Dijkstra's shortest paths algorithm

Vassos Hadzilacos

Shown below is pseudocode for Dijkstra's algorithm. The input is a directed graph $G=(V, E)$ with nonnegative edge weights $\mathbf{w t}(u, v)$ for every edge $(u, v) \in E$, and a distinguished node s, called the source (or start) node. The algorithm computes, for each node $u \in V$, the weight of a minimum-weight path from s to u. (It can be easily modified to compute, for each node u, the predecessor of u in a minimum-weight path from s to u, in addition to the weight of such a path.)

```
\(R:=\varnothing\)
\(d(s):=0\)
for each \(v \in V-\{s\}\) do \(d(v):=\infty\)
while \(R \neq V\) do
    let \(u\) be a node not in \(R\) with minimum \(d\)-value (i.e., \(u \in V-R\) and \(\forall u^{\prime} \in V-R, d(u) \leq d\left(u^{\prime}\right)\) )
    \(R:=R \cup\{u\}\)
    for each \(v \in V\) such that \((u, v) \in E\) do
        if \(d(u)+\mathbf{w t}(u, v)<d(v)\) then \(d(v):=d(u)+\mathbf{w t}(u, v)\)
```

Intuitively Dijkstra's algorithm works as follows. It maintains a set R (the "explored" part of the graph, consisting of nodes to which it has determined the weight of shortest paths). We say that an $s \rightarrow u$ path is an R-path (to u) if every node on the path except (possibly) u is in the set R. The algorithm also maintains, for every node u, a label $d(u)$, which is the minimum weight of R-paths to u. The algorithm starts with an empty R, and it greedily expands the set R with the node u that is not presently in R and has minimum d-value. The algorithm then updates the d-values of the nodes adjacent to u to account for fact that there may now exist shorter R-paths to these nodes, going through u. When R contains all nodes, any $s \rightarrow u$ path is an R-path to u and so $d(u)$ is the minimum weight of $s \rightarrow u$ paths, which is what we want to compute.

We now prove the correctness of the algorithm. X_{i} denotes the value of a variable X at the end of iteration i of the while loop. For every node u, we define $\delta(u)$ to be the minimum weight of $s \rightarrow u$ paths (∞ if there is no $s \rightarrow u$ path). The first claim states that the d-value of every node does not increase in time.

Claim 1 For every node v and iterations i, j, if $i \leq j$ then $d_{i}(v) \geq d_{j}(v)$.
Proof. After being initialized (in line 1 or 2), the value of $d(v)$ is changed only in line 8 , where it is obviously assigned a smaller value than before.

Claim 2 If node u is added to R in iteration i the value of $d(u)$ does not change in iteration i.
Proof. Suppose for contradiction that u is added to R in iteration i and $d(u)$ changes in iteration i. Thus, by the algorithm, (u, u) is an edge and $d_{i-1}(u)+\mathbf{w t}(u, u)<d_{i-1}(u)$ (where $d_{0}(u)$ - i.e., if $i=1$ - refers to the initial value of $d(u))$. But then $\mathbf{w t}(u, u)<0$, contradicting the assumption that weight of every edge is non-negative.

Claim 3 For every node v and iteration i, if $d_{i}(v)=k \neq \infty$ then there is an R_{i}-path to v of weight k.
Proof. By induction on the iteration number $i \geq 0$. For the basis $i=0$, i.e., just before we start the while loop, we have $R_{0}=\varnothing, d_{0}(s)=0$, and $d_{0}(u)=\infty$ for every node $u \neq s$. It is true that there is an $s \rightarrow s R_{0}$-path of weight 0 .

For the induction step, let $i>0$ and suppose the claim holds at the end of iteration $i-1$. Let u be the node added to R in iteration i and consider any node v. If $d(v)$ does not change in iteration i, the claim holds after iteration i by induction hypothesis. If $d(v)$ changes in iteration i and since (by Claim 2) $d_{i-1}(u)=d_{i}(u)$, by the algorithm $d_{i}(v)=d_{i-1}(u)+\mathbf{w t}(u, v)$ and $d_{i-1}(u) \neq \infty$. By the induction hypothesis, there is an R_{i-1}-path to u of weight $d_{i-1}(u)$, say path p. Since $R_{i}=R_{i-1} \cup\{u\}$, path p followed by the edge (u, v) is an R_{i}-path to v, whose weight is $\mathbf{w} \mathbf{t}(p)+\mathbf{w t}(u, v)=d_{i-1}(u)+\mathbf{w} \mathbf{t}(u, v)=d_{i}(u)+\mathbf{w} \mathbf{t}(u, v)$. So, the claim holds after iteration i.

Claim 4 For every node u, if u is added to R in iteration i and $d_{i}(u)=\infty$ then there is no $s \rightarrow u$ path.
Proof. Suppose, for contradiction, that some node u is added to R in iteration i and $d_{i}(u)=\infty$ but there is an $s \rightarrow u$ path. Without loss of generality, assume that i is the earliest iteration in which this happens. Since s is added to R in iteration 1 and $d_{1}(s) \neq \infty, i>1$. So $s \in R_{i-1}$ and $u \notin R_{i-1}$ (since u is added to R in iteration i. Thus, there is an edge (x, y) on the $s \rightarrow u$ path with $x \in R_{i-1}$ and $y \notin R_{i-1}$. Let $j<i$ be the iteration in which x was added to R; by the definition of $i, d_{j}(x) \neq \infty$ and so by the algorithm $d_{j}(y) \neq \infty$. By Claim 1, $d_{i-1}(y) \neq \infty$. The facts that (a) $y \notin R_{i-1}$ and (b) $d_{i-1}(y) \neq \infty$ contradict that in iteration i the algorithm added to R the node u with $d_{i-1}(u)=\infty$.

