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Abstract

Research in neural network theory is steadily gaining traction, as there is a growing interest in the thorough
understanding of the functionalities and the mechanisms through which these models achieve strong perfor-
mances in decision problems. Several methods have been proposed to quantitatively assess the optimization
process of the neural network’s high dimensional non-convex objective, employing various tools such as kernel
methods, global optimization, optimal transport, and functional analysis. In this work, we focus on Mei et
al.’s analysis of the mean risk field of two-layer neural networks in [12], which associates stochastic gradient
descent’s (SGD) training dynamics to a partial differential equation (PDE) in the space of probability mea-
sures with the topology of weak convergence. Precisely, we dissect the proof of the convergence of SGD’s
dynamics to the solution of the PDE, showcase several results regarding the analysis of the latter and their
implications on the training process of neural networks via SGD, and discuss related work as well as potential
further explorations stemming from various fields.
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1. Neural networks, stochastic gradient descent, gradient flow

The widespread of use and research related to neural networks as a supervised (and more recently, a semi-
supervised and even unsupervised) learning model is largely due to their capabilities of learning complex
correspondences between data and labels. They found use in diverse fields: natural language processing
and understanding [16], computer vision [8], and lately in reinforcement learning [9], to name a few. Their
theoretical properties have also been subject to a lot of research, most notably the universal approximation
theorem [6] for continuous functions over a compact domain, and extensions of these theorems to cases
where neural networks enjoy a countably infinite or even uncountable number of hidden nodes. We restrict
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2 VIET NGUYEN

ourselves to the study of two layer neural networks in the supervised study setting.

Given a finite dataset D = {(xk, yk)} ⊂ (X × Y)M from an unknown distribution P of features and their
corresponding labels, neural networks leverage the descriptive potential of linear combinations of perceptrons
arranged in a multi-layered structure to infer complex and general correspondences f : X −→ Y from samples
in D. We remark that there are little to no assumptions on Y, our analysis applies to both categorical and
continuous labels, i.e. machine learning classification and regression respectively.

Definition 1.1. (Neural network) A two-layer neural network of N hidden units with a parametrization θ
is a function ŷ : Rd −→ R such that on input x ∈ Rd, computes:

ŷ(x;θ) =
1

N

N∑
i=1

σ∗(x;θi)

where σ∗ : Rd −→ R is an activation function, θ = (θ1, . . . ,θN ) is a collection of parameters of each hidden
unit, and θi = (ai, bi,wi) with dimθi = D where:

σ∗(x;θi) = aiσ(〈x,wi〉+ bi)

where σ : R −→ R is a squashing function. Historically, σ’s range is restricted to a bounded set, however
more recent studies and applications use the rectified linear unit (ReLU) and its variants as a baseline, a
function of infinite range.

One can think of a neural network as a weighted average of affine units. Here, w = wi is the input-to-
hidden weight matrix, bi a layer bias, and ai the hidden-to-output weights. It is easier to think of θ as a
collection of random variables θi rather than a vector in RD×N . We want to choose parameters θi, i ≤ N ,
such that the neural network parametrized by θ minimizes an objective function, here chosen to be the risk
RN (θ) = E [`(y, ŷ(x;θ))] for some loss function `. We focus on the squared loss, i.e. `(y, ŷ) = (y − ŷ)

2
,

however we note that the same analysis can be done with different choices of loss functions.

Stochastic gradient descent is an iterative optimization algorithm that can be used to learn the parameters
of the neural network that minimizes our objective. In practice, we apply the weak law of large numbers
and work directly on the empirical risk, as they converge in probability to the population risk RN .

Definition 1.2. (Stochastic gradient descent, SGD) Given a loss function `, stochastic gradient descent
amounts to the following iteration for discrete timesteps k ≥ 0:

θk+1 ←− θk − sk∇θ`(yk, ŷ(xk;θk))

for some variable learning rate sk ∈ R+.

For neural networks, this amounts to the iteration:

θk+1
i ←− θki + 2sk(yk − ŷ(xk;θk))∇θiσ∗(xk;θki )

In a sense, one is taking a calculated step in the direction of steepest descent in the loss landscape over
the parameter space RD, for each hidden unit i ≤ N . We assume the algorithm never visits the same data
sample (xk, yk). This is reasonable, given the large datasets at disposal in many real world applications.

Often, it is the case that the aforementioned loss landscape is highly non-convex. However, empirical
results do indeed demonstrate that neural networks trained via SGD (or variants of it) not only achieves
near optimal losses but also very strong generalization properties, which motivates the study of 1. local
minima to which SGD weights converge to and the corresponding network’s’ generalization properties and
2. SGD dynamics during training itself. To this end, one can think of essentially shrinking the learning rate
to 0, obtaining a gradient flow in RD ×R. More precisely, we consider the smooth curve γ : R −→ RD such
that:

γ′(t) = −∇θi`(y, ŷ(x;θti))
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as a trajectory in the loss landscape of the two-layer neural network (with the appropriate Euclidean metric).
Remarkably, authors of [12] proved that in a suitable scaling limit, the SGD dynamics admits an asymptotic
description in terms of a PDE, which corresponds exactly to a gradient flow in the space of probability
measures over RD, with the Kantorovich metric1, which minimizes a generalized risk function defined for
ρ ∈ (P(RD),W2), denoted R(ρ). The authors suggest that this association simplifies the analysis of the
loss landscape of two-layer neural networks, and comes with various theoretical guarantees from PDE theory
and propagation of chaos.

2. Setup: generalized risks, distributional dynamics

One begins by considering the risk function RN (θ):

E
[
(y − ŷ(x;θ))2

]
= E

[
y2
]
− 2

N

N∑
i=1

E [yσ∗(x;θi)] +
1

N2

∑
i,j

E [σ∗(x;θi)σ∗(x;θj)]

:= R# +
2

N
V (θi) +

1

N2

∑
i,j

U(θi,θj)

where we define R# = E
[
y2
]
, the risk of the trivial predictor ŷ = 0, potentials V (θi) = E [yσ∗(x;θi)], and

U(θi,θJ) = E [σ∗(x;θi)σ∗(x;θj)]. We shall always assume that the expectations defining V and U exist for
all parameters θ ∈ RD. Since RN depends on θ = (θ1, . . . ,θN ) only through their empirical distribution

ρ̂(N) = N−1
∑N
i=1 δθi , one can consider the following generalization for ρ ∈P(RD):

R(ρ) = R# + 2

∫
V dρ+

∫∫
U (dρ)2

we readily see that R(ρ̂(N)) = RN (θ), as the point masses discretize the integrals. Intuitively, considering
all probability measures over RD amounts to taking into consideration neural networks of any hidden layer
width, which corresponds to the support of the measure in question. With finite support, we recover the
usual risk RN and finite hidden units. Similarly, with countably infinite and uncountable support, we recover
the infinite width neural network with the generalized risk. Under some mild assumptions, we can prove
that infθ RN (θ) = infρR(ρ) +O(1/N).

