
Computer Science C73 Fall 2023
Scarborough Campus University of Toronto

Maximum matchings, minimum vertex covers,
and perfect matchings in bipartite graphs

Vassos Hadzilacos

1 Maximum matchings in bipartite graphs

A bipartite graph is an undirected graph G = (V,E) whose set of nodes can be partitioned into two sets
X and Y (i.e., X ∪ Y = V and X ∩ Y = ∅), so that every edge of G connects a node in X to a node in
Y (i.e., for each {u, v} ∈ E, u ∈ X if and only if v ∈ Y). An example of a bipartite graph is shown in
Figure 1(a) below.

Figure 1(b)

a

b

c

d

e

f

g

h

i

a

b

c

d

e

f

g

h

i

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

s t

X

Y

Figure 1(a)

We will assume that when we are given a bipartite graph, we are also given a partition of the set of
nodes into X and Y so that the edges of G connect nodes of X to nodes of Y , and we will denote this
graph as G = ({X,Y }, E). The following facts about bipartite graphs can be proved using techniques you
learned in CSCB63 and are left as exercises:

Fact 1 Let G = (V,E) be an undirected graph.
(a) There is an algorithm that determines in time O(|V |+ |E|) whether G is bipartite and, if so, partitions

V into two sets X and Y so that every edge in E connects a node in X to a node in Y .
(b) G is bipartite if and only if it has no cycle of odd length.

A matching of an undirected graph G = (V,E) is a subset of the edges M ⊆ E so that no two edges
in M share an endpoint; i.e., for all e, e′ ∈ M , if e 6= e′ then e ∩ e′ = ∅. The empty set is obviously a
matching. A matching of maximum cardinality is called a maximum matching of the graph.

We can find a maximum matching of a bipartite graph by reducing the problem to finding a maximum
flow of a network. To do so we convert the bipartite graph to the flow network defined below.

Definition 2 Let G = ({X,Y }, E) be a bipartite graph. The flow network F = (G′, s, t, c) that
corresponds to G is defined as follows:
• s and t are new nodes not in X ∪ Y ;
• G′ = (V,E′) is the directed graph with set of nodes V = X ∪ Y ∪ {s, t} and set of edges
E′ = {(s, x) : x ∈ X} ∪ {(x, y) : x ∈ X, y ∈ Y , and {x, y} ∈ E} ∪ {(y, t) : y ∈ Y }; and
• c(e) = 1 for each e ∈ E′.

1

Figure 1(b) shows the flow network that corresponds to the bipartite graph in Figure 1(a).
The idea now is to find an integral maximum flow in F (for example, using the Ford-Fulkerson algo-

rithm); this flow will put one unit of traffic on some of the edges that go from X to Y in F . The set of
these edges turns out to be a maximum matching of G. So the algorithm is as follows:

BipartiteMaxMatching(G)
. G = ({X,Y }, E) is a bipartite graph

1 F := the flow network that corresponds to G
2 f := FF-MaxFlow(F)
3 M :=

{
{x, y} : x ∈ X, y ∈ Y , and f(x, y) = 1

}
4 return M

Figure 2(a) shows a maximum flow in the flow network that corresponds to the bipartite graph of
Figure 1(a), where heavy edges have traffic 1 and the other edges have traffic 0. Figure 2(b) shows the
corresponding maximum matching of the bipartite graph.

Figure 2(a)

a

b

c

d

e

f

g

h

i

Figure 2(b)

ts

a

b

c

d

e

f

g

h

i

Let n be the number of nodes and m be the number of edges of G. Line 1 takes O(m+ n) time; line 2
takes O(mn) time (since the sum of the capacities of the edges out of s is at most n); line 3 takes O(m)
time, and line 4 takes O(n) time. So the running time of this algorithm is O(mn).

We now prove that the algorithm is correct; i.e., it returns a maximum matching of G. This follows
from the following fact, which establishes a close relationship between integral flows in F and matchings
in G:

Fact 3 Let G = ({X,Y }, E) be a bipartite graph and F be the flow network that corresponds to G.

(a) For any integral flow f of F , the set

Mf =
{
{x, y} : x ∈ X, y ∈ Y , and f(x, y) = 1

}
is a matching of G with size V(f).

(b) For any matching M of G, the function fM : E′ → {0, 1} defined by

fM (e) =

{
1, if there is a path s, x, y, t in F that contains e and {x, y} ∈M
0, otherwise

is a flow of F with value |M |.

