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Abstract

Reinforcement learning algorithms have been making great progress in many
domains, from superhuman levels of play in abstract strategy games [12] to robot
optimal control [8]. However, while these algorithms often show impressive
empirical results, they also tend to lack rigorous theory proving their efficiency.
In this work we shall examine the elements underlying the current research re-
garding provably efficient reinforcement learning algorithms and consider their
effectiveness and practicality in context. In particular we shall focus on the emer-
gent use of eluder dimension in proving efficiency, the use of importance sampling
in provably efficient algorithms, and touch upon the methods of encouraging
exploration.

1 Incentivizing Exploration

Balancing exploration and exploitation remains one of the main goals guiding reinforcement learning
research.

The two most explored methods of encouraging exploration are Thompson sampling, which is
essentially sampling from posterior distributions, and optimism-based algorithms, which explicitly
rewards uncertain actions.

Here we consider such methods used and the role they play in algorithms with provable efficiency.

1.1 Thompson Sampling

Thompson sampling long been a known strategy to the multi-armed bandit problem, but it has recently
enjoyed a surge in popularity due to its empirical success in machine learning applications.

Potential advantages of Thompson sampling algorithms over optimistic algorithms include the ability
to incorporate the structure of the problem into the prior distribution and computational advantages
depending on the problem setting.

In the context of learning an unknown finite Markov Decision Process, Ouyang et al. [9] present a
Thompson sampling algorithm that achieves a regret bound of

R(T ) ≤ (H + 1)
√

2|S||A|T log(T ) + 49H|S|
√
|A|T log(|A|T )

Where H is a special constant, S and A are the state and action spaces, and T is the number of time
steps on which the algorithm is run.

We note that there are particular assumptions in this algorithm, namely that it is weakly communicating
(every state is either transient or is reachable from every other non-transient state under every
stationary policy), is finite, and satisfies extra restrictions on the transition probabilities.



The main benefit derived from using Thompson sampling instead of UCB seems to be empirical,
since the algorithm claims a computational benefit of having to solve fewer MDPs (only the one
sampled during policy iteration) and showing lower regret in a couple selected examples.

However, this does show that Thompson sampling is comparable both empirically and theoretically
in certain cases, meaning that this method of encouraging exploration could culminate in another
promising branch of theory.

1.2 Optimism in the Face of Uncertainty

The idea of using optimistic parameters is among the most popular methods of balancing exploration
against exploitation, using the principle of optimism in the face of uncertainty.

Algorithms that use this principle construct confidence sets of the system parameters and use opti-
mistic parameters to select actions during each time step.

1.2.1 Upper Confidence Bound

One of the most popular methods utilizing this principle is the upper confidence bound, which can be
interpreted as a bonus function that boosts the expected rewards of relatively unexplored states and
actions.

In the main work which we are focusing on, the general outline for the UCB variant is given thus:

Giving the confidence set for fixed β > 0 as

F̂ =

{
f ∈ F|

∥∥∥f − f̂∥∥∥2

≤ β
}

then the bonus function b is implemented as

b(s, a) = max
f,f ′∈F

f(s, a)− f ′(s, a)

then the Q-function used to select the optimal policy in the k’th time step is given by

Qhk = min{fkh + bkh, H}

Of course, the true value of b cannot be efficiently measured, so the main innovation of the paper is
finding an estimate for b that (with probability 1−δ) satisfies enough desired properties to demonstrate
both upper and lower bounds on b.

1.3 Maximum Entropy Reinforcement Learning

It may be worth considering the other functions used to incentivize exploration. To this end the idea
behind maximum entropy reinforcement learning is to encourage the agent to behave stochastically.
Intuitively, stochastic policies allow the agent to learn not only the solution to a given problem but all
possible solutions to the problem, which allows for fine tuning and generalization.

However, while there are many results indicating the practical value of this version of the bonus
function, there is a regrettable lack of work proving showing the theoretical efficiency of these
algorithms.

This being said, Hazan et al. [4] propose an algorithm that has provable sample and computational
complexity bounds.

In this work, the authors present an algorithm that makes use of an oracle that calculates a near-
optimal policy (with a parameterized sub-optimality gap) and an estimator of the state distribution
(with parameterized maximum distance from the true state distribution) in order to produce a policy
that is within ε of the optimal policy according to any β-smooth entropy measure R for any β.