Given this setting, we will see how SGD dynamics in RD × R can be approximated by a gradient flow

in P(RD), namely for step sizes sk = εξ(kε) for some ξ : R+ −→ R+ with nice properties, and ρ̂
(N)
k =

1
N

∑N
i=1 δθki the point process of parameters θ at the k-th iteration of SGD, we take a closer look at Mei et

al.’s proof in [12] of the weak convergence:

ρ̂
(N)
t/ε ⇒ ρt

as N −→ ∞, ε −→ 0, i.e. convergence in the weak topology of P(RD). Here, the dynamics of ρt is described
by the following PDE:

∂tρt = 2ξ(t)∇θ (ρt∇θΨ(θ; ρt))

Ψ(θ; ρ) =
1

2

δR(ρ)

δρ(θ)
= V (θ) +

∫
U(θ,θ′) dρ(θ′)

therefore, establishing that the analysis of SGD’ training dynamics amounts to analyzing the above PDE.
Ψ is a functional derivative, and can be interpreted as the additional energy of adding a single particle at
θ ∈ RD. We restrict ourselves to mathematical interpretations of results, however we remark that authors
of [12] provided an elegant interpretation from a particle dynamics perspective, in which the above PDE
enforces a principle of local conservation of mass due to particles not being able to move discontinuously.
In addition, the authors pointed out several benefits of this method, most notably being factoring out the
invariance of the risk R# and of the SGD dynamics, as well as exploiting underlying symmetries, such as
the fact that U is a symmetric positive semidefinite kernel. Furthermore, powerful tools from the literature
of gradient flows on the space of probability measures can be used in the analysis of the above PDE, we

1The Kantorovich metric is more often known as the Wasserstein metric, it is unfortunate that it wasn’t named after its

inventor.
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refer the reader to [18]. In what’s to come, we briefly outline several important mathematical tools, provide
detailed proofs of several major results mentioned above, as well as discuss their implications and various
future directions.

3. Background: space of probability measures over (X, d), metrics, transport

Consider the space of probability measures over a metric space (X, d). We define a base of open neighborhoods
of µ ∈P(X) as follows:
Fix f1, . . . , fk bounded continuous functions on X and ε > 0. Then,

Vµ(f1, . . . , fk, ε) =

{
ν ∈P(X) :

∣∣∣∣∫ fi dν −
∫
fi dµ

∣∣∣∣ < ε, i = 1, . . . , k

}
for any such collection of k functions form a base for the weak topology on P(X). Convergence in
this topology is the weak convergence, with a very important characterization via the Portmanteau theo-
rem:

Theorem 3.1. (Portmanteau theorem) The following are equivalent:

a) µn ⇒ µ (µn converges weakly to µ)

b) limn−→∞
∫
g dµn =

∫
g dµ, for all g uniformly continuous and bounded.

c) lim supn µn(C) ≤ µ(C), for all C closed.

d) lim infn µN (U) ≥ µ(U), for all U open.

e) limn−→∞ µn(A) = µ(A), for all A Borel such that µ(∂A) = 0.

Crucial for our purposes, statement b) in particular applies for all g bounded Lipschitz continuous.

Theorem 3.2. P(X) can be metrized as a separable metric space if and only if X can. Furthermore,
P(X) is compact if and only if X is compact.

Stemming from this, we observe the rich structure of P(X) depending on X’s structure. If the underlying
space X is Polish, Prokhorov’s theorem (omitted) gives rise to the Lévy–Prokhorov metric:

Definition 3.3. (Lévy–Prokhorov metric) Take A a Borel set, consider Aε := {x : d(x,A) < ε} is open, as
d(·, A) is continuous in its first parameter. We define π as:

π(µ, ν) = inf {ε > 0 : µ(A) ≤ ν(Aε) + ε and ν(A) ≤ µ(Aε) + ε}

One can easily show that π(µn, µ) −→ 0 =⇒ µn ⇒ µ by taking limit suprema and using the Portmanteau
theorem. Thus, the Lévy–Prokhorov metric metrizes the weak topology, and therefore weak convergence.

There are many other metrics that metrize weak convergence but for our purposes, we consider the bounded
Lipschitz distance and the Kantorovich metric.

Definition 3.4. (Bounded Lipschitz distance) For any two probabiility measures µ, ν, the bounded Lipschitz
distance between µ and ν is defined by:

dBL(µ, ν) = sup

{∣∣∣∣∫ f dµ−
∫
f dν

∣∣∣∣ : ‖f‖∞ + ‖f‖Lip ≤ 1

}
where the (homogeneous) Lipschitz norm is defined as ‖f‖Lip = sup

x
sup
h6=0

|f(x+ h)− f(x)|
|h|

, a common tool

in Sobolev space theory. Intuitively, one can think of the Lipschitz norm as the Lipschitz semi-norm (which
returns the Lipschitz constant of f) with additional boundary conditions.

An important metric on P(X) arising from the theory of optimal transport is the Kantorovich metric.
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Definition 3.5. (p-Kantorovich metric) Let (X, d) Polish, p ∈ [1,∞). For any two probability measures
µ, ν, the Kantorovich metric of order p is defined by:

Wp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
d(x, y)p dπ(x, y)

)1/p

= inf
{

[Ed(X,Y )p]
1/p

, law(X) = µ, law(Y ) = ν
}

The metric induces the Kantorovich space defined as:

Pp(X) :=

{
µ ∈P(X) :

∫
d(x0, x)p dµ(x) <∞

}
when x0 ∈ X is arbitrary. The space Pp(X) does not depend on the choice of x0.