Proof. (a) To show that Mf is a matching of G, consider any x ∈ X. We claim that there cannot be
edges {x, y} and {x, y′} in Mf , for y 6= y′. Suppose, for contradiction, that we such edges exist. Then, by
the definition of Mf , f(x, y) = f(x, y′) = 1. So the outflow of f at x is at least two, while the inflow is
at most one (there is only one edge into x and it has capacity one). Therefore f violates the conservation
constraint at x, contradicting that f is a flow. By a similar argument we can show that no y ∈ Y can be

2

the endpoint of two edges in Mf . Therefore Mf is indeed a matching. Finally, by considering the (S, T)
cut of F where S = {s} ∪X and T = {t} ∪ Y and applying the flow theorem to that cut we have:

V(f) =
∑

out(S)∩in(T)

f(e)−
∑

out(T)∩in(S)

f(e)

︸ ︷︷ ︸
sum=0: no such edges!

= |{(x, y) : x ∈ X, y ∈ Y , and f(x, y) = 1}| = |Mf |.

(b) It is obvious that fM satisfies the capacity constraint. For the conservation constraint, consider any
node x ∈ X. If fM (s, x) = 0 then there is no s→ t path s, x, y, t such that {x, y} ∈M , and so fM (x, y) = 0
for all edges (x, y) in F ; so conservation holds at x in this case. If fM (s, x) = 1 then there is an s→ t path
s, x, y, t such that {x, y} ∈M ; and there is only one such path (otherwise M would contain two edges with
x as one endpoint, contradicting that it is a matching). Thus

∑
e∈out(x) fM (e) = 1, and again conservation

holds at x. By a similar argument we can show that conservation holds at any y ∈ Y . Therefore fM is a
flow in F . By considering the (S, T) cut of F as in the proof of part (a) we have:

V(fM) = |{(x, y) : x ∈ X, y ∈ Y , and fM (x, y) = 1}| = |M |.

To see why this fact implies the correctness of algorithm BipartiteMaxMatching we first note that,
by Fact 3(a), the set M returned by the algorithm is a matching of G whose size is the value of the
maximum flow f . By Fact 3(b) M must be a maximum matching: If there was a matching M ′ larger
than M , by part (b), there would be a flow f ′ of F whose value is |M ′| > |M | = V(f) — contradicting
that f is a maximum flow of F .

2 Minimum vertex covers in bipartite graphs

A vertex cover of an undirected graph G = (V,E) is a subset of the nodes R ⊆ V so that each edge of G
has at least one endpoint in R; i.e., for each {u, v} ∈ E, u ∈ R or v ∈ R (or both). The set of all nodes
is obviously a vertex cover. A vertex cover of minimum cardinality is called a minimum vertex cover
of the graph. Finding a minimum vertex cover is an important optimization problem. Unfortunately, it
is NP-hard, which means that it is unlikely to be solvable in polynomial time. Luckily, polynomial-time
solutions for this problem exist for special types of graphs, including bipartite graphs, as we will see.

The following lemma states that the cardinality of any matching does not exceed that cardinality of
any vertex cover.

Lemma 4 For any undirected graph G = (V,E), any matching M , and any vertex cover R of G, |M | ≤ |R|.

Proof. Consider any function φ : M → R that maps each edge in M to one of its endpoints that is
in R (i.e., for each {u, v} ∈ M , φ({u, v}) = u or φ({u, v}) = v and φ({u, v} ∈ R). Such a function exists
because R is a vertex cover, and so its elements “touch” every edge of G and in particular the edges in the
matching M . Since M is a matching, φ is one-to-one. Thus, by the pigeonhole principle, |M | ≤ |R|.

Note the similarity of the form of this lemma to the lemma stating that the value of any flow is at
most the capacity of any cut. This is not a coincidence; both of these facts are instances of a more general
phenomenon in linear programming (the subject of the next course unit), known as “weak duality”.

Lemma 4 is true about all (undirected) graphs. For bipartite graphs, however, the inequality is actually
an equality! This fact is known as König’s Theorem, and its proof below also yields an efficient algorithm
to find a minimum vertex cover of a bipartite graph. Note that equality does not necessarily hold for
non-bipartite graphs. For example, a triangle (a graph with three nodes, every two of which are connected
by an edge) has maximum matching size one, but minimum vertex cover size two.

3

Theorem 5 (König’s Theorem) In any bipartite graph, the cardinality of a maximum matching is
equal to the cardinality of a minimum vertex cover.

