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Notes on complex numbers
This is a brief review of complex numbers, to provide the relevant background that students need to follow
the lectures on the Fast Fourier Transform (FFT). Students have previously encountered this material in
their linear algebra courses.

• The “imaginary unit” i =
√
−1. This is a quantity which, multiplied by itself, yields −1; i.e.,

i2 = −1. It is called “imaginary” because no real number has this property.

• Standard representation of complex numbers. A complex number has the form z = a + bi,
where a and b are real numbers; a is the “real part” of z and b is the “imaginary part” of z. We can
think of z as the pair (a, b), and so complex numbers can be mapped to the Cartesian plane. Just as
we can geometrically view the set of real numbers as the set of points along a straight line (the “real
line”), we can view complex numbers as the set of points on a plane (the “complex plane”). So in a
sense complex numbers are a way of “packaging” a pair of real numbers into a single quantity.

• Equality between complex numbers. We define two complex numbers to be equal to each other
if and only if they have the same real parts and the same imaginary parts. In other words, if viewed
as points on the plane, the two numbers coincide.

• Operations on complex numbers. We can perform addition and multiplication on compex num-
bers. Let z = a+ bi and z′ = a′ + b′i.

– Addition: The sum of z and z′ is, by definition, z+z′ = (a+a′)+(b+b′)i. This can be “justified”
algebraically simply by noting that z+ z′ = (a+ bi) + (a′+ b′i) = (a+ a′) + (b+ b′)i. (The word
“justified” is in quotes above, because here we are abusing notation horribly, but very usefully.
We use the symbol + in three different ways: to separate the real and imaginary part of the
complex numbers, to represent the addition operation on real numbers, and to represent the
addition operation on complex numbers that we are defining!) The geometric intuition for this
operation is clear if we view z and z′ as points on the plain; or, equivalently, as two-dimensional
position vectors. Then the sum of the two complex numbers is the sum of the two vectors.

– Multiplication: The product of z and z′ is, by definition, the complex number z · z′ = (aa′ −
bb′)+(ab′+a′b)i. This can also be “justified” algebraically (through the same abuse of notation):
z ·z′ = (a+bi) ·(a′+b′i) = aa′+ab′i+a′bi+bb′(i2) = (aa′−bb′)+(ab′+a′b)i. There is no obvious
geometric interpretation of this operation in this form, but we will see a nice interpretation below
(see Euler’s formula).

• The field of complex numbers. Addition and multiplication of complex numbers defined in the
above manner behave like addition and multiplication of real numbers in the sense that they satisfy
the following properties (where z, z′, z′′ are complex numbers):

– Commutativity of addition and multiplication: z + z′ = z′ + z, and z · z′ = z′ · z.
– Associativity of addition and multiplication: z+(z′+z′′) = (z+z′)+z′′, and z·(z′·z′′) = (z·z′)·z′′.
– Additive and multiplicative identities: There is a “zero” complex number, namely 0 + 0i, which

added to any complex number z yields z; and a “one” complex number, 1 + 0i, which muliplied
by any complex number z yields z. Verify.
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– Additive inverse: For each complex number z there is a complex number z′, called the additive
inverse of z (and denoted −z), such that z + z′ is the complex “zero”. The additive inverse of
a+ bi is (−a) + (−b)i. Verify.

– Multiplicative inverse: For each complex number z other than the complex number “zero”
(0 + 0i), there is a complex number z′, called the multiplicative inverse of z, and denoted
z−1, such that z · z′ is the complex “one”. The multiplicative inverse of a + bi (when at least
one of a, b is non-zero) is the complex number a/(a2 + b2) +

(
−b/(a2 + b2)

)
i. Verify.

Any algebraic structure, i.e., any set of objects with two operators + (“plus”) and · (“times”), that
satisfy the above properties is called a field. The rational numbers, the real numbers, and the
complex numbers are examples of fields. (Is the set of natural numbers with ordinary addition and
multiplication a field? Is the set of all integers with ordinary addition and multiplication a field?)
Such structures in their abstract form are one of the topics discussed in MATD01. In general, we
can define a vector space — and therefore do linear algebra — over any field, not just the field of
real numbers. So we can do linear algebra over the field of complex numbers: We can define matrices
of complex numbers and add or multiply such matrices as we do matrices of reals. We can define
vectors of complex numbers, spaces of such vectors, linear transformations between such spaces, and
so on.