With these functions, the authors develop an algorithm that gives the following bounds:

Theorem 1.1. (Maximum Entropy Reinforcement Learning Bounds)
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We are given ε > 0, an oracle function A that given inputs r, ε1 outputs a policy such that Vπ ≥
maxπ∈Π Vπ − ε1, an oracle function E that given inputs π, ε0 outputs a state distribution d such that
‖dπ − d‖ ≤ ε0, and a reward functional R that is β-smooth, B-bounded, and satisfies the following
inequalities:

‖∇R(X)−∇R(Y )‖∞ ≤ β ‖X − Y ‖ ∀X,Y
‖∇R(X)‖ ≤ B ∀X

Then for all ε > 0, then there is an algorithm that when run for T iterations with

T ≥ 10βε−1 ln 10Bε−1

then
R(dπ,T ) ≥ max

π∈Π
R(dπ)− ε

Of course, the issue with this is the number of conditions required to give the bound as well as the
presence of functions that may be computationally infeasible to calculate.

In the specific lower dimensional cases for which empirical trials were done, the authors were able
to get past the computational demand of the oracle functions by reducing the dimensions of the
spaces in which they implement the algorithm using heuristic methods such as projection onto lower
dimensional spaces and kernel density estimation.

In more complex settings, it is likely that these two oracle functions will be computationally infeasible
to calculate without approximations that allow some probability of failure (the reward bounds are
guaranteed under the current algorithm).

2 Eluder Dimension

A central element to many of the recently developed provably efficient reinforcement learning
algorithms is the eluder dimension, formally described by Russo and Van Roy [11], which can be
interpreted in the online learning context to represent the ability of an adversary to avoid giving data
that will accurately represent the entire space.

First, we establish preliminary definitions before presenting the full concept:
Definition 2.1. (F-ε dependence/independence) Given a function class F over a space A, a fixed
ε > 0 and a set A = {a1, · · · , an} ⊆ A, a value a is ε-dependent on A if for all of pairs functions
f, f̂ ∈ F such that √√√√ n∑

i=1

(f̂(ai)− f(ai))2 ≤ ε

Then |f(a)− f̂(a)| ≤ ε.
We then say that a is ε-independent of A if a is not ε-dependent on A.
Definition 2.2. (Eluder Dimension) Given an ε > 0, a function class F over a space A, the eluder
dimension, denoted as dimE(F , ε) is the longest sequence (a1, · · · , an) such that for all 1 < i ≤ n,
there is an ε′ ≥ ε where ai is ε′-independent of {a1, · · · , ai−1}.

The intuition behind this definition goes thus: In a space A, an online learner will use previous
information to attempt inference of future inputs, and so it might reasonably expect that if two
functions f, f̂ have similar values according to previously known information {a1, · · · , an}, then
they would have similar values when given a as well.

The eluder dimension then describes how much trouble this learner would have under this expectation
by considering the worst-case scenario in which its information about f, f̂ on the existing set will not
help it in learning how f, f̂ are related for a.

The authors justify the naming by relating this value to other dimensions, where the dimension of a
vector space can be described as the size of the longest sequence of linearly independent vectors and
the VC dimension can be described as the size of the largest set of points that can be shattered by the
function class.
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It is also worth noting that this definition is not equivalent to the longest sequence (ai) such that
ai is ε-independent of all the aj before it, because for 0 < ε′ < ε it is possible for elements to be
ε-independent but not ε′-independent.

However, such a sequence can still serve as a lower bound for eluder dimension since we can pick
ε′ = ε to satisfy the criteria given for such sequences.

2.1 Eluder Dimension in Reinforcement Learning

One of the most difficult and valuable branches of reinforcement learning focuses on algorithms that
use general value function approximation. These algorithms have the most potential applications
but also require efficiency that holds over generic classes of functions. These algorithms are already
widespread in practice, though, since it is usually impossible to exactly describe reward functions and
the promise of neural networks as universal approximators has given significant empirical results.

We shall be focusing on the work by Ruosong et al. [13], since its claimed regret bounds are among
the tightest of such provable bounds seen so far and it touches upon several novel concepts which are
used in other works showing regret or reward bounds.

In this case, the authors describe an algorithm that has the following claimed regret bound:
Claim 2.3. (Regret Bound in the Realizable Case) We consider an MDP with state space S and
action spaceA, and select estimates of the value function from a function class F with a time horizon
of H .

