [K]. Assume now

that there exists
{
h
(k)
j

}J

j=1
homomorphisms, each mapping its corresponding index subMDP

to a representative subMDP M̃ (k) =
{
S ′(k),A′(k), P ′(k), r′(k)

}
. Gather all subMDPs into a

hierarchical surrogate M̃ = gather(M̃ (k), k ∈ [K]), ensuring that subMDP exit states are

setup correctly, and let π̃ = plan(M̃). An agent running an algorithm that uses the above

approximate MDP homomorphism setup would repeat the following loop until termination
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for every episode. While not terminated, in state s ∈ S∗, the agent takes action:

a = π̃
(
h
κG(s)
j (s)

)
The agent translates states from the true MDP into a approximately homomorphic state in

M̃ , and executes π̃ there. This method of generalization via approximate MDP homomor-

phisms capture the structural misspecification described in the previous section as these are

handled by the homomorphisms going between the true subMDPs and their representative

subMDP.

There are several challenges with this approach. Firstly, one would need to prove the ex-

istence of a unifying representative M̃ (k) for each k similarity classes. It is possible that

when given a (sub)MDP M = (S,A, P, r) as well as a (sub)MDP homomorphism h, one

can construct a respresentative MDP M ′ = (S ′,A′, P ′, r′) from M using h. Under certain

consistency conditions of M ′ with respect to a lax bisimulation metric d, the value function

for policies which are lifted from M ′ onto M enjoy strong bounds, that is, one can control

the difference between V M,π where π is optimal for M and V M ′,π′ where π′ is optimal for the

representative MDP constructed from h. This was the focal point of study of [42]. Electing

one representative from a collection of J similar subMDPs via J different homomorphisms

would require a loose notion of consistency of homomorphisms across all J subMDPs in

order to have the elected M ′ to be consistent with all of its representees. The regret between

the value function using an optimal policy π∗ for a near-hierarchical MDP M∗ and a value

function using a policy π optimal for a hierarchical surrogate M constructed from approxi-

mate MDP homomorphisms would be T -linear with respect to an upper bound on the lax

bisimulation metrics used for each similarity class, as this loss is invariant throughout each

episode.
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6.3 Aggregated state representation

Consider now a function ϕ : S × A −→ Φ where Φ denotes a set of aggregated states, and

assume the latter to be finite. We call ϕ a ϵ-error aggregated state representation if for any

two state-action pairs (s, a), (s′, a′) with ϕ(s, a) = ϕ(s′, a′), |Q(s, a)−Q(s′, a′)| < ϵ. State

aggregation is in fact a generalization of hierarchical MDPs. Let M be a hierarchical MDP

and {Mi}Li=1 its decomposition into L subMDPs. Denote the subMDP equivalence relation

by ∼, define Mq = {Mi} /∼ to be the quotient of the subMDP collection by ∼. Then, one

can define a 0-error aggregated state representation ϕ by simply sending state-action pairs

in M to their corresponding state-action equivalent in Mq. In this way, state aggregation

is a generalization of hierarchical MDPs via the above construction. When ϕ is explicitly

given, [9] shows that a model-free optimistic version of Q-learning on the state aggregation

enjoys T -linear regret with respect to ϵ.

Since there are no explicit conditions on ϕ, it is possible for ϕ to aggregate from a similar-

ity relation when given a near-hierarchical MDP instead of an equivalence relation in the

construction above, resulting in a non-zero ϵ-error aggregated state representation. If one is

given the controls over the similarity relation with parameters ζr and ζP (Chapter 4), one

could potentially bound ϵ and use the same algorithm for aggregated state representations

with a regret only T -linear in ϵ.