Proof. Let G = ({X,Y }, E) be a bipartite graph, F be the corresponding flow network (Definition 2),
and f be an integral maximum flow in F . Consider now the residual graph Ff of the maximum flow f .
Since f is an integral flow and the capacity of every edge in F is 1,

f(u, v) = 0 if (u, v) is a forward edge of Ff , and f(u, v) = 1 if (v, u) is a backward edge of Ff . (1)

Let S be the set of nodes reachable from S in Ff , and T be the set of the remaining nodes. As we saw in
the proof of correctness of the Ford-Fulkerson algorithm, (S, T) is a minimum (s, t)-cut of the flow network,
and its capacity is equal to the value of f .

Figure 3(a) below shows the residual graph of the maximum flow in Figure 2(a), along with the partition
of the set of nodes into those that are reachable from s in the residual graph (nodes in the green “cloud”)
and the rest of the nodes (in the red “cloud”). Figure 3(b) shows the minimum cut of the flow network
in Figure 1(b) that is derived from this partition of the nodes of the residual graph into the “green” and
“red” clouds. Next we show that there is no edge in the flow network from a “green” node in X to a “red”
node in Y .

a

b

c

d

e

f

g

h

i

Figure 3(a)

ts ts

a

b

c

d

e

f

g

h

i

Figure 3(b)

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Claim 5.1 There is no edge (x, y) in F such that x ∈ (X ∩ S) and y ∈ (Y ∩ T).

Proof of Claim 5.1. Suppose, for contradiction, that there exist x ∈ X ∩ S and y ∈ Y ∩ T such that
(x, y) is an edge in the flow network F . Then (y, x) is a backward edge in Ff (otherwise (x, y) would be
a forward edge and since x is reachable from s so would y, meaning that y ∈ S and contradicting that
y ∈ T). Thus, by (1),

f(x, y) = 1. (2)

Since x ∈ S, there is an s → x path p in the residual graph Ff . There are two cases, both leading to
contradiction.
Case 1. p = s, x. So (s, x) is a forward edge in Ff , and by (1) f(s, x) = 0. In view of (2), f violates the
conservation property at x: the inflow is 0, but the outflow is at least 1.
Case 2. p = s, x1, y1, x2, y2, . . . , xk, yk, x, where x1, . . . , xk ∈ X and y1, . . . yk ∈ Y . All these nodes are in
S (since they are reachable from s in Ff), so yk 6= y. The edge (yk, x) is a backward edge in Ff , so by (1)
f(x, yk) = 1. But then, in view of (2) and the fact that yk 6= y, f violates the conservation property at x:
the inflow is at most 1 but the outflow is at least 2. Claim 5.1

Claim 5.1 implies that

the set R = (X ∩ T) ∪ (Y ∩ S) is a vertex cover of the bipartite graph G.1 (3)

1In terms of Figure 3, these are the “red” nodes of X (i.e., {b, d, e}) and the “green” nodes of Y (i.e., {f}).

4

This is because S∪T ⊇ X ∪Y , and so every edge that connects a node in X to a node in Y in G is covered
by some node in R, except for edges that connect a node in X ∩S to a node in Y ∩T — but, by the Claim,
no such edge exists!

Claim 5.1 also implies that the only edges in the flow network F that enter T from S are edges of
the form (s, x) such that x ∈ X ∩ T , and edges of the form (y, t) such that y ∈ Y ∩ S. (The only other
possibility are edges (x, y) with x ∈ X ∩ S and y ∈ Y ∩ T , but, by the Claim, no such edge exists.) Since
all edges have capacity 1,

c(S, T) = |(X ∩ T) ∪ (Y ∩ S)| = |R|. (4)

By Fact 3 (see Section 1),

M =
{
{x, y} : x ∈ X, y ∈ Y , and f(x, y) = 1

}
is a maximum matching of G, and |M | = V(f). (5)

By the max-flow-min-cut theorem, V(f) = c(S, T). Together with (4) and 5, this implies that |M | = |R|.
So we have a matching M whose size is equal to the size of vertex cover R, and so by Lemma 4, R is a
minimum vertex cover.

The preceding proof of König’s Theorem gives rise to the following algorithm for finding a minimum
vertex cover of a bipartite graph.

BipartiteMinVC(G)
. G = ({X,Y }, E) is a bipartite graph

1 F := the flow network that corresponds to G
2 f := FF-MaxFlow(F)
3 Ff := the residual graph of flow f with respect to network F
4 S := {u : u is a node reachable from s in Ff}
5 T := {u : u is a node in Ff not in S}
6 return (X ∩ T) ∪ (Y ∩ S)

Let n be the number of nodes and m be the number of edges of G. Line 1 takes O(m+ n) time; line 2
takes O(mn) time; line 3 takes O(m+ n) time; line 4 takes O(m+ n) time (say, using depth-first search);
and lines 5 and 6 take O(n) time. Thus, we can find the minimum vertex cover of a bipartite graph in
O(mn) time.

