
Computer Science C73 Fall 2023
Scarborough Campus University of Toronto

On presenting dynamic programming algorithms
(Longest Increasing Subsequence)

Vassos Hadzilacos

When I present a dynamic programming algorithm in class I try to mimic the process by which one might
go about discovering the algorithm: With your help, I analyze the problem at hand with an eye towards
discovering its “optimal substructure” and use this analysis to determine the subproblems to solve and
the recursive formula by which to compute these subproblems. In the process of doing so we also discuss
the reason why the recursive formula is a correct way to compute the subproblems, often invoking a
“cut-and-paste” argument that may be completely obvious or may require some explanation.

Although I hope that this type of presentation is pedagogically useful, it is not necessarily the clearest
way to present the algorithm, if the goal is to describe it (and its correctness) to someone — such as the
grader of your assignment — as opposed to illuminating how one might discover it, which is my goal in
lecture.

After you have discovered the algorithm it may be clearer to use a dryer and more direct style, consisting
of the steps listed below. I encourage you to use this style in presenting dynamic programming algorithms
in your assignment solutions.

(1) State (very clearly!) the subproblems to solve.
(2) State how to compute the original problem given the solution to these subproblems.
(3) Give the recursive formula by which to compute the subproblems.
(4) Justify why the recursive formula correctly computes the subproblems. (This is the core argument

for the algorithm’s correctness; if it is done well, nothing else is necessary as the pseudocode is a
straightforward transcription of this formula.)

(5) Describe the algorithm in pseudocode.
(6) Analyze the algorithm’s running time.

The rest of this document illustrates this style of presentation. We will use as our example the very
first dynamic programming algorithm we saw: computing (the length of) a longest increasing subsequence
of an array A[1..n] of numbers.

Subproblems to solve: For each i, 1 ≤ i ≤ n, let

L(i) = the length of a longest increasing subsequence of A that ends in position i. (*)

Solving the original problem: The answer to our original problem is simply max{L(i) : 1 ≤ i ≤ n}.
Recursive formula to compute the subproblems:

L(i) =

{
1, if A[j] ≥ A[i], for all 1 ≤ j < i

1 + max{L(j) : 1 ≤ j < i and A[j] < A[i]}, otherwise
(†)

Justification why (†) correctly computes (*): There are two cases:

Case 1. For every j, 1 ≤ j < i, A[j] ≥ A[i]. In this case, the longest increasing subsequence of A that
ends in position i consists of just A[i], and so it has length 1. So the formula (†) is correct in this case.

1



Case 2. For some j, 1 ≤ j < i, A[j] < A[i]. Let S be a longest increasing subsequence of A that ends in
position i. Therefore S = S′ ◦A[i], for some nonempty sequence S′.

S′ is an increasing subsequence of A that ends at some j, 1 ≤ j < i, such that A[j] < A[i]. This is
because, otherwise, S would not be an increasing subsequence of A (never mind a longest one).

Furthermore, S′ is longest among all longest increasing subsequences of A that end at some position j,
1 ≤ j < i, such that A[j] < A[i]. For, if S′ is not, then there is an increasing subsequence S′′ of A that
ends at some j, 1 ≤ j < i, such that A[j] < A[i], and S′′ is longer than S′. But then S′′ ◦ A[i] is an
increasing subsequence of A that ends at i that is longer than S′ ◦ A[i] = S, contradicting the definition
of S.1 Therefore, L(i) = 1 + max{L(j) : 1 ≤ j < i and A[j] < A[i]}, and the formula (†) is correct in this
case.

Pseudocode: Our algorithm computes L(1), L(2), . . . , L(n), in this order, based on (†).
lis(A)

1 for i := 1 to n do
2 L(i) := 1
3 for j := 1 to i− 1 do
4 if A[j] < A[i] and L(j) + 1 > L(i) then L(i) := L(j) + 1
5 return max{L(i) : 1 ≤ i ≤ n}
Running time analysis: The loop in lines 1-4 takes Θ(n2) time and line 5 takes Θ(n) time, so the overall
running time of the algorithm is Θ(n2).

1This is a so-called “cut-and-paste” argument: We “cut” S′ and “paste” S′′. This type of argument is so standard that,
in such simple situations, you can simply say “By a cut-and-paste argument. . .”. If the reasoning is more complex, you
would have to explain more.

2