By realizable we mean that, defining the bounded reward function r : S × A −→ [0, 1], the value
function V : S −→ [0, H + 1], and the Q-function Q : S × A −→ R in the usual way, there is a
function fV ∈ F such that

fV (s, a) = r(s, a) +
∑
s′∈S

P (s′|s, a)V (s′) ∀(s, a) ∈ S ×A

Then, assuming that the optimal reward function is in F , there is an algorithm that after interacting
with the environment for T = KH steps (K episodes of length H), with probability at least 1− δ,
achieves a regret bound of

R(K) ≤
√
ι ·H2 · T

Where for a fixed C > 0,

ι ≤ C · ln2

(
T

δ

)
· dim2

E

(
F , δ

T 3

)
· ln
(
N (F , δ/T 2)

δ

)
· ln
(
N (S ×A, δ/T ) · T

δ

)
For the non-realizable case, there is a similar claim involving the misspecification error, which is
described using a value ζ such that given a set of functions F ⊆ {f : S ×A −→ [0, H + 1]}, for all
V : S −→ [0, H] there is some fV ∈ F with

max
(s,a)∈S×A

∣∣∣∣∣fV (s, a)− r(s, a) +
∑
s′∈S

P (s′|s, a)V (s′)

∣∣∣∣∣ ≤ ζ
Claim 2.4. (Regret Bound with Misspecification) With all terms defined identically to as above,
under the above definition of ζ, there is an algorithm that achieves a regret bound of

R(K) ≤
√
ι ·H2 · T +

√
dimE(F , 1/T ) ·H · ζ · T

There are many terms which must be examined here, each of which has nontrivial contribution to
the bound. Along with the eluder dimension, we note the presence of covering numbers for both
the function space and the combined state and action space. These factors emerge due to the use of
sensitivity sampling, which we shall discuss later on.

Unfortunately, although the regret bound on general function models depends on the eluder dimension,
for general functions no such upper bound exists and we can easily construct spaces with infinite eluder
dimensions (e.g. `2 ⊆ F(N), with any sequence of distinct natural numbers being ε-independent for
any ε > 0).
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This is not a shortcoming of this work in and of itself, but it means that the bounds proven require
that the function class is generally well behaved according to this newly defined value. For example,
if it turns out that certain desirable classes of functions have very large or infinite eluder dimensions,
then these bounds will be useless in theory.

Indeed, the authors acknowledge the nascent state of the theory on eluder dimension by mentioning
that one of the steps in the algorithm dependent on this value can be tunable if the eluder dimension
is unknown. In practice (for spaces of finite eluder dimension) this should suffice for most practical
purposes.

With this being said, there are results giving upper bounds on the eluder dimensions of specific classes
of functions, such as the following bound for generalized linear spaces due to Russo and Van Roy
[10].

Theorem 2.5. (Eluder Dimension of Generalized Linear Spaces)

Consider Θ ⊆ Rd and a given feature mapping φ so that fθ(a) = g(θTφ(a)) with g differentiable
and strictly increasing. Then, assume the existence of constants h, h, γ, S where for all a ∈ A, ρ ∈ Θ,
0 < h ≤ g′(ρTφ(a)) ≤ h, ‖ρ‖2 ≤ S, ‖φ(a)‖2 ≤ γ.

Then, dimE(F , ε) ≤ 3dr2 e
e−1 ln

(
3r2 + 3r2 ·

(
2Sh
ε

)2
)

+ 1

where r is given as

r =
supρ∈Θ,a∈A g

′(〈φ(a), ρ〉)
infρ∈Θ,a∈A g′(〈φ(a), ρ〉)

Proof. We first define for any sequence a1, · · · , ak the values

wk := sup

(fρ1 − fρ2)(ak)|

√√√√k−1∑
i=1

((fρ1 − fρ2)(ak))2 ≤ ε′, ρ1, ρ2 ∈ Θ


Then, if wk ≥ ε′ then letting Φk =

∑k−1
i=1 φφ

T , Vk = Φk + λI , λ =
(

ε′

2Sh

)2

,

wk ≤ max{ρTφk|
k−1∑
i=1

g(ρTφ(ai))
2 ≤ (ε′)2, ρT Iρ ≤ (2S)2}

and by the bound on g′ we have

wk ≤ max{ρTφk|
k−1∑
i=1

g(ρTφ(ai))
2 ≤ (ε′)2, ρT Iρ ≤ (2S)2}

≤ max{hρTφk|h2ρTΦkρ ≤ (ε′)2, ρT Iρ ≤ (2S)2}
≤ max{hρTφk|h2ρTVkρ ≤ 2(ε′)2}

=
√

2(ε′)2/r2 · ‖φk‖V −1
k

Where since ρT Iρ ≤ (2S)2, then ρtVkρ = ρTΦkρ + ρρT ≤ (ε′)2 + λh2(2S)2 ≤ (ε′)2 + (ε′)2 =
2(ε′)2.

