Proof of "Flow Theorem"

Vassos Hadzilacos

Let $\mathcal{F}=(G, s, t, c)$ be a flow network, where $G=(V, E)$. The theorem below relates the value of an arbitrary flow f in F to the traffic on the edges connecting the two components of an arbitrary (s, t)-cut (S, T) of F. This result is key in the proof of correctness of the Ford-Fulkerson algorithm, as we saw in class.
Notation. If $u \in V$, out (u) is the set of edges out of u, i.e., out $(u)=\{(u, v): \exists v \in V$ such that $(u, v) \in E\}$; similarly, $i n(u)$ is the set of edges into u, i.e., $\operatorname{in}(u)=\{(v, u): \exists v \in V$ such that $(v, u) \in E\}$. We generalize this for $X \subseteq V$ in the obvious way: out (X) is the set of edges out of nodes in X, i.e., $\operatorname{out}(X)=\cup_{u \in X}$ out (u); similarly, $\operatorname{in}(X)$ is the set of edges into nodes in X, i.e., $\operatorname{in}(X)=\cup_{u \in X} i n(u)$. Note that if both endpoints of an edge are in X, then the edge is in $\operatorname{out}(X)$ as well as in $i n(X)$. The theorem below states that the value of any flow can be determined by looking at the traffic on the edges that cross any cut (S, T): Add up the traffic on the edges entering T from S and subtract the traffic on the edges entering S from T.
Flow Theorem. For any flow f and any (s, t)-cut (S, T) of the flow network (G, s, t, c),

$$
\mathcal{V}(f)=\sum_{e \in \text { out }(S) \cap \text { in }(T)} f(e)-\sum_{e \in \text { out }(T) \cap \text { in }(S)} f(e) .
$$

Proof. Let f be an arbitrary flow and (S, T) be an arbitrary (s, t)-cut of (G, s, t, c). By definition of $\mathcal{V}(f)$ and the fact that there are no edges into s we have that $\mathcal{V}(f)=\sum_{e \in o u t(s)} f(e)-\sum_{e \in i n(s)} f(e)$; and for all nodes $v \in S-\{s\}$ by the conservation property we have that $\sum_{e \in o u t(v)} f(e)-\sum_{e \in \text { in (v) }} f(e)=0$. Therefore,

$$
\begin{aligned}
& \mathcal{V}(f)=\sum_{v \in S}\left(\sum_{e \in \text { out }(v)} f(e)-\sum_{e \in \operatorname{in}(v)} f(e)\right) \\
& =\sum_{v \in S} \sum_{e \in \text { out }(v)} f(e)-\sum_{v \in S} \sum_{e \in \operatorname{in}(v)} f(e) \\
& =\sum_{e \in \text { out }(S)} f(e)-\sum_{e \in \text { in }(S)} f(e) \quad \text { [def. of out, in] } \\
& =\left(\sum_{e \in \text { out }(S) \cap \text { in }(S)} f(e)+\sum_{e \in \text { out }(S) \cap \text { in }(T)} f(e)\right)-\left(\sum_{e \in \text { in }(S) \cap o u t ~}(S) \quad f(e)+\sum_{e \in \operatorname{in}(S) \cap o u t(T)} f(e)\right) \\
& =\sum_{e \in \text { out }(S) \cap \text { in }(T)} f(e)-\sum_{e \in o u t(T) \cap i n(S)} f(e) .
\end{aligned}
$$

In going from the pre-penultimate to the penultimate line in the above derivation, we use the fact that an edge out of a node in S goes either into a node in S or to a node in T but not both (because S and T are disjoint); and, similarly, an edge into a node in S goes out of either a node in S or a node in T but not both. Thus, out $(S)=($ out $(S) \cap \operatorname{in}(S)) \cup($ out $(S) \cap \operatorname{in}(T))$; and, similarly, in $(S)=$ $(\operatorname{in}(S) \cap \operatorname{out}(S)) \cup(\operatorname{in}(S) \cap \operatorname{out}(T))$, where both unions are disjoint.