Claim 5 For every node u and every iteration $i \geq 1$, if u is added to R in iteration i, then $d_{i}(u)=\delta(u)$.
Proof. By complete induction on i. Suppose u is the node added to R in iteration i, and suppose the claim holds for all nodes added to R before iteration i.

If $i=1$, the claim holds since (by the initialization in lines 2-3) the node added to R in iteration 1 is s and $d_{1}(s)=0=\delta(s)$.

If $i>1$, the claim holds by Claim 4 if $d_{i}(u)=\infty$. So, suppose $d_{i}(u) \neq \infty$. Then by Claim 3 there is an R_{i}-path of weight $d_{i}(u)$ from s to u; therefore $d_{i}(u) \geq \delta(u)$. We will now show that $d_{i}(u) \leq \delta(u)$, proving that $d_{i}(u)=\delta(u)$, as wanted.

Since there is an R_{i-1}-path to u, there is also a minimum weight $s \rightarrow u$ path, say p (refer to Figure 1).

Since u is added to R in iteration $i, u \notin R_{i-1}$ (recall that $i>1$, so iteration $i-1$ exists, and R_{i-1} is well defined). Since $s \in R_{i-1}$ and $u \notin R_{i-1}, p$ contains an edge (x, y) such that $x \in R_{i-1}$ and $y \notin R_{i-1}$ (it is possible that $y=u$). Let j be the iteration is which x was added to R, so $j \leq i-1$. Since p is a minimum-weight $s \rightarrow u$ path, the prefix p_{x} of p up to node x is a minimum-weight $s \rightarrow x$ path, i.e., $\mathbf{w t}\left(p_{x}\right)=\delta(x)$. We have:

$$
\begin{aligned}
d_{i}(u) & =d_{i-1}(u) \\
& \leq d_{i-1}(y) \\
& \leq d_{j}(y) \\
& \leq d_{j}(x)+\mathbf{w} \mathbf{t}(x, y) \\
& =\delta(x)+\mathbf{w t}(x, y) \\
& =\mathbf{w} \mathbf{t}\left(p_{x}\right)+\mathbf{w} \mathbf{t}(x, y) \\
& \leq \mathbf{w} \mathbf{t}(p) \\
& =\delta(u)
\end{aligned}
$$

by Claim 2
by definition of u, since $u, y \notin R_{i-1}$
by Claim 1, since $j \leq i-1$
by Claim 2 and line 8 , since x is added to R in iteration j
by the induction hypothesis, since $j<i$
since $\mathbf{w t}\left(p_{x}\right)=\delta(x)$, as argued above
since all edges have non-negative weight
by definition of p

So, $d_{i}(u) \leq \delta(u)$, as needed to complete the proof that $d_{i}(u)=\delta(u)$.
The algorithm terminates, since one node is added to R in each iteration. The next theorem states that when the algorithm terminates, it has computed the weight of a minimum-weight $s \rightarrow u$ path, for every node u.

Theorem 6 When the algorithm terminates, for every node $u, d(u)=\delta(u)$.
Proof. By Claim 5, when u is added to $R, d(u)=\delta(u)$. By Claim 1, $d(u)$ cannot later be assigned a larger value, and by Claim 3 it cannot later be assigned a smaller value. So when the algorithm terminates, $d(u)=\delta(u)$.

Running time of Dijkstra's algorithm. Let n be the number of nodes and m be the number of edges in the graph. The running time of Dijkstra's algorithm depends on the data structure used to store $d(u)$.

In the simplest implementation, we store d in an array of n elements, one per node, in no particular order. The initialization of R and d takes $O(n)$ time. The while loop is executed $n-1$ times, because initially R has one node, we add one node to it in each iteration, and the loop ends when all n nodes are in R. Each iteration of the loop takes $O(n)$ time (to find the minimum element in array d of a node that is not in R, and to update the relevant entries of $d)$. So the loop in total takes $O\left(n^{2}\right)$ time. This implementation then takes $O(n)+O\left(n^{2}\right)=O\left(n^{2}\right)$ time.

We can also use a heap to store the d-values of the nodes that are not in R. Thus we can find a node not in R with the minimum d-value by performing an ExtractMin operation, which takes $O(\log n)$ time; and we can update the value of d for a node by performing a ChangeKey operation, which also takes $O(\log n)$ time. We perform n ExtractMin operations, one in each iteration of the while loop. We perform at most m ChangeKey operations: at most once for each edge (u, v), in the iteration of the while loop in which u is added to R. In the initialization we must also perform a BuildHeap operation, to create the initial heap; this takes $O(n)$ time. Thus, the total time required to process all these operations is $O(n)+O(n \log n)+O(m \log n)=O((m+n) \log n)$. If we assume that there is a path from s to each node, then $m \geq n-1$, and so the above expression simplifies to $O(m \log n)$.

If the graph is "dense", i.e., it has (roughly) an edge between every two nodes, then $m=\Theta\left(n^{2}\right)$, and in that case the simple array implementation is actually faster! However, in practice often the graph is "sparse" - typically, each node has a constant or perhaps a logarithmic number of neighbours, so $m=\Theta(n)$ or $m=\Theta(n \log n)$. In this case, the heap implementation of Dijkstra's algorithm is substantially faster.