This means that φTk V
−1
k φk ≥ 1

2r2 .

Then, if wi ≥ ε′ for each i < k then detVk ≥ λd
(

3
2

)k−1

In particular, using the Matrix Determinant Lemma,

detVk = detVk−1(1 + φTt V
−1
k φt) ≥ detVk−1

(
3

2

)
≥ ·(detλI)

(
3

2

)k−1

= λd ·
(

3

2

)k−1
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Then, since the determinant of Vk is maximized when all its eigenvalues are equal,

detVk ≤
(

1

d
Tr(Vk)

)d
≤
(
γ2(t− 1)

d
+ λ

)d
Then, this inequality means that k must satisfy(

3

2

) k−1
d

≤ 1 +

(
γ2

λ

)
· k − 1

d

Then, fixing 0 ≤ x ≤ 1
2 and α > 0, for all values p such that (1 + x)p ≤ αp + 1, p ≥ 1 =⇒

ln(1 + x) · p ≤ ln(1 + α) + ln p, and using the fact that ln(1 + x) ≥ x/(1 + x), we substitute
y = px

1+x to get

y ≤ ln(1 + α) + ln
1 + x

x
+ ln y

≤ ln(1 + α) + ln
1 + x

x
+
y

e
e

e− 1
y ≤ ln(1 + α) + ln

1 + x

x

y ≤ e

e− 1

(
ln(1 + α) + ln

1 + x

x

)
So that for all p ≥ 1, p ≤ 1+x

x ·
e
e−1 (ln(1 + α) + ln x+1

x )

Then, using this inequality on the k−1
d term with x = 1/2, α =

(
γ2

λ

)
we obtain

k ≤ d · 3 · e

e− 1
· (ln(3r2 + 3r2 γ

2

λ
)) + 1 = 3dr2 e

e− 1
ln

(
3r2 + 3r2 ·

(
2Sh

ε

)2
)

+ 1

Note that if p < 1 in the above equation then although the given inequality does not apply, we instead
get k < d+ 1, which is a far stronger result.

Since the eluder dimension is equal to the largest such k, the desired result follows.

2.2 Uses in Regret Decomposition

Russo and Van Roy’s primary use of the eluder dimension is to bound the regret of Thompson
sampling and standard UCB algorithms in a contextual multi-armed bandit model [11].

In order to do so, the authors first define a width function, defined over subsets of function classes
F̃ ⊆ F as:

wF̃ (s, a) = sup
f,f ′∈F̃

(f(s, a)− f ′(s, a))

Then, an intermediate proposition is established:
Proposition 2.6. We consider a set of functions F ⊆ {f : A −→ [0, C]} for C > 0. For a sequence
{Ft : t ∈ N} of measurable function classes under the restriction that for all t ∈ N, Rt − fθ(At)
conditioned on (Ht, θ, At) is η-sub-Gaussian, then for all f ∈ F , a ∈ A,

for UCB-based algorithms,

R(T, πF1:∞) ≤
T∑
t=1

wFt
(At) + C1(fθ /∈ Ft)

and for Thompson sampling based algorithms,

E[R(T, πTS)] ≤ E

[
T∑
t=1

wFt(At) + C1(fθ /∈ Ft)

]
with probability 1.
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Proof. We consider the true reward function fθ with θ a random variable (so that there is some mean
reward combined with noise).

Then, assume that fθ ∈ F̃ . In this case, then the regret must be at most the width of that subset, since
for all f ∈ F̃ ,

fθ(a
∗)− (fθ(a) + wF̃ (a)) ≤ 0 ⇐⇒ fθ(a

∗)− fθ(a) ≤ wF̃ (a)

This inequality is true since it essentially states that the algorithm would only choose the action a if
it believed that it had the optimal reward, and the optimistic estimate of the reward given by taking
action a must be bounded above by the sum of fθ(a) (the actual reward) and wF̃ (a) (the greatest
possible uncertainty of the reward estimation).