Remarkably, the p-Kantorovich metric metrizes Pp(X), i.e. Wp fully characterizes weak convergence. Fur-
thermore, they have a rich duality theory due to the Kantorovich duality, and in particular, for p = 1, the
Kantorovich-Rubinstein duality gives:

W1(µ, ν) = sup

{∣∣∣∣∫ f dµ−
∫
f dν

∣∣∣∣ : ‖f‖Lip ≤ 1

}
For more related to optimal transport theory, we refer the reader to [18]. When (X, d) corresponds to
(RD, ‖·‖2), we recover the original setup of neural networks.

4. Results: statics and dynamics

As pointed out previously, there is an intricate connection between the risk RN (θ) and the risk R(ρ), as we
will state and outline the proof below:

Proposition 4.1. Assume either:

a) infρR(ρ) is attained by ρ∗ such that

∫
U(θ,θ) dρ∗(θ) ≤ K

b) ∃ε0 > 0 such that ∀ρ ∈P(RD) such that R(ρ) ≤ infρR(ρ)+ ε0, we have that

∫
U(θ,θ) dρ∗(θ) ≤ K

Then, ∣∣∣∣inf
θ
RN (θ)− inf

ρ
R(ρ)

∣∣∣∣ ≤ K

N

Furthermore, if V and U are jointly continuous with U bounded below, ρ∗ ∈ P(RD) is a global minimum
of R if infθ Ψ(θ; ρ∗) > −∞ and

supp(ρ∗) ⊆ arg min
θ

Ψ(θ; ρ∗)

Proof. For any θ = (θi)i≤N , we have RN (θ) ≥ infρR(ρ) since RN (θ) = R(ρ) for ρ = N−1
∑
δθi . Now, let

ρ∗ ∈ P(RD) be such that R(ρ∗) = R∗ under assumption a), or R(ρ∗) ≤ R∗ + ε under assumption b). We
thus obtain:

EθRN (θ)−R(ρ∗) =
1

N

(∫
U(θ,θ) dρ∗(θ)−

∫∫
U(θ1,θ2) dρ∗(θ1)dρ∗(θ2)

)
≤ 1

N

∫
U(θ,θ) dρ∗(θ)

≤ K/N
where we’ve applied Fubini-Tonelli twice to interchange expectations w.r.t. Px, the underlying data’s distri-
bution x-marginal, and w.r.t. θ in the term EθRN (θ). The inequality follows from:∫∫

U(θ1,θ2) dρ∗(θ1)dρ∗(θ2) = E

[(∫
σ∗(x;θ) dρ∗(θ)

)2
]
≥ 0

We omit the proof of the conditions of global minimum.
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We now present the mild assumptions and main theorem that establishes the connection between SGD
dynamics and the distributional dynamics PDE described previously.

Assumption 4.2. The map t 7→ ξ(t) is bounded Lipschitz, i.e. ‖ξ‖∞ , ‖ξ‖Lip ≤ K1,

∫
R+

ξ(t) dt =∞.

Assumption 4.3. The neural network activation (x, θ) 7→ σ∗ (x, θ) is bounded, and has sub-Gaussian
gradient: ‖σ∗‖∞ , ‖∇θσ∗(X, θ)‖ψ2

≤ K2, |yk| ≤ K2, where ‖·‖ψ2
is the Orlicz norm on the Orlicz space

generated by the N -function z 7→ exp
{
z2
}
− 1. We refer the reader to[14] and [10] for the characterization

of Orlicz spaces of exponential type and the sub-Gaussian property.

Assumption 4.4. Gradients ∇V,∇1U are bounded, Lipschitz continuous, that is to say that ‖∇θV (θ)‖2 ,
and ‖∇1U(θ1,θ2)‖ ≤ K3. Furthermore,

‖∇θV (θ)−∇θV (θ′)‖2 ≤ K3 ‖θ − θ′‖2∥∥∇1U(θ1, θ2)−∇1U(θ′1, θ
′
2)
∥∥

2
≤ K3

∥∥(θ1, θ2) − (θ′1, θ
′
2)
∥∥

2

The following theorem quantifies the extent to which the SGD dynamics converges to the PDE dynamics
previously foreshadowed.

Theorem 4.5. (Convergence of SGD to PDE) Assume that Assumptions 4.2, 4.3, 4.4 hold. For an
initial distribution ρ0 ∈P(RD), let the random sample

(
θ0
i

)
i≤N ∼iid ρ0 be the weight initialization to our

neural network, and let our step size be sk = εξ(kε). For t ≥ 0, let ρt solve the distributional dynamics
(DD):

∂tρt = 2ξ(t)∇θ (ρt∇θΨ(θ; ρt))

Ψ(θ; ρ) = V (θ) +

∫
U(θ,θ′) dρ(θ′)

Then, for a fixed t ≥ 0, we have that ρ̂
(N)
bt/εc ⇒ ρt a.s. along any sequence (N, ε = ε(N)) such that

N −→ ∞, εN −→ 0, N
log(N/εN ) −→ ∞, εN log(N/εN ) −→ 0. Furthermore, ∃C ∈ R = C(K1,K2,K3) depending on

the constants in the assumptions such that for any f : RD −→ R with ‖f‖∞ , ‖f‖Lip ≤ 1, ε ≤ 1, we have

sup
k∈[0,T/ε]∩N

∣∣∣∣∣N−1
N∑
i=1

f(θki )−
∫
f(θ) dρkε(θ)

∣∣∣∣∣ ≤ CeCT errN,D(z)

sup
k∈[0,T/ε]∩N

∣∣∣RN (θk)−R(ρkε)
∣∣∣ ≤ CeCT errN,D(z)

where

errN,D(z) =
√

1/N ∨ ε
(√

D + log(N/ε) + z
)

is an error term that quantifies the accuracy of the DD.