As we saw in Sections 1 and 2, maximum matchings and minimum vertex covers are closely related for
bipartite graphs. Both can be found efficiently (in polynomial time) by applying maximum flow techniques.
This close relationship does not extend to all graphs, however: Maximum matchings in general graphs can
be found in polynomial time, using algorithms that are beyond the scope of this course. In contrast, the
minimum vertex cover problem for general graphs is NP-hard, and is therefore unlikely to be solvable in
polynomial time.

3 Hall’s Theorem

A matching M of an undirected graph G = (V,E) is perfect if it does not leave any node unmatched; i.e.,
for every u ∈ V there is some v ∈ V such that {u, v} ∈ M . A perfect matching is obviously a maximum
matching, but not every graph has a perfect matching — for example, a graph with an odd number of
nodes cannot have a perfect matching, but of course it has a maximum matching.

We now turn our attention again specifically to bipartite graphs. When does a bipartite graph G =
({X,Y }, E) have a perfect matching? Clearly, we must have |X| = |Y |: otherwise every matching must
leave unmatched some node in X or Y (whichever is larger). This, however, is not enough. For example,
the graph in Figure 4 does not have a perfect matching even though each of X and Y has three nodes:
Node d can only be matched with a or b; but if it is matched with one, the other cannot be matched with
any other node.

5

Figure 4

a

b

c

d

e

f

YX

This example can be generalized: Let the neighbours of a node u be the set of nodes N(u) that are
adjacent to it; i.e., N(u) = {v : {u, v} ∈ E}. The neigbours N(U) of a set of nodes U is the union of the
neighbours of the nodes in U ; i.e., N(U) = ∪u∈UN(u). For G to have a perfect matching, there must be
no X ′ ⊆ X such that |X ′| > |N(X ′)|: if such a set exists, then every matching must leave some node in
X ′ unmatched.

It turns out that this is not only a necessary, but also sufficient, condition for a bipartite graph with
|X| = |Y | to have a perfect matching. This fact is known as Hall’s Theorem, and one way of proving it
follows from our discussion of minimum vertex covers in bipartite graphs.

Theorem 6 (Hall’s Theorem) A bipartite graph G = ({X,Y }, E) such that |X| = |Y | has a perfect
matching if and only if there is no X ′ ⊆ X such that |X ′| > |N(X ′)|.

Proof. [Only If.] Suppose, for contradiction, that G has a perfect matching M but there is some
X ′ ⊆ X such that |X ′| > |N(X ′)|. Let φ : X ′ → N(X ′) be a function that maps x ∈ X ′ to the neighbour
with which it is matched in M ; i.e., for every x ∈ X ′, {x, φ(x)} ∈M . Such a function φ exists because M
is a perfect matching. Since |X ′| > |N(X ′)|, by the pigeonhole principle, the function is not one-to-one;
this contradicts that M is a matching.

[If.] We prove the contrapositive: If G has no perfect matching then there is some X ′ ⊆ X such that
|X ′| > |N(X ′)|.

So, suppose G has no perfect matching and consider the flow network F that corresponds to the
bipartite graph G. Let f be an integral maximum flow of F , Ff be the residual graph of f with respect
to F , S be the set of nodes of Ff reachable from s, and T be the set of remaining nodes of Ff . Partition
each of X and Y into its S-part and its T -part: i.e., X ′ = X∩S, X ′′ = X∩T , Y ′ = Y ∩S, and Y ′′ = Y ∩T .
We will prove that X ′ is the set we are looking for, i.e., a subset of X that is larger than the set of its
neighbours.

In the proof of Theorem 5 we saw that X ′′ ∪ Y ′ is a minimum vertex cover of G and its size is equal
to the size of a maximum matching M of G, i.e., |X ′′| + |Y ′| = |M |. Since |X| = |Y |, a perfect matching
of G would have |X| edges. Since G has no perfect matching (by assumption), |M | < |X| = |X ′| + |X ′′|.
So, |X ′|+ |X ′′| > |X ′′|+ |Y ′|, and therefore |X ′| > |Y ′|.

In the proof of Theorem 5 we also saw that there are no edges from X ′ to Y ′′ (see Claim 5.1), and so
N(X ′) ⊆ Y ′; therefore |Y ′| ≥ |N(X ′)|. Combining this with the fact, proven in the previous paragraph,
that |X ′| > |Y ′|, we conclude that |X ′| > |N(X ′)|, as wanted.

6