• Polar coordinate representation of complex numbers: Consider the complex number z = a+ib
as the point (a, b) in two-dimensional space. Recall that a point in two-dimensional space can be
fixed either by its Cartesian coordinates (in our case the pair (a, b)), or by its polar coordinates
(r, θ), where r is the distance of (a, b) from the origin (0, 0), i.e., r =

√
a2 + b2; and θ is the angle

between the horizontal axis and the line segment that starts at the origin and ends at point (a, b).
(The distance r from the origin determines a circle centered at the origin with radius r, and the angle
θ determines the point on that circle where (a, b) lies.) By its definition the angle θ satisfies the
property that cos θ = a/r and sin θ = b/r. Thus, the complex number z = a+ bi can also be written
as z = r(cos θ+ i sin θ); this is sometimes called the polar form of z. So, the complex number z can
be viewed as the pair (a, b) (in Cartesian coordinates), or as the pair (r, θ) (in polar coordinates).

• Euler’s formula: Euler’s formula states that for any real number θ, eiθ = cos θ+ i sin θ, where the
arguments to sin and cos are expressed in radians. It describes a fundamental relationship between
the basic trigonometric functions and the exponential function. We will take the formula for granted,
without proof. It can be proved by considering the McLaurin expansions of eiθ, cos θ, and sin θ.
Formally speaking, eiθ — an exponential to a complex number! — is defined as the McLaurin
expansion.

Plugging θ = π into Euler’s formula we get eiπ = cosπ + i sinπ = −1 + i0 = −1, i.e. eiπ + 1 = 0.
Pause here to marvel at the awesomeness of this: The four most ubiquitous constants in mathematics
(0, 1, π, e) all tied up in one amazing equality.

As we have seen, the complex number z = a + bi, in polar form, is z = r(cos θ + i sin θ); by Euler’s
formula, z = reiθ. This representation is called the exponential form for complex numbers and
it is extremely useful. (Recall that r =

√
a2 + b2; this quantity is called the magnitude of z. The

angle θ is such that cos θ = a/r and sin θ = b/r; this quantity is called the argument of z or, if you
are an electrical engineer, the phase of z.)

The exponential form gives a useful geometric interpretation for multiplication of complex numbers.
Let z = reiθ and z′ = r′eiθ

′
be two complex numbers. Then z · z′ = (reiθ) · (r′eiθ′) = rr′ei(θ+θ

′). In
other words, to multiply two complex numbers in exponential form, we multiply their magnitudes
and add their angles!
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• The unit circle: Consider the complex numbers on the complex plane. The unit circle consists
of all complex numbers with magnitude 1, i.e., the numbers that are at distance 1 from the origin.
Obviously these are precisely the points along the circle whose centre is the origin and whose radius
is 1. That is, these are the complex numbers of the form eiθ, where 0 ≤ θ < 2π.

Consider any two such numbers, z = eiθ and z′ = eiθ
′
. Their product is z · z′ = ei(θ+θ

′), which is
another point on the unit circle. For any n ∈ N, the nth power of z is zn = (eiθ)n = einθ — i.e., the
point on the unit circle whose angle is n times the angle of z.

• The n-th roots of unity: The complex n-th roots of unity are the solutions to the equation zn = 1
over the complex numbers. (More precisely, the solutions to the equation zn = 1 + 0i.) Note that
the number 1, as a complex number, has magnitude 1 and angle that is any integer multiple of 2π,
i.e., is of the form 2πk, where k is an integer; all these are simply the angle 0. Thus, if z = reiθ

is a complex root of unity, we must have zn = rneinθ = ei2πk, for some integer k. Thus, it must
be the case that r = 1 and nθ = 2πk, i.e., θ = (2π/n)k, for some integer k. Note that there are
exactly n distinct angles θ in the range 0 ≤ θ < 2π that satisfy θ = (2π/n)k, for some integer k,
namely those obtained by setting k = 0, 1, . . . n − 1. (Setting k to other integer values yields one
of these n angles, when reduced to the range between 0 and 2π.) Therefore, for each n, there are
exactly n distinct comlpex n-th roots of unity. They all lie of the unit circle and they go around the
circle, starting from the point (1, 0) (the compex number 1 that has mantitude 1 and angle 0), and
proceeding counterclockwise in angle increments of 2π/n.

3