Remark 4.6. We note here that from Assumptions 4.2 and 4.4, the existence and uniqueness of weak
solutions ρt of the DD given some time t ≥ 0 is guaranteed by [13]. The evolution in P(RD) is to be
interpreted in weak sense, i.e. ρt is a weak solution of DD if for any bounded differentiable function φ : RD

−→ R with bounded gradient, we have:

dt 〈ρt, φ〉 = −2ξ(t)

∫
〈∇φ(θ),∇Ψ(θ; ρt)〉 dρt(θ)

We now introduce a nonlinear dynamical system (which from here onwards will be referred to as ND for

simplicity’s sake) that will be essential to proving SGD convergence to DD. Let (θ̄
t
i)i≤N,t∈R+ be trajectories

initialized by θ̄
0
i = θ0

i , the same initialization from ρ0, and for t ≥ 0, we have:

θ̄
t
i = θ0

i − 2

∫ t

0

ξ(s)∇Ψ(θ̄
s
i ; ρs) ds
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where ρs = θ̄
s
i#Ps, the pushforward measure of the distribution of parameters at time s onto R. With

boundary conditions θ̄
0
i ∼iid ρ0, this is indeed a PDE with existence and uniqueness of solution guaranteed

in a similar fashion to the DD, and with pushforwards of the solutions ρt = θ̄
t
i#Pt satisfying the DD. In the

ND, the individual trajectories (θ̄
t
1), . . . , θ̄

t
n are iid and thus, we have that a.s.,

N−1
N∑
i=1

δθ̄ti
⇒ ρt

Remark 4.7. We previously used ρt to denote a measure in parameter space RD, however in the proof of
convergence that follows it will denote the pushforward, described above, i.e. a measure on R.

Before proceeding, we establish several useful results in the following lemma, which we state without
proof.

Lemma 4.8. Assume 4.2, 4.3, 4.4 hold, and let (ρt) be the solution to the DD, and (θ̄
t
i) the solution to the

ND. Then, t 7→ θ̄
t
i is K1K3-Lipschitz continuous in Euclidean 2-norm metric, i.e. in the Euclidean topology,

t 7→ ρt is K1K3-Lipschitz continuous in W2 Kantorovich metric, i.e. in the weak topology on P(RD).

We are now able to prove Theorem 4.5. The proof roadmap goes as follows: we first define a continuous
trajectory in RD similar to SGD dynamics and control the difference between our trajectory and the discrete
weights obtained from SGD. Then, we control the risk difference between SGD weights and ρt, the solution to
the DD via our trajectory, as well as the expectation difference of bounded Lipschitz functions of SGD weights
and ρt, again via our trajectory. Weak convergence follows naturally from the Portmanteau theorem.

5. Proof of convergence to the Distributional Dynamics

Proof. (of 4.5) We use the term K to denote the maximum of constants in terms of K1,K2,K3 which arise
in many parts of the proof, for ease of factoring. Letting zk = (xk, yk) be the k-th data point, we define the
following:

Fi(θ; zk) = (yk − ŷ(xk;θ))∇θiσ∗(xk;θi), θ = (θi)i≤N ∈ RD×N

G(θ; ρ) = −∇Ψ(θ, ρ) = −∇V (θ)−
∫
∇1U(θ,θ′) dρ(θ′) θ ∈ RD

Since gradients ∇V and ∇1U are bounded, we have that ‖G(θ; ρ)‖2 ≤ K, ‖G(θ1; ρ)−G(θ2; ρ)‖2 ≤
K ‖θ1 − θ2‖2. We also have Lipschitz continuity in the measure parameter of G:

‖G(θ; ρ1)−G(θ; ρ2)‖2 =

∥∥∥∥∫ ∇1U(θ,θ′) d(ρ1 − ρ2)(θ′)

∥∥∥∥
2

≤ KdBL(ρ1, ρ2)(1)

where dBL is the bounded Lipschitz metric on P(RD).
Recalling SGD dynamics, we rewrite with our newly defined expressions to yield:

θk+1
i = θki + 2εξ(kε)Fi(θ

k
i ; zk+1)(2)

thus,

θki = θ0
i + 2ε

k−1∑
l=0

ξ(lε)Fi(θ
l
i; zl+1)(3)

Let [t] = εb tεc. Our ND trajectory defined previously is then:

θ̄
t
i = θ0

i + 2

∫ t

0

ξ(s)G(θ̄
s
i ; ρs) ds(4)

We can thus control the difference between the above SGD dynamics and the ND.
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Lemma 5.1. Assume Assumptions 4.2, 4.3, and 4.4. There exists K = K(K1,K2,K3) such that ∀T ≥ 0,

max
i≤N

sup
k∈[T/ε]∩N

∥∥∥θki − θ̄kεi ∥∥∥
2
≤ KeKT

√
1/N ∨ ε

(√
D + log(N(T/ε ∨ 1)) + z

)
(5)

with probability at least 1− e−z2 .

Proof. Consider t ∈ Nε ∩ [0, T ]. We have by subtracting (4) from (3) that:

∥∥∥θt/εi − θ̄ti∥∥∥
2

=

∥∥∥∥∥∥θ0
i + 2ε

t/ε−1∑
k=0

ξ(kε)Fi(θ
k
i ; zl+1)−

(
θ0
i + 2

∫ t

0

ξ(s)G(θ̄
s
i ; ρs) ds

)∥∥∥∥∥∥
2

(6)

= 2

∥∥∥∥∥∥
∫ t

0

ξ(s)G(θ̄
s
i ; ρs) ds− ε

t/ε−1∑
k=0

ξ(kε)Fi(θ
k; zk+1)

∥∥∥∥∥∥
2

(7)

≤ 2

∫ t

0

∥∥∥ξ(s)G(θ̄
s
i ; ρs)− ξ([s])G(θ̄

[s]
i ; ρ[s])

∥∥∥
2
ds

+ 2

∫ t

0

∥∥∥ξ([s])G(θ̄
[s]
i ; ρ[s])− ξ([s])G(θ̄

bs/εc
i ; ρ[s])

∥∥∥
2
ds

+ 2

∥∥∥∥∥∥ε
t/ε−1∑
k=0

ξ(kε)
(
Fi(θ

k; zk+1)−G(θki ; ρkε)
)∥∥∥∥∥∥

2

(8)