On the other hand, if fθ /∈ F̃ , then because f(a) ∈ [0, C] for all f ∈ F̃ ⊆ F , the worst regret
would always be at most C since the difference between any two rewards is bounded from above by
C − 0 = C.

Thus, the given formula follows by using the width function if the function is in the confidence set
and C otherwise, and summing over the time steps.

If the confidence sets contain fθ with high probability for each θ, then this regret bound simplifies to
the sum of width functions, and we note that we should expect wFt

should gradually decrease over
time as an agent learns more about its environment.

Then, the eluder dimension is then used to bound the width function for each step, so that summing
these terms over all time steps will give a bound in terms of eluder dimension:

R(T, πF1:∞) = Õ
(√

dimE(F , T−2) · log(N (F , T−2, ‖·‖∞)
)

More importantly, though, this regret decomposition becomes useful in later analyses, since bounding
the width function during each time step will then lend itself to corresponding regret bounds.

The work by Ruosong et al. uses an estimate of the width function itself in order to calculate the
bonus function in their variant of UCB, meaning that the bonus functions can instead be used to
bound the regret.

3 Importance Sampling

Importance sampling is technique finding a resurgence in the machine learning field. In particular,
the goal of this sampling strategy is to estimate certain properties of a probability distribution by
sampling from a different distribution.

The logic behind importance sampling follows from the rearrangement∫
fdP =

∫
f · dP

dQ
dQ

Where the Radon-Nikodym derivative dP
dQ

is renamed as the importance function. Then, it is possible
to take advantage of this second integral if estimating it is easier or lower variance than for the first.

Since the core of machine learning in general is to infer a policy by sampling from a distribution, it
naturally follows that importance sampling can be used in various steps of reinforcement learning
algorithms.

3.1 Policy Optimization by Importance Sampling

One explored use for importance sampling in reinforcement learning is for policy optimization. In
this case, Metelli et al. present a method that uses importance sampling in order to lower the variance
of policy estimation and hence increase the rate of convergence [7].

In particular, importance sampling is used for off-policy evaluation, in which the goal is to estimate
the expected value of a deterministic value of a bounded function over a probability distribution P
using samples collected from another distribution Q.
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In order to be able to infer information in P from x = (x1, · · · , xN )T sampled from Q, the work
introduces an importance sampling estimator, which introduces importance weights (the Radon-
Nikodym derivative) wP/Q(x) = p(x)/q(x) = dP

dQ
(x) to the sample, so that giving µ̂ as the

importance sampling estimator,

µ̂P/Q =
1

N

N∑
i=1

wP/Q(xi) · f(xi)

Then, in order to reduce the potential of infinite variance in this estimator, a normalized version of
this estimator is also introduced, namely

µ̃P/Q =

∑N
i=1 wP/Q(xi)f(xi)∑N

i=1 wP/Q(xi)

which we can interpret as the expected value of P under the approximation byN Dirac deltas centered
at each xi and weighted by wP/Q/

∑N
j=1 wP/Q(xj).

Then, the variance of the the former function µ̂P/Q can be bounded by

Varx∼Q[µ̂P/Q] ≤ 1

N
‖f‖2∞ d2(P ‖ Q)

where d2 is the exponentiated 2-Rényi divergence defined as

d2(P ‖ Q) = exp

(
log

∫
X

(
dP

dQ

)2

dQ

)
=

∫
X
q(x)

(
p(x)

q(x)

)2

dx

and ESS represents the effective sample size, where ESS(P ‖ Q,N) is approximately equal to the
number of samples drawn from P so that µ̃P/P has the same variance as µ̃P/Q with N samples.

Instead of optimizing these two estimators directly (which would give a P maximizing the probability
mass centered at the maximum sampled f(xi)), the authors seek to optimize a lower bound on the
expected value Ex∼P [f(x)] that would hold with some high probability. The stated reasoning for
why this doesn’t fall into the same trap is that these overfit probability distributions would display a
high variance and thus be punished by a loss function that accounts for estimator variance.

