
Skinny Networks with top-down Attention

VENKATESH MEDABALIMI

In this short note I wish to bring to your attention how a certain kind of skinny but deep

representations are universal, discuss their interesting properties and motivate methods for learning

such architectures. This might be of benefit in resource(memory) limited devices and may lend well

to on-chip implementations of deep models, more so whenever the length of the representation also

scales well with that of the input. In a recent result Johnson[6] shows that deep, skinny neural

nets are not universal approximators. While it was all along known from classical results that

neural nets are universal approximators [2, 4],(and results for generative models [12, 8, 7]) this is a

welcome inroad into understanding the representative power of neural nets in light of their shape

and effectively says no amount of depth can compensate for a lack of width1. In contrast to this main

result from [6] the representation we discuss uses constant width but allows for access to individual

input variables at intermediate layers, like in a top down attention mechanism over the input.

These representations are also of immediate relevance to neural nets with polynomial activations

and alternate architectures called sum product networks(SPNs). The main insight we discuss arises

from a theorem of Ben-Or and Cleve’s [1] about algebraic formulas more familiar in TCS community.

In only other related work we are aware of, exploring expressivity in the context of limited width

neural nets a theorem of Rojas [11] from 2003 shows that by stacking one-dimensional perceptron

layers, each of which is connected to all previous layers, one can obtain any 2-way classifier.

Rest of this write-up is organized as follows, first in section 1 we recall a celebrated result of

Ben-Or and Cleve[1] on in-place computation of algebraic formulas using straight line programs

operating on a constant number of registers and in section 2 describe an interesting characterization

of such computations as an iterated matrix product of constant size near-identity matrices. By

Stone-Weierstrass, since for any continuous function over a compact domain there exists a multi-

variate polynomial approximation it follows that these skinny representations are in fact universal.

We conclude by listing out advantages of this architecture and a discussion of related works. An

interesting challenge presents itself in figuring out how to learn these architectures.

1. Computation using constant number of registers

A couple of definitions before we recall Ben-Or and Cleve’s result.

Date: September 25, 2019.
1checkout this Quanta article

1

https://www.quantamagazine.org/foundations-built-for-a-general-theory-of-neural-networks-20190131/


2 VENKATESH MEDABALIMI

Definition 1. Straight-Line Program : A striaght line program over a ring (R,+, .) is a sequence

of assignment statements of the form

Rj ← Rj + c.Ri

Rj ← Rj − c.Ri

Rj ← Rj + xu.Ri

Rj ← Rj − xu.Ri

where R1, R2, .., Ri, Rj , .., Rw are the registers and x1, x2, ..xu, ..xn are the variables. Width w of a

program is the number of registers it contains and length l is the number of statements or instructions.

Definition 2. In-place computation: We say that a straight line program in-place computes f(x1, x2, .., xn)

in a way that offsets Rj by f.Ri if the values of the registers are transformed by the program as fol-

lows. The value of Rj is incremented by Ri.f(x1, x2, .., xn) and all other registers retain their initial

value at the end of the program execution.

Theorem 3 (Ben Or and Cleve [1]). Over any ring (R,+, .) any formula f(x1, x2, x3, ..., xn) of

depth d can be in-place computed by a straight line program of width 3 and length 4d.

Proof. The essence of Ben-Or and Cleve’s proof is to be able to perform in-place addition and

multiplication using at most constant number of registers and then apply it recursively. Only 3

registers suffice. As an induction assumption assume we can in-place compute f in a way that

offsets Ri by fRj or −fRj as we desire and similarly we can in-place compute g in a way that

offsets Ri by gRj or −gRj . Then we can in-place compute f + g and f × g as follows.

• In-place computation of f + g

Offset R1 by fR2 : R1 ← R1 + fR2

Offset R1 by gR2 : R1 ← R1 + gR2

This sequence of instructions offset R1 by (f + g)R2 leading to register states

h1 + (f + g)h2, h2 and h3 if we start out with h1, h2 and h3 in the register R1, R2 and R3

respectively.

• In place computation of f × g can be done as follows.

Offset R3 by − gR2 : R3 ← R3 − gR2

Offset R2 by fR1 : R2 ← R2 + fR1

Offset R3 by gR2 : R3 ← R3 + gR2

Offset R2 by − fR1 : R2 ← R2 − fR1

This seqeunce of instructions offsets R3 by f.gR1 leading to register states

h1, h2 and h3 + (f × g)h1 if we start out with h1, h2 and h3 in the registers R1, R2 and R3

respectively.