:= 2Ei1(t) + 2Ei2(t) + 2Ei3(t)(9)

where in (8), we introduced and subtracted terms ξ([s])G(θ̄
[s]
i ; ρ[s]) and ξ([s])G(θ̄

bs/εc
i ; ρ[s]) within integrals,

and applied Minkowski’s inequality. The last term in (8) follows from:∫ t

0

ξ([s])G(θ
bs/εc
i ; ρ[s]) ds ≤

t/ε−1∑
k=0

ξ(kε)G(θki ; ρkε)ε(10)

as operations b·c and [·] discretizes the integral on the left-hand side in s-lengths of at most ε, and recombining
the sum in (10) with the sum in (7) yields the last term in (8). We now control terms Ei through various
techniques. For Ei1, consider:∥∥∥ξ(s)G(θ̄

s
i ; ρs)− ξ([s])G(θ̄

[s]
i ; ρ[s])

∥∥∥
2
≤
∥∥G(θ̄

s
i ; ρs) (ξ(s)− ξ([s]))

∥∥
2

+
∥∥∥ξ([s])(G(θ̄

s
i ; ρs)−G(θ̄

[s]
i ; ρs)

)∥∥∥
2

+
∥∥∥ξ([s])(G(θ̄

[s]
i ; ρs)−G(θ̄

[s]
i ; ρ[s])

)∥∥∥
2

(11)

≤ Kε
∥∥G(θ̄

s
i ; ρs)

∥∥
2

+ ξ([s])K
∥∥∥θ̄si − θ̄[s]

i

∥∥∥
2

+ ξ([s])KdBL(ρs, ρ[s])(12)

≤ Kε(13)

where we applied Minkowski’s inequality in (11), used Lipschitz continuity w.r.t. θ and ρ of G(θ, ρ) from
(1) in (12), and (13) follows from bounds on G and Lemma 4.8, and

dBL(ρs, ρ[s]) ≤W2(ρs, ρ[s]) ≤
(∫ ∥∥∥θ̄si − θ̄[s]

i

∥∥∥2

2
dγ(θ̄

s
i , θ̄

[s]
i )

)1/2

≤ K1K3|s− [s]| ≤ K1K3ε

where γ is some arbitrary coupling of the laws of θ̄
s
i and θ̄

[s]
i . Therefore, we have that

Ei1(t) ≤ t sup
s∈[0,t]

{∥∥∥ξ(s)G(θ̄
s
i ; ρs)− ξ([s])G(θ̄

[s]
i ; ρ[s])

∥∥∥
2

}
(14)

≤ Ktε(15)
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To control Ei2, consider:

Ei2(t) =

∫ t

0

∥∥∥ξ([s])G(θ̄
[s]
i ; ρ[s])− ξ([s])G(θ̄

bs/εc
i ; ρ[s])

∥∥∥
2
ds(16)

≤ K
∫ t

0

∥∥∥G(θ̄
[s]
i ; ρ[s])−G(θ̄

bs/εc
i ; ρ[s])

∥∥∥
2
ds(17)

≤ K2

∫ t

0

∥∥∥θ̄[s]
i − θ

bs/εc
i

∥∥∥
2
ds(18)

where we controlled ξ by its upper bound from Assumption 4.2 in (17) and Lipschitz continuity in the
first variable of G in (18). We control Ei3 via a variant of Azuma-Hoeffding’s inequality for martingales
(henceforth will be referred to as Azuma-Hoeffding, information regarding this is displayed in the Appendix
section). Let Fk be the sub-sigma algebra generated by (θ0

i )i≤N and z1, . . . ,zk, i.e. the knowledge of the
first k data points. We have that:

E
[
Fi(θ

k; zk+1)|Fk
]

= E
[
yk+1∇θiσ∗(xk+1;θki )|Fk

]
− E

[
ŷ(xk+1;θk)∇θiσ∗(xk+1;θki )|Fk

]
(19)

= −∇θiV (θki )−N−1
N∑
j=1

∇1U(θki ;θkj )(20)

= G(θki ; ρ̂
(N)
k )(21)

where we recall ρ̂
(N)
k = N−1

∑
i δθki is the empirical distribution of the realizations of θki . Therefore, we

observe:

Ei3(t) =

∥∥∥∥∥∥ε
t/ε−1∑
k=0

ξ(kε)
{
Fi(θ

k; zk+1)−G(θki ; ρkε) +G(θki ; ρ̂
(N)
k )− E

[
Fi(θ

k; zk+1)|Fk
]}

F

∥∥∥∥∥∥
2

(22)

≤

∥∥∥∥∥∥ε
t/ε−1∑
k=0

ξ(kε)
[
G(θki ; ρ̂

(N)
k )−G(θki ; ρkε)

]∥∥∥∥∥∥
2

+

∥∥∥∥∥∥ε
t/ε−1∑
k=0

ξ(kε)Zik

∥∥∥∥∥∥
2

(23)

where Zik := Fi(θ
k; zk+1) − E

[
Fi(θ

k; zk+1)|Fk
]
. Defining Qi1(t) :=

∥∥∥∥∥∥ε
t/ε−1∑
k=0

ξ(kε)Zik

∥∥∥∥∥∥
2

, we apply Azuma-

Hoeffding to yield:

P
(

max
k∈[0,t/ε]∩N

Qi1(kε) ≥ K
√
tε(
√
D + u))

)
≤ e−u

2

(24)

P
(

max
i≤N

max
k∈[0,t/ε]∩N

Qi1(kε) ≤ K
√
tε(
√
D + logN + z))

)
≥ 1− e−z

2

(25)

where the second inequality follows from taking union bounds over all naturals i ≤ N . The conditions
for Azuma-Hoeffding follows from Assumption 4.3, since ξ(kε)Zik is sub-Gaussian. Defining Ei3,0(t) :=
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t/ε−1∑
k=0

ξ(kε)
[
G(θki ; ρ̂

(N)
k )−G(θki ; ρkε)

]∥∥∥∥∥∥
2

, we can consider the difference within the sum:

∥∥∥G(θki ; ρ̂
(N)
k )−G(θki ; ρkε)

∥∥∥
2

=

∥∥∥∥∥∥− 1

N

N∑
j=1

∇1U(θki ,θ
k
j )) +

∫
∇1U(θki ,θ

′) dρkε(θ
′))

∥∥∥∥∥∥
2

(26)

=

∥∥∥∥∥∥ 1

N

N∑
j=1

{
∇1U(θki ,θ

k
j )− Eθ̄

[
∇1U(θki , θ̄

kε
j )
]}∥∥∥∥∥∥

2

(27)