To determine such a function, they use the following theorem:
Theorem 3.1. Consider P , Q probability measures on the measurable space (X ,F) with P � Q
and d2(P ‖ Q) <∞. Then, letting x1, · · ·xn be i.i.d random variables sampled from Q and f : X
−→ R a bounded function, for all 0 < δ ≤ 1, N > 0, with probability at least 1− δ:

E[f(x)] ≥ µ̂P/Q − ‖f‖∞

√
(1− δ)(d2(P ‖ Q))

δN

and maximize this value instead with the side effect of leaving δ as a hyperparameter.

Then, the authors employ this surrogate loss (which can be empirically estimated from the samples and
the current policy) in order to develop two optimization algorithms, centered around parameterized
and differentiable policy spaces.

Unfortunately, there were not theoretical guarantees found to back up the empirical results and
the empirical results did not significantly outperform the state of the art, so it is unlikely that this
particular use for importance sampling will be further explored.

3.2 Sensitivity Sampling

One of the innovations crucial to the work of Ruosong et al. is the modification of the bonus function
to not only estimate the confidence interval for the Q-function but also do so in a stable way in order
to increase accuracy [13].

In this case, the authors employ the technique of sensitivity sampling, with the goal of reducing the
size of the dataset while keeping the confidence region intact.
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Definition 3.2. (Sensitivity) For a set of state action pairs Z ⊆ S ×A and function class F , for each
z = (s, a) ∈ Z let the λ-sensitivity of z with respect to Z and F be

sensitivityZ,F,λ(s, a) = max
f,f ′∈F,‖f−f ′‖2Z≥λ

(f(s, a)− f ′(s, a))2

‖f − f ′‖2Z

The work then uses this to gradually create a subsample of a set of state action pairs Z ⊆ S ×A with
certain desirable properties.

We can interpret sensitivity as the importance of (s, a) in Z by measuring its maximal contribution to
the norm ‖f − f ′‖ over any two functions f, f ′ ∈ F .

Returning to the work done by Ruosong et al., we consider their use of sensitivity sampling in order
to increase the stability of the bonus function used in their variant of UCB.

Their particular subsampling strategy creates a subsample Z ′ of Z by independently deciding for
each z ∈ Z to include 1

pz
copies of z with probability pz (and not including any copies otherwise).

Here, pz is defined to be the smallest real number that is the reciprocal of an integer and

pz ≥ min

{
1, sensitivityZ,F,λ(z) · 72

ε2
ln

(
4N

(
F , ε

72
·

√
λ

δ|Z|

))}

Although the expected number of elements in Z ′ is |Z|, there will be fewer distinct elements, namely∑
z∈Z pz . Using the fact that for all real numbers x at least 1, there is an integer in [x, 2x] we have∑

z∈Z
pz ≤ 2 · 72

ε2
ln

(
4N

(
F , ε

72
·

√
λ

δ|Z|

))∑
z∈Z

sensitivityZ,F,λ(z)

Then, the authors use an upper bound on the sum of the sensitivities of the data in terms of the eluder
dimension and the log-covering number of S ×A, so that the number of distinct elements in Z ′ is
probably (with probability 1− δ) much smaller than the number of elements in Z .

Combining all this work to create this subsample with simply rounding samples in Z ′ to a specified
precision creates a set of functions that is both relatively close to the original sample while being
drastically reduced in complexity.

More specifically, the subsampling strategy (with high probability) bounds the cardinality of Z ′ by∑
z∈Z pZ (whose upper bound we shall abbreviate as N ) and the rounding limits each z ∈ Z ′ to be

a respresentative in the covering set of S ×A. Then, letting the rounding be to a precision of ε > 0,
then the total possible number of such sets Z ′ with rounded values is at most N (S ×A, ε)N .

This bound, while extremely large, is finite when the covering number is finite, and is used to then
establish the stability of the bonus function (and thus the regret) with high probability.

3.3 Covering Number

It is important to note the role of covering number in the regret bounds for several of the given
algorithms. Here we consider the covering numbers for certain spaces in order to extract more explicit
regret bounds for such spaces.
Definition 3.3. (Covering Number) The covering number of a metric space (X, d) given a parameter
ε > 0, denoted as N (X, d, ε), is the minimal cardinality over any set S of balls of radius ε such that
for all x ∈ X , there is some s ∈ S such that d(s, x) ≤ ε. This may also be applied to subsets A of
X , which we similarly denote as N (A, d, ε).

Often times the metric is omitted and the notation N (X, ε) is used instead.