Our model-based noisy PSHRL algorithm’s runtime is dependent not only on the expected

regret bounds but also on the efficiency of planning, where we saw that PEP can be more

efficient than ordinary VI when substructures are highly repeateable. An advantage to the

state aggregation algorithm mentioned above is that it is model-free; the agent only maintains

a copy of a Q-function which it updates after every episode. This entirely eliminates the

need to do any planning at all: the bulk of the computation resides in updating the Q-

function.
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Chapter 7

Discussion and Future Works

We presented theoretical results detailing the extents to which a posterior sampling hierar-

chical reinforcement learning algorithm is able to perform when run on a near-hierarchical

problem.While there is a visible potential for increased efficiency resulting from exploiting

subMDP similarities when they exist and are given, the algorithm’s regret is linearly depen-

dent on the hierarchical misspecification. When this quantity is small, this analysis shows

that one can in fact make the argument that the regret is tolerable if one were to settle for

a near-optimal solution. In practice, the choice to opt for a hierarchically-driven solution to

gain sample efficiency at the price of optimality is made given many other considerations by

the machine learning engineer.

We also saw that the type of misspecification studied is in fact a bit restrictive as it essen-

tially forces the unweighted subMDP graphs to be the same when subMDPs are similar.

Specifically, the misspecification allowed is only at the level of the reward and the probabili-

ties in the transition function. To effectively study more complex notions of misspecification,

we studied abstraction frameworks that are reliant on having representation functions for

similar subMDPs. There are a number of avenues for further research which we outline

below.
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Firstly, under several loose assumptions on the subMDP-level value functions of options,

one can study hierarchical reinforcement learning in environments with countably infinite or

uncountable states. As the back-and-forth between subMDPs and subMDP representation

happens via representation functions, this effectively allows for weaker subMDP state space

assumptions such as linear-MDPs and block MDPs, covering a wide variety of real-life sce-

narios encountered in domains such as optimal control (e.g. power plant control), robotics

(e.g. robotic limb controls, constrained autonomous navigation), and medicine (e.g. protein

folding).

When the representation itself is not given, one can learn it on the go. Several works

studying low-rank MDPs [2, 26, 49] simultaneously optimize in policy space as well as in

representation-function space by generating a sequence of representations that better ap-

proximate the true unknown representation based on observed data. These algorithms in

general have exploration schemes that homogeneously incorporate exploring unknown areas

of the environment as well as exploring in such a way that accurate representations can be

learned. With additional knowledge about the hierarchical structure of the environment, we

imagine a similar recycling of samples can be studied and learning bounds dependent on K

and M can be derived. Even broader, when the representation subMDP is itself not finite,

these bounds will depend on the dimensions of the representation space as with algorithms

for linear MDPs, or on the eluder dimension of the value functions of the representation

subMDPs as with algorithms that follow a general function approximation scheme.

Another potential direction of investigation pertains to exit profile designing. We saw that

in the finite case, selecting the sets of exit profiles as an ϵ-cover for the space of exit profiles

allows for control over the exit profile suboptimality and thus, the value function found

by PEP. In theory, the cardinality of an ϵ-cover is exponential in Ei, so its performance

is conditioned on having very small sets of exit states. In the context of a cleaner robot,

this makes sense as one imagine there are only several doors that allow the robot to exit

a room. Generality calls for targeted exit profile designing where exit profiles effectively
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capture “the outside” within subMDPs. This is a difficult task especially when done in an

online learning setting as the agent is highly uncertain about the environment. A potentially

interesting direction would be to translate this MDP-wide uncertainty into local subMDP-

wide uncertainties by injecting exit profiles with exploration bonuses. This style of exit-

profile designing is directed in a similar fashion as directed exploration via UCB or posterior

sampling covered in Chapter 3.

Finally, hierarchical reinforcement learning is one of many ways to which a RL agent may

leverage internal structures to a problem in order to achieve a gain in sample and com-

putational efficiency. As hierarchical problems are ever present in real-world reinforcement

learning problems, the research for more efficient hierarchical algorithms and the analysis of

their theoretical performance not only establishes the ceiling of potentials for algorithms in

this field but also lay the foundational framework of mathematical analysis that can be po-

tentially used to analyze algorithms in other types of reinforcement learning problems.
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