≤

∥∥∥∥∥∥ 1

N

N∑
j=1

[
∇1U(θki ,θ

k
j )−∇1U(θki , θ̄

kε
j )
]∥∥∥∥∥∥

2

+

∥∥∥∥∥∥ 1

N

N∑
j=1

{
∇1U(θki , θ̄

kε
j )− Eθ̄

[
∇1U(θki , θ̄

kε
j )
]}∥∥∥∥∥∥

2

(28)

≤ K

N

N∑
j=1

∥∥∥θkj − θ̄kεj ∥∥∥
2

+Qi2(kε) +
K

N
(29)

where we used the Lipschitz continuity of ∇1U and Minkowski’s inequality in (28). We define Qi2(kε) :=∥∥∥ 1
N

∑
j 6=i

{
∇1U(θki , θ̄

kε
j )− Eθ̄

[
∇1U(θki , θ̄

kε
j )
]}∥∥∥

2
, since for j = i, we invoke the boundedness of ∇1U to

yield constant K, obtaining the term K/N in (29). Since fixing k, (θ̄
kε
j )j≤N,j 6=i are independent of θki , with

∇1U bounded, we meet the conditions of Azuma-Hoeffding, applying the inequality and union bounds yields:

P
(

max
k∈[0,t/ε]∩N

Qi2(kε) ≥ K
√

1/N(
√
D + u))

)
≤ 1− e−u

2

(30)

P
(

max
i≤N

max
k∈[0,t/ε]∩N

Qi2(kε) ≤ K
√

1/N(
√
D + log(N(t/ε ∨ 1)) + z))

)
≥ 1− e−z

2

(31)

We are now able to control Ei3 as follows:

Ei3(t) ≤ Ei3,0(t) +Qi1(t)(32)

≤ ε
t/ε−1∑
k=0

ξ(kε)
∥∥∥G(θki ; ρ̂

(N)
k )−G(θki ; ρkε)

∥∥∥
2

+Qi1(t)(33)

≤ ε
t/ε−1∑
k=0

ξ(kε)

K
N

N∑
j=1

∥∥∥θkj − θ̄kεj ∥∥∥
2

+
K

N
+Qi2(kε)

+Qi1(t)(34)

= ε
K

N

t/ε−1∑
k=0

N∑
j=1

∥∥∥θkj − θ̄kεj ∥∥∥
2

+ ε

t/ε−1∑
k=0

ξ(kε)
K

N
+ ε

t/ε−1∑
k=0

ξ(kε)Qi2(kε) +Qi1(t)(35)

≤ K

N

N∑
j=1

∫ t

0

∥∥∥θbs/εcj − θ̄[s]
j

∥∥∥
2
ds+

Kt

N
+ ε

t/ε−1∑
k=0

ξ(kε)Qi2(kε) +Qi1(t)(36)

(37)

where (33) follows from Minkowski, we substituted our control for (26) in (34), we absored ξ(kε) into K
in (35), we upper-bounded the discrete sum over k by an integral and modified the appropriate arguments
in (36), finally passing it inside the finite sum over j by linearity. To control the last two terms, we define
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Q(t) = ε
∑t/ε−1
k=0 ξ(kε)Qi2(kε) +Qi1(t) and use the bounds from Azuma-Hoeffding:

Q(t) ≤ Kt ·max
i≤N

max
k∈[0,t/ε]∩N

Qi2(kε) + max
i≤N

Qi1(t)(38)

≤ K
√
tε
(√

D + logN + z
)

+Kt
√

1/N
(√

D + log (N(t/ε ∨ 1)) + z
)

(39)

≤ K
(√

t ∨ t
)√

1/N ∨ ε
[√

D + log (N(t/ε ∨ 1)) + z
]

(40)

with probability at least 1− e−z2 . Back to (5), we define:

∆(t;N, ε) = max
i≤N

sup
k∈[0,t/ε]∩N

∥∥∥θki − θ̄kεi ∥∥∥
2

(41)

Using the bounds we found for Ei, i = 1, 2, 3, we have that:

∆(t;N, ε) ≤ 2(Ei1(t) + Ei2(t) + Ei3(t))(42)

≤ Ktε+K

∫ t

0

∆(s;N, ε) ds+
Kt

N
+Q(t)(43)

Gronwall’s inequality thus yields:

∆(t;N, ε) ≤ exp

{∫ t

0

K ds

}(
Kε+

K

N
+KQ(t)

)
(44)

Applying the bounds from (40) and absorbing constants into the term K yields the desired result.

Lemma 5.2. Assuming Assumptions 4.2, 4.3, and 4.4, we have:

max
k∈[0,T/ε]∩N

∣∣∣RN (θ̄
kε

)−RN (θk)
∣∣∣ ≤ K ·max

i≤N
max

k∈[0,T/ε]∩N

∥∥∥θki − θ̄kεi ∥∥∥
2

(45)

Furthermore, for f : RD −→ R bounded Lipschitz, we have:

max
k∈[0,T/ε]∩N

∣∣∣E [f(θ̄
kε
i )
]
− E

[
f(θki )

]∣∣∣ ≤ K · max
k∈[0,T/ε]∩N

∥∥∥θki − θ̄kεi ∥∥∥
2

(46)

Proof. Let θ′ = (θ1, . . . ,θ
′
i, . . . ,θN ) be identical to θ, except with the i-th component resampled. We

observe:

∣∣RN (θ)−RN (θ′)
∣∣ ≤ 1

N

∣∣V (θi)− V (θ′i)
∣∣+

1

N2

∣∣U(θi,θi)− U(θ′i,θ
′
i)
∣∣+

2

N2

∑
j 6=i

∣∣U(θi,θj)− U(θ′i,θj)
∣∣(47)

≤ K

N

(∥∥θi − θ′i∥∥2
∧ 1
)

(48)

The conclusion is immediate since differences in all N dimensions of θ ∈ RD×N reduces the denominator of
(47), and maximizing over all i ≤ N ensures the inequality stays valid, thus we recover (45). To see (46), we
observe: ∣∣∣E [f(θ̄

kε
i )
]
− E

[
f(θki )

]∣∣∣ ≤ ∣∣∣∣∣
∫
fd
(
θ̄
kε
i #Pkε

)
− 1

N

N∑
i=1

f(θki )

∣∣∣∣∣(49)