The use of covering number in regret bounds is much more non-obvious than the use of eluder
dimension, but emerges as a result of a particular strategy that Ruosong et al. employ in their
implementation of the bonus function. In short, the algorithm subsamples from the set of samples
and rounds these subsamples to a lower degree of precision in order to (with probability 1− δ) obtain
certain desirable properties of its bonus function. The explicit rounding immediately elicits use of
covering numbers, and the subsampling method also eventually involves such values.
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Here we shall consider the space of generlized linear models with a Lipschitz link function over the
domain [−1, 1].

In particular, for the domain [−1, 1]d under the Euclidean metric we can bound the covering number
from above by

N ([−1, 1]d, ε) ≤

(
2
√
d

ε

)d
Which we obtain by packing the space with cubes of side length ε√

r
that are strictly contained inside

each open ball of radius ε.

Thus, under appropriate restrictions for generalized linear models (such as restrictions of domains to
be [−1, 1]d and the requirement for the ink function to be Lipschitz) we can establish the log-covering
number the function classes and the state-action pairs to be Õ(d) so that applying the general theorem
gives a bound of

R(T ) ≤
√
ι ·H2 · T

= Õ(

√
dim2

E(F , δ/T 3) · d · d · T ·H2 · T )

= Õ(
√
d2 · d · d · T ·H2 · T )

= Õ(
√
d4 ·H2 · T )

Where we use the O(d2) bound on the eluder dimension of generalized linear spaces from before.

This is somewhat worse than state of the art provable regret bounds, which use properties specific to
generalized linear functions. The authors remark that a more careful analysis can improve the bounds
for the same algorithm by careful analysis and reiterate that this algorithm is for general function
classes, not just generalized linear classes.

For a more interesting class of functions we are able to establish similar bounds under the right
conditions, as is shown by Kühn [6]:

Theorem 3.4. (Covering Number of Gaussian Kernel Spaces) Denoting the RKHS of the Gaussian
Kernel K(x, y) = e−σ

2‖x−y‖22 over the unit box [0, 1]d as Hσ([0, 1]d), we consider this space as
a subspace of continuous functions using the embedding Iσ,d : Hσ([0, 1]d) −→ C([0, 1]d). Then,
denoting the value N (Iσ,d(Hσ([0, 1]d), ε) as N ,

0 < lim inf
ε−→0

logN (Iσ,d(Hσ([0, 1]d), ε) ·
(

log(1/ε)d+1

(log log 1/ε)d

)−1

and

lim sup
ε−→0

logN (Iσ,d(Hσ([0, 1]d), ε) ·
(

log(1/ε)d+1

(log log 1/ε)d

)−1

<∞

Informally, this means that the log-covering number of the Gaussian RKHS as a subspace of the set
of continuous functions varies roughly according to

log(1/ε)d+1

(log log 1/ε)d

Under this restriction of the domain, the state-action space already has a polynomial log-covering
number, so if the eluder dimension for this space is reasonable (polynomial in d), then the algorithm
given by Ruosong et al. will guarantee a polynomial regret bound.

While there is not yet a proven eluder dimension bound for Gaussian Kernel spaces, extremely recent
work such as by Yang et al [14] have used alternate methods to find regret bounds for reinforcement
learning over a generic RKHS. However, since this paper uses methods outside the scope of this
work, we shall acknowledge the proposal of such algorithms but refrain from exploring further.
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4 Conclusion

The background underlying provable bounds for reinforcement learning still has the nascent qualities
of the machine learning field as a whole in the sense that there are still many independent directions
for research that are rapidly defining and building off of both new and old ideas.

We observe that at the moment few spaces have proven upper bounds on the eluder dimension, so
while these algorithms might perform well in toy cases with well studied properties, their general
applicability is still contingent on how well behaved more general spaces will be in terms of this
dimension. However, given these bounds, there are already significant results and potentially useful
algorithms that use this dimension in order to demonstrate their efficiency. On the other hand, we
also observe that in the past importance sampling did not seem affect algorithm efficiency, and only
recently does it seem to have any impact on provable regret bounds. As a result, its usefulness is
highly uncertain, but it shows potential in establishing theory due to its potential to reduce variance
in samples.

We thus find that although the general methods of encouraging exploration are quite well established,
there is still a diversity of strategies and problems that can be explored within these methods. All
in all, we think that there is promise in using these strategies despite their qualities, we hope that
algorithms based on such theory will prove themselves empirically as well.
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