Project 3: translation to functional form

October 12, 2017

1 Project description

In this project, your task will be to build a small tool to convert a C-like function body into functional
form.

We assume you are familiar with the let .. = .. in ... binding constructs that are used in many
functional languages (Racket, Caml, ...). Your goal is to transform a block of code of a C-like language
into a functional program using let .. = .. in ... constructs.

You first have to identify different sets of variables:
e undefined in the code block. They are then considered arguments of the function.
e defined in the block.

e written in the block, we refer to them as state wvariables. Your function should output these
variables.

Then your program should build the function equivalent to the code block. In the functional language, you
should use the same expression grammar as the input language and the binding constructs. However you
are free to define your own functional language with your own syntax, providing it uses binding constructs.
The only restriction is that all conditionals should be balanced. To handle iteration statements you will
also need recursive binding constructs, such as the let rec .. = .. in .. from Caml.

The ouput should contain:
e the function prototype, with the arguments variables. The name is not important.

e the body of the function, in functional form.

Deliverables At the end of the project, you will be asked to provide the source code of your tool.
It should be well commented and easy to understand. We also should be able to test your tool on small
programs, so it should be compilable on the Teaching Lab’s machines.

Additionally, we would like to have a small report (2-3 pages), explaining:
e the imperative-to-functional translation process.
e how-to use your tool.

e the syntax of your functional language (you don’t need to specify the expression syntax, as it should
be the same as the input language).

Notation The input language is quite rich and you might not want to consider all of it when you start.
Particularly, handling iteration-statements might not be straightforward. 20 points will be awarded if
you succeeded in capturing the different set of variables you need to define the function prototype. 50
points for a correct translation to functional form for an input language without iteration statements. If
you can also handle the latter, you will get 30 points.

The report is mandatory, because it helps us to understand your approach to solve all the previous
problems.

Bonus All the loops in the input language can be translated into recursive functions. However, with
some additional analysis, you should be able to identify widely used functional constructs such as fold.
Try to add this to your tool!

2 Language

For this project your are invited to any language of your choice. It should however be easy for you to
perform the program analysis and transformations.

3 Input program grammar

This is a subset of the grammar defined in ISO/IEC 9899:TC3.

We will use the list construction with any syntax object, it refers to an empty list or a comma-separated
list of the syntax objects:

(List X) ::= (empty)
| (NonEmptyList X)

(NonEmptyList X) == (X)
| (X)) (List X)

The syntactic element specified in brackets (ex: {’+’, -’} means one of the contained elements can be
used to produce the syntax object.

3.1 Expressions

This is inspired from the C99 standard with some restrictions:
e there are no assignment-expressions. For example, the following expression is illegal in our subset:

char c;
int i;

long 1;
1=(c=1);

e The only pointers are used in array subscripts, therefore we removed address and indirection
operators & and .

To summarize the features of the expressions of the language: we have function calls, array subscripts,
unary expressions and binary expressions.

(primary-expression) := (identifier)
| {(constant)
| (string-literal)
| ((expression) ’)

)

(postfiz-expression) ::= (primary-expression)
| (postfiz-expression)
| (postfiz-expression) ’[" {expression) ']’ // Array access
| (postfiz-expression) *(*(List expression)])’ // Function call (uninterpreted function)

(unary-expression) ::= (postfiz-expression)
|+’ | = (unary-ezpression)

(multiplicative-expression) ::= (unary-expression)
| (multiplicative-expression) { ™’/ %’ } (unary-expression)

(additive-expression) ::= (unary-expression)
| (additive-expression) {*+’ =" } (multiplicative-expression)

(shift-expression) ::= (additive-expression)
| (shift-expression) { '<<’'>>"} (additive-expression)

relational-expression) ::= (shift-expression
lational ' hi, '
| (relational-expression) {'<’ >’ '<="">="} (shift-expression)

(equality-operators) ::= (relational-expression)
| (equality-expression) { '==""1="} (relational-expression)

(AND-expression) ::= (equality-expression)
| (AND-expression) *&&’ (equality-expression)

(OR-expression) ::= (AND-expression)
| (OR-expression) ’||” (AND-expression)

conditional-expression) ::= -expression
ditional ' OR '
| (OR-expression) ’?" (expression) ’: {conditional-expression)

(expression) ::= (conditional-expression)

3.2 Declarations

(declaration) ::= (type-specifier) (List init-declarator)

(init-declarator) ::= (declarator)

7)

| (declarator) =" (initializer)

(declarator) ::= (identifier)
| 7% (declarator)
| (identifier) ’|" (constant)]’

We use the following type specifiers - or basic types :

(type-specifier) ::= 'void’
| int’
| ’float’
| ’_Bool’

3.3 Statements and blocks

(statement) ::== (compound-statement)
| (expression-statement)
| (selection-statement)
| (iteration-statement)

{compound-statement) ::= "' (block-item-list) ”’
(block-item-list) ::= (block-item)
| (block-item) (block-item-list)
(block-item) ::= (declaration) ’;
| (statement)

9.9

(expression-statement) ::= (expression-assign) ’;

(expression-assign) ::= (expression)
| (expression) { '=""+=""-=""&=""||="} (expression)
| (expression) { ++ -}
| {’++ = } (expression)
(selection-statement) ::= ’if’ ’(’ (expression) ')’ (statement)

| if” °(C (expression) ') (statement) ’else’ (statement)

(iteration-statement) ::= ’while’ ’(’ expression ')’ (statement)

7.9

| for’ '(’ (expression-statement) ’; (expression) ;" (expression-statement)) (statement)

3.4 Program

A program is simply a block-item-list in this case.

	Project description
	Language
	Input program grammar
	Expressions
	Declarations
	Statements and blocks
	Program