=

∣∣∣∣∣ 1

N

N∑
i=1

[
f(θki )−

∫
fd
(
θ̄
kε
i #Pkε

)]∣∣∣∣∣(50)

≤ 1

N

∫ N∑
i=1

∣∣∣f(θki )− f(θ̄
kε
i )
∣∣∣ d(θ̄kεi #Pkε

)
(51)

≤ K
∥∥∥θ̄kεi − θki ∥∥∥

2
(52)

where we applied Jensen’s inequality in (51) and used the Lipschitz condition of f in (52). Maximizing over
k gives the desired statement.
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Lemma 5.3. Assuming Assumptions 4.2, 4.3, and 4.4, we have:

max
k∈[0,T/ε]∩N

∣∣∣RN (θ̄
kε

)−R(ρkε)
∣∣∣ ≤ K√1/N

(√
D + log (N(T/ε ∨ 1)) + z

)
(53)

with probability at least 1− e−z2 .

Proof. By Azuma-Hoeffding bound, we have that:

max
k∈[0,T/ε]∩N

∣∣∣RN (θ̄
kε

)− E
[
RN (θ̄

kε
)
]∣∣∣ ≤ K√1/N

(√
D + log (N(T/ε ∨ 1)) + z

)
(54)

with probability at least 1− e−z2 . Also,∣∣∣E [RN (θ̄
t
)
]
−R(ρt)

∣∣∣ =
1

N

∣∣∣∣∫ U(θ,θ) dρt(θ)−
∫
U(θ1,θ2) dρt(θ1)dρt(θ2)

∣∣∣∣ ≤ K

N
(55)

giving us the desired conclusion.

Remark 5.4. A similar statement for the difference
∣∣∣E [f(θ̄

kε
i )
]
− Eρkε [f ]

∣∣∣ holds true with the same upper

bounds with probability at least 1 − e−z2 , following from the same Azuma-Hoeffding approach. We leave
the proof to the reader.

Controlling the upper bound in Lemma 5.2 with Lemma 5.1, using this new estimate with Lemma 5.3, we
are able to control the risk difference between our SGD weights and the DD’s generalized risk, yielding us:

sup
k∈[0,T/ε]∩N

∣∣∣RN (θk)−R(ρkε)
∣∣∣ ≤ KeKT√1/N ∨ ε

[√
D + log(N/ε) + z

]
(56)

with probability 1 − e−z2 . Applying the formulation for bounded Lipschitz functions f in Lemma 5.2 with
Remark 5.4, we yield the statement:

sup
k∈[0,T/ε]∩N

∣∣∣∣∣ 1

N

N∑
i=1

f(θki )−
∫
f dρkε

∣∣∣∣∣ ≤ KeKT√1/N ∨ ε
[√

D + log(N/ε) + z
]

(57)

with probability 1 − e−z2 . Therefore, fixing some t ≥ 0, letting N −→ ∞, ε −→ 0, we have that the empirical
distribution of the weights obtained from SGD iterations converges weakly to the solution to the DD, via
the Portmanteau theorem:

ρ̂
(N)
bt/εc ⇒ ρt(58)

6. Properties, discussions

The generalized risk is non-increasing. This is used as a sanity check to confirm that the DD is tending
towards a local minimum in a continuous way. This is contrasted to SGD training dynamics where local
steps could be non-optimal (depending on the input data point being used), i.e. local steps may temporarily
increase the risk.

Proposition 6.1. Assume V,U differentiable with bounded gradient. If ρt is a solution to the distributional
dynamics (DD), then R(ρt) is non-increasing. Further, ρ is a fixed point of DD if and only if

supp(ρ) ⊂ {θ : ∇θΨ(θ; ρ) = 0}

Proof. We have that:

R(ρt+h)−R(ρt) = 2

∫
Ψ(θ; ρt) d(ρt+h − ρt)(θ) +

∫∫
U (d(ρt+h − ρt))⊗2
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Since from Lemma 4.8, t 7→ ρt is Lipschitz continuous in the Kantorovich metric, thus W(ρt+h, ρt) ≤ K |h|.
Using Remark 4.6, and reducing the term in U we obtain:

R(ρt+h)−R(ρt) = 2

∫
Ψ(θ; ρt) d(ρt+h − ρt)(θ) +O(h2)

= −4ξ(t)h

∫
‖∇θΨ(θ; ρt)‖22 dρt(θ) + o(h)

as the left-hand side is negative for all choices of h > 0, it follows that R(ρt) is non-increasing in t. We omit
the proof for fixed points.

The term N does not appear in the formulation of the distributional dynamics. Relating back to SGD where
we established weak convergence of the empirical distribution of its iterated weights to the solution of the
DD, this implies that the asymptotic loss landscape as N grows to infinity remains essentially unchanged.
In particular, assume that the DD converges close to an optimum in some time t∗ = t∗(D). Then, this does
not depend on the number of hidden units N , as soon as N � D, thus SGD can achieve a population risk
independent of N . Although this result has been found in several other works in the literature of neural
networks, it has been shown here via an interpretation of the DD.

We observe that the error term in the DD grows exponentially with the time horizon T , limiting the
applications of this SGD approximation scheme via PDE to cases where the latter converges quickly to
a good solution. Authors of [12] stated that it is believed to still be able to prove good convergence and
approximation results despite this exponential term, however did not expand further on this idea. They
are also not able to obtain a general convergence result of the distributional dynamics, but they do have a
stability condition for fixed points containing one point mass, which they use to characterize possible limiting
points. The essence of their ideas are illustrated in the two theorems below, which display the stability and
instability conditions of the DD respectively.

Theorem 6.2. (Stability conditions of the DD) Assume V and U to be twice differentiable with bounded
gradient and bounded continuous Hessian, and let θ∗ ∈ RD be given. Then, ρ∗ = δθ∗ is a fixed point of the
DD if and only if ∇V (θ∗) +∇1U(θ∗,θ∗) = 0. Defining

H0(ρ∗) = ∇2V (θ∗) +

∫
∇2

1,1U(θ∗,θ) dρ∗(θ)

if λmin(H0(δθ∗)) > 0, then there exists r0 > 0 such that if supp(ρt0) ⊆ Br0(θ∗) = {θ : ‖θ − θ∗‖2 ≤ r0}, then
ρt ⇒ ρ∗ as t −→∞.