Skinny Networks with top-down Attention 3

The base case involving the leaves is easy to verify. Since the number of instructions used per level

of recursion is at most 4, the length of the straight-line program is at most 4d where d is the depth

of the original formula. �

2. Narrow iterated matrix product reperesentation

For the purpose of this section the reader can think of being given a arithmetic formula of depth

d that computes a multivariate polynomial f . Then lets say we have a straight-line program for

this formula coming from Thm.3. The action of any instruction in the straight line program on the

3 registers can be captured by a matrix multiplication. For instance, the straight line instructions

R1 ← R1 +xu.R3 and R1 ← R1 +wi,j .R2 correspond to multiplication by matrices


1 0 0

0 1 0

xu 0 1

 and


1 0 0

wi,j 1 0

0 0 1

 respectively. If we start with R1, R2, R3 initialized to the values 0, 1, 1 respectively,

then in-place computing the f in a way that offsets R1 by f(x) × R2 amounts to computing f(x)

in the register R1. Since we have a straight line program of instructions that achieves this, we can

write it down as an iterated matrix product of the vector [R1 R2 R3] = [0 1 1] by the corresponding

instruction matrices. Note that since each instruction uses only one of the variables xi or weights

wi,j apart from the registers as described above, each matrix is essentially one non-zero element

away from identity as shown in the examples above. For a contrast, there are no explicit non-

linear activations between layers as is the case with deepnets but, the input x is read potentially

multiple times at different steps in the iterated matrix product, the same applies to individual

weight parameters. In the same vein, a key distinction from deep linear nets is that some of these

matrices depend on input variables xi, i ∈ [n] while the rest depend on the weight parameters w and

these two kinds of near-identity matrices are interleaved as dictated by the order of appearance of

corresponding instructions in the straight-line program.

One can interpret the model as an iterated matrix multiplication by matrices of the form

I + It.(a
w
t .(ct.w) + bxt .((1 − ct).x)) where It is a 3×3 influence matrix with a single entry set to 1,

in a way this selects which part of memory(internal) influences which other part in this step. awt is

an attention vector for selection over the parameter space w at time/layer t and similarly bxt is an

attention vector for selection over the input space x at time t. See figure 1. The variable ct denotes

a choice parameter which when in {0, 1} tells if the current layer wants focus on the input space x

or the parameter space w to influence the computation. Note that the representation we used for

showing universality is quite sparse and in fact the attention vectors would select a single parameter

or input coordinate. The discrete nature of choice of non-zero entry in the inlfuence matrix It

prompts us to think if methods like REINFORCE in conjunction with usual techniques are more

appropriate. However it is a very interesting line to explore if one can facilitate learning these

representations in other ways.Obviously one can define these representations with matrices of larger



4 VENKATESH MEDABALIMI

dimension, allowing for the computation within to use more (internal)memory. Once trained, these

representations also seem to present a potential opportunity for explaining or reasoning difference

in classification of two different input instances x, y by identifying points of significant divergence

in memory traces and the corresponding relevant input regions causing it via top-down attention.

Since all computations start with the identically initialized registers this is always guaranteed to

occur.

Figure 1. An illustration of the architecure’s basic piece where each weight matrix

is constructed using attention over weights and inputs. The influence matrix It can

be determined as an action which is a function of the time step t by a policy network.

Image Credit: Thanks to Harris Chan.

3. Advantages of our Architecture

We briefly summarize incentives for devising methods for learning a model of our kind below.

• Present a promise of interpretability via contrasting the input patches attended to when

memory traces diverge significantly.



Skinny Networks with top-down Attention 5

• Once trained the represenations are written solely as an Iterated Matrix multiplication,

presence of no other intermediate non linearities makes it conducive for new hardware relying

solely on matrix multiplications.

• Parallelism at inference time. Inference in these representations is parallelizable in the sense

that the second half of the matrix product need not weight for the first half to be computed

and so on recursively, since there’s no need of “knowing” or waiting for activations once the

transition matrices are available.

• The model is reversible.

• Space required for storing activations is rather small.

The challenge in devising learning methods for our architecture it appears lies in the interplay

between two aspects. There are discrete choices to make at each layer which involve picking an input

coordinate or a weight parameter and the influence matrix It. Then there’s the question of optimizing

over these parameters which appears to lend to more conventional methods like gradient descent.

At first glance it seems sensible to optimize over one while the other is at the best possible setting

and vice versa. Having these inter-dependent schematics appears to make things tricky. Probably

one way is to learn a continuous embedding for discrete choices by training a performance evaluator

and then perform alternating minimization by coordinate descent on the continuous embedding and

weight spaces. But, its hard to imagine being able to train such a performance predictor.

