
Computer Science C73 Fall 2023
Scarborough Campus University of Toronto

Dijkstra’s shortest paths algorithm

Vassos Hadzilacos

Shown below is pseudocode for Dijkstra’s algorithm. The input is a directed graph G = (V,E) with non-
negative edge weights wt(u, v) for every edge (u, v) ∈ E, and a distinguished node s, called the source (or
start) node. The algorithm computes, for each node u ∈ V , the weight of a minimum-weight path from s
to u. (It can be easily modified to compute, for each node u, the predecessor of u in a minimum-weight
path from s to u, in addition to the weight of such a path.)

1 R := ∅
2 d(s) := 0
3 for each v ∈ V − {s} do d(v) :=∞
4 while R 6= V do
5 let u be a node not in R with minimum d-value (i.e., u ∈ V −R and ∀ u′ ∈ V −R, d(u) ≤ d(u′))
6 R := R ∪ {u}
7 for each v ∈ V such that (u, v) ∈ E do
8 if d(u) + wt(u, v) < d(v) then d(v) := d(u) + wt(u, v)

Intuitively Dijkstra’s algorithm works as follows. It maintains a set R (the “explored” part of the
graph, consisting of nodes to which it has determined the weight of shortest paths). We say that an s→ u
path is an R-path (to u) if every node on the path except (possibly) u is in the set R. The algorithm also
maintains, for every node u, a label d(u), which is the minimum weight of R-paths to u. The algorithm
starts with an empty R, and it greedily expands the set R with the node u that is not presently in R and
has minimum d-value. The algorithm then updates the d-values of the nodes adjacent to u to account
for fact that there may now exist shorter R-paths to these nodes, going through u. When R contains all
nodes, any s → u path is an R-path to u and so d(u) is the minimum weight of s → u paths, which is
what we want to compute.

We now prove the correctness of the algorithm. Xi denotes the value of a variable X at the end of
iteration i of the while loop. For every node u, we define δ(u) to be the minimum weight of s → u paths
(∞ if there is no s → u path). The first claim states that the d-value of every node does not increase in
time.

Claim 1 For every node v and iterations i, j, if i ≤ j then di(v) ≥ dj(v).

Proof. After being initialized (in line 1 or 2), the value of d(v) is changed only in line 8, where it is
obviously assigned a smaller value than before.

Claim 2 If node u is added to R in iteration i the value of d(u) does not change in iteration i.

Proof. Suppose for contradiction that u is added to R in iteration i and d(u) changes in iteration i.
Thus, by the algorithm, (u, u) is an edge and di−1(u) + wt(u, u) < di−1(u) (where d0(u) — i.e., if i = 1
— refers to the initial value of d(u)). But then wt(u, u) < 0, contradicting the assumption that weight of
every edge is non-negative.

1



Claim 3 For every node v and iteration i, if di(v) = k 6=∞ then there is an Ri-path to v of weight k.

Proof. By induction on the iteration number i ≥ 0. For the basis i = 0, i.e., just before we start the
while loop, we have R0 = ∅, d0(s) = 0, and d0(u) = ∞ for every node u 6= s. It is true that there is an
s→ s R0-path of weight 0.

For the induction step, let i > 0 and suppose the claim holds at the end of iteration i − 1. Let u be
the node added to R in iteration i and consider any node v. If d(v) does not change in iteration i, the
claim holds after iteration i by induction hypothesis. If d(v) changes in iteration i and since (by Claim 2)
di−1(u) = di(u), by the algorithm di(v) = di−1(u)+wt(u, v) and di−1(u) 6=∞. By the induction hypothesis,
there is an Ri−1-path to u of weight di−1(u), say path p. Since Ri = Ri−1 ∪ {u}, path p followed by the
edge (u, v) is an Ri-path to v, whose weight is wt(p) + wt(u, v) = di−1(u) + wt(u, v) = di(u) + wt(u, v).
So, the claim holds after iteration i.

Claim 4 For every node u, if u is added to R in iteration i and di(u) =∞ then there is no s→ u path.

Proof. Suppose, for contradiction, that some node u is added to R in iteration i and di(u) = ∞ but
there is an s → u path. Without loss of generality, assume that i is the earliest iteration in which this
happens. Since s is added to R in iteration 1 and d1(s) 6=∞, i > 1. So s ∈ Ri−1 and u /∈ Ri−1 (since u is
added to R in iteration i). Thus, there is an edge (x, y) on the s→ u path with x ∈ Ri−1 and y /∈ Ri−1. Let
j < i be the iteration in which x was added to R; by the definition of i, dj(x) 6=∞ and so by the algorithm
dj(y) 6= ∞. By Claim 1, di−1(y) 6= ∞. The facts that (a) y /∈ Ri−1 and (b) di−1(y) 6= ∞ contradict that
in iteration i the algorithm added to R the node u with di−1(u) =∞.