Theorem 6.3. (Instability conditions of the DD) Under the same assumptions as the previous theorem, let
ρ∗ = p∗δθ8

+ (1 − p∗)ρ̃∗ ∈ P(RD) be a fixed point of DD with p∗ ∈ (0, 1] and ∇Ψ(θ∗; ρ∗) = 0 (implied by
Proposition 6.1). Define level sets L(η) = {θ : Ψ(θ; ρ∗) ≤ Ψ(θ∗; ρ∗)− η} and assume

(1) The eigenvalues of H0 = H0(ρ∗) are non-zero, with λmin(H0) < 0

(2) ρ̃∗ ↑ 1 as η ↓ 0

(3) ∃η0 > 0 such that the sets ∂L(η) are compact for all η ∈ (0, η0)

If ρ0 has bounded density w.r.t. the Lebesgue measure, then it cannot be that ρt converges weakly to ρ∗
as t −→∞.

7. Beyond: theories, analyses, and hypotheses

Authors of [12] studied extensively the corresponding diffusion PDE to noisy SGD, the latter iterates
with:

θk+1
i ←− (1− 2λsk)θki + 2sk(yk − ŷ(xk;θk))∇θiσ∗(xk;θki ) +

√
2sk/β + gki

where gki ∼ N (0, ID) a standard noise. The term −2skλθ
k
i corresponds to a `2 regularization. The resulting

scaling limit hence becomes:

∂tρt = 2ξ(t)∇θ (ρt∇θΨλ(θ; ρt)) + 2ξ(t)β−1∆θρt
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called the diffusion dynamics, where Ψλ(θ; ρ) = Ψ(θ; ρ) + (λ/2) ‖θ‖22. They regarded this diffusion process
as a gradient flow for the free energy:

Fβ,λ(ρ) =
1

2
R(ρ) +

λ

2

∫
‖θ‖22 dρ(θ)− β−1 Ent(ρ)

where Ent(ρ) is the entropy of ρ. Essentially, Fβ,λ can be thought of as an entropy-regularized risk. Unlike
the case for noiseless SGD, they are able to prove that for β < ∞, the diffusion process admits a unique
fixed point, which is the global minimum of Fβ,λ(ρ) and converges to it, if initialized so that Fβ,λ < ∞.
Therefore, noisy SGD generically converges to a global optimum. We refer the reader to [19] which provided
an analysis of global optima for noisy SGD.

Various other methods have been able to provide a theory of neural network, including detailed analy-
ses of asymptotic behavior and convergence. Notably, [7] provided a framework of analysis of general neural
networks via Neural Tangent Kernels (NTKs), arguing that during SGD training, the network function
fθ : X −→ Y follows the kernel gradient of the functional cost w.r.t. the limiting NTK of the neural network
in function space, and the NTK only depends on the depth of the neural network. Furthermore, they are
able to establish convergence properties of neural networks via the positive definiteness of the infinite width
limiting NTK. Remarkably, the functional cost, i.e. the cost incurred on the function space (in which neural
networks are a subset of) is convex, in contrast to the parameter cost, e.g. in [12] where authors used the
empirical risk to train SGD. NTKs allow a correspondence between a particular neural network structure
and a unique NTK. Several follow up work from various authors provided NTK analyses of convolutional
neural networks, recurrent neural networks and residual networks.

Several other analyses, notably [2], formulated the problem of learning a function f : X −→ Y as a search for
a function in a Hilbert space H that minimizes a functional cost R : H −→ R, such that the function f is a
linear combination of a few elements from a large given parametrized set {φ(θ)}θ∈Θ ⊂ H. This corresponds
in general to describing the linear combination through an unknown signed measure µ on the parameter
space and solving the objective

J∗ = min
µ∈P(Θ)

J(µ) J(µ) = R

(∫
φdµ

)
+G(µ)

where G is a convex regularizer. The authors aimed to explain when and why the non-convex stochastic
particle gradient descent finds a global minima for the discretized version of the above objective, Jm where
Jm = J(m−1

∑
i=1m wiδθi), where m is the number of particles and wi are the weights on each particle. The

many-particle limit as m −→ ∞, is characterized as a Kantorovich gradient flow in the space of probability
measures over the parameter space. Finally, they proved that if this flow converges, then its limit is the
global minimizer of J , using tools from optimal transport theory and mathematical physics.

More recent work aimed to generalize neural networks to functions between topological vector spaces (TVS),
finite or infinite dimensional. Authors of [4] proved the universal approximation theorem for neural networks
between TVSs, in particular, operator networks, that could have strong implications in operator theory.
In essence, they showed that a generalized version of neural networks, namely function machines [11], are
able to uniformly approximate to arbitrary precision operators and functionals, and [17] outlined similar
approximation results for other configurations of networks, mixing up finite and infinite layers in between.
A potential promising area of research would be to apply the theory of function machines to analyze SGD
dynamics as well as convergence properties of two-layer finite neural networks. Beyond the above, it would
be interesting to apply function machine theory to studying gradient flows in function spaces as well as
Kantorovich spaces.
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Appendix A. Concentration inequalities

Lemma A.1. (Azuma-Hoeffding variant) Let (Xk)k≥0 be a martingale with values in Rd w.r.t. the filtration
(Fk)k≥0, with X0 = 0. Assume that a.s., the following hold ∀k ≥ 1:

E [exp {〈λ,Xk −Xk−1〉} |Fk−1] ≤ exp

{
L2 ‖λ‖2

2

}
Then, we have

P
(

max
k≤n
‖Xk‖2 ≥ 2L

√
n
(√

d+ t
))
≤ e−t

2

Appendix B. Notation

• Given f measurable and µ a measure, we denote 〈f, µ〉 = 〈µ, f〉 =

∫
f dµ.

• Given a probability space (Ω,F , µ) and a random variable X : Ω −→ R, we denote the pushforward
measure of X onto R by X#µ, i.e. for all B ⊂ X Borel, we have that X#µ = µ

(
X−1(B)

)
.

• Given a matrix A, we denote the smallest eigenvalue of A by λmin(A).

• We write 〈U, ρ〉⊗2
=

∫∫
U(θ,θ) dρ(θ)dρ(θ).
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