4. Related Work

Our architecture motivated by the representation used in the theorem and depicted in figure1 is

unique in many ways. It has interesting properties like weight and input reuse across layers and

facilitation of multiplicative interaction of intermediate activations with the input by having some

weight matrices be functions of the input. Hypernetworks[3] share the former aspect of weight

sharing across layers in the form of a single net that generates weight matrices as a function of layer

or time index, the input at the time and other information. Hypernets are inspired by methods

in evolutionary computing like HyperNeat that seek to deal with large nets containing millions of

weight parameters by having a small net to efficiently generate weight parameters. The mutliplicative

interaction obtained by synthesizing weight matrices via attention over the input is remniscent of

the mulitplicative RNN [13].

Architectures like Dense nets[5] make the input layer(and also all intermediate layers) available in

all the subsequent layers via feature concatenation allowing for implicit multiplicative interactions.

The difference lies in how in our case the input layer is used to construct matrices to multiply with-

as opposed to have it “operated upon” to build new features.

To the best of our knowledge Lin and Jegelka [9] were the first to explore the power of narrow nets

with skip connections. They show Resnet with one-neuron hidden layers is a universal approximator.

Broadly speaking there are two main differences with the model in [9] and that motivated in this

paper. As is the case with usual ResNets their model has skip connections between successive blocks

but in the model discussed it is always the input layer that is reused. However this reuse is not



6 VENKATESH MEDABALIMI

in the usual sense of a skip connection that gets added for the vector to be operated upon but to

construct matrices using input layer to multiply the current features or memory with. More crucially

the source of non-linearity in their model are the single RELU unit in their Residual block between

wider layers whereas in the model I describe since there are two kinds of matrix multiplications

that are interleaved - one with usual weight parameters and the second with matrices constructed

using the input layer, non linearities can be seen as primarily arising out of the second type of

multiplications.

There’s a growing body of work in computer vision that is using attention in ingenious ways

seeking inspiration from biological vision. For example works such as [10] seek to model vision as

a sequential decision problem over fixations. Apart from the evident differences in these models to

ours, a crucial difference with such sequential attention based processing systems is that the previous

glimpses and computations upto time t do not influence the location of the next glimpse if we were to

interpret the input dependent matrices as being derived from correspondng glimpses. In particular

while the locations of sequence of glimpses can be task dependent it does not adapt to a specific

input.

Acknowledgement Thanks to Harrris Chan for the illustration in page 4 and bringing some of

the related works to our attention.

References

[1] Michael Ben-Or and Richard Cleve. Computing algebraic formulas using a constant number of registers. SIAM

Journal on Computing, 21(1):54–58, 1992.

[2] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control, signals and

systems, 2(4):303–314, 1989.

[3] David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. CoRR, abs/1609.09106, 2016.

[4] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4(2):251–257,

1991.

[5] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected convolutional networks. CoRR,

abs/1608.06993, 2016.

[6] Jesse Johnson. Deep, skinny neural networks are not universal approximators. CoRR, abs/1810.00393, 2018.

[7] Nicolas Le Roux and Yoshua Bengio. Representational power of restricted boltzmann machines and deep belief

networks. Neural computation, 20(6):1631–1649, 2008.

[8] Nicolas Le Roux and Yoshua Bengio. Deep belief networks are compact universal approximators. Neural compu-

tation, 22(8):2192–2207, 2010.

[9] Hongzhou Lin and Stefanie Jegelka. Resnet with one-neuron hidden layers is a universal approximator. In Ad-

vances in Neural Information Processing Systems, pages 6169–6178, 2018.

[10] Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. Recurrent models of visual attention. In Advances in neural

information processing systems, pages 2204–2212, 2014.

[11] Raúl Rojas. Networks of width one are universal classifiers. In Proceedings of the International Joint Conference

on Neural Networks, 2003., volume 4, pages 3124–3127. IEEE, 2003.

[12] Ilya Sutskever and Geoffrey E Hinton. Deep, narrow sigmoid belief networks are universal approximators. Neural

computation, 20(11):2629–2636, 2008.

[13] Ilya Sutskever, James Martens, and Geoffrey E Hinton. Generating text with recurrent neural networks. In

Proceedings of the 28th International Conference on Machine Learning (ICML-11), pages 1017–1024, 2011.


	1. Computation using constant number of registers
	2. Narrow iterated matrix product reperesentation
	3. Advantages of our Architecture
	4. Related Work
	References