Claim 5 For every node u and every iteration i ≥ 1, if u is added to R in iteration i, then di(u) = δ(u).

Proof. By complete induction on i. Suppose u is the node added to R in iteration i, and suppose the
claim holds for all nodes added to R before iteration i.

If i = 1, the claim holds since (by the initialization in lines 2–3) the node added to R in iteration 1 is
s and d1(s) = 0 = δ(s).

If i > 1, the claim holds by Claim 4 if di(u) =∞. So, suppose di(u) 6=∞. Then by Claim 3 there is an
Ri-path of weight di(u) from s to u; therefore di(u) ≥ δ(u). We will now show that di(u) ≤ δ(u), proving
that di(u) = δ(u), as wanted.

Since there is an Ri−1-path to u, there is also a minimum weight s→ u path, say p (refer to Figure 1).

Ri = Ri−1 ∪ {u}

y

Ri−1

Ri−1-path to u

x

u

s

min-weight s→ u path p

2



Since u is added to R in iteration i, u /∈ Ri−1 (recall that i > 1, so iteration i − 1 exists, and Ri−1 is
well defined). Since s ∈ Ri−1 and u /∈ Ri−1, p contains an edge (x, y) such that x ∈ Ri−1 and y /∈ Ri−1

(it is possible that y = u). Let j be the iteration is which x was added to R, so j ≤ i − 1. Since p is
a minimum-weight s → u path, the prefix px of p up to node x is a minimum-weight s → x path, i.e.,
wt(px) = δ(x). We have:

di(u) = di−1(u) by Claim 2

≤ di−1(y) by definition of u, since u, y /∈ Ri−1

≤ dj(y) by Claim 1, since j ≤ i− 1

≤ dj(x) + wt(x, y) by Claim 2 and line 8, since x is added to R in iteration j

= δ(x) + wt(x, y) by the induction hypothesis, since j < i

= wt(px) + wt(x, y) since wt(px) = δ(x), as argued above

≤ wt(p) since all edges have non-negative weight

= δ(u) by definition of p

So, di(u) ≤ δ(u), as needed to complete the proof that di(u) = δ(u).

The algorithm terminates, since one node is added to R in each iteration. The next theorem states
that when the algorithm terminates, it has computed the weight of a minimum-weight s → u path, for
every node u.

Theorem 6 When the algorithm terminates, for every node u, d(u) = δ(u).

Proof. By Claim 5, when u is added to R, d(u) = δ(u). By Claim 1, d(u) cannot later be assigned a
larger value, and by Claim 3 it cannot later be assigned a smaller value. So when the algorithm terminates,
d(u) = δ(u).

Running time of Dijkstra’s algorithm. Let n be the number of nodes and m be the number of edges
in the graph. The running time of Dijkstra’s algorithm depends on the data structure used to store d(u).

In the simplest implementation, we store d in an array of n elements, one per node, in no particular
order. The initialization of R and d takes O(n) time. The while loop is executed n − 1 times, because
initially R has one node, we add one node to it in each iteration, and the loop ends when all n nodes
are in R. Each iteration of the loop takes O(n) time (to find the minimum element in array d of a node
that is not in R, and to update the relevant entries of d). So the loop in total takes O(n2) time. This
implementation then takes O(n) +O(n2) = O(n2) time.

We can also use a heap to store the d-values of the nodes that are not in R. Thus we can find a
node not in R with the minimum d-value by performing an ExtractMin operation, which takes O(log n)
time; and we can update the value of d for a node by performing a ChangeKey operation, which also
takes O(log n) time. We perform n ExtractMin operations, one in each iteration of the while loop. We
perform at most m ChangeKey operations: at most once for each edge (u, v), in the iteration of the while
loop in which u is added to R. In the initialization we must also perform a BuildHeap operation, to
create the initial heap; this takes O(n) time. Thus, the total time required to process all these operations
is O(n) + O(n log n) + O(m log n) = O

(
(m + n) log n

)
. If we assume that there is a path from s to each

node, then m ≥ n− 1, and so the above expression simplifies to O(m log n).
If the graph is “dense”, i.e., it has (roughly) an edge between every two nodes, then m = Θ(n2), and

in that case the simple array implementation is actually faster! However, in practice often the graph is
“sparse” — typically, each node has a constant or perhaps a logarithmic number of neighbours, so m = Θ(n)
or m = Θ(n log n). In this case, the heap implementation of Dijkstra’s algorithm is substantially faster.

3


