Question 2 (cont’d)

Now we will define the subproblems differently.
Assume the v;s are positive integers.

Fori =0,1,..,n,letV; = ¥_,v,. (V, =0.)

Total value of
Fori =0,1,..,n,andv = 0,1, ..., V;, items 1, ...,

W(i,v) = the minimum weight of a subset of
items {1,2, ..., i} whose value is > v.

Compare to the subproblems we defined before:
Fori=0,1,..,n,andc =0,1, ..., C,
K (i, c) = the maximum value of a subset of items
{1,2, ..., 1} whose weight is < c.

Question 2 (cont’d)

Fori =0,1,..,n,andv =0,1, ..., V;,
W (i,v) = the minimum weight of a'subset of items
{1,2, ..., i} whose value is > v.

* Give a recursive formula to compute the
subproblems.

 Describe your DP algorithm in pseudocode.

* Analyze the running time of your algorithm.

 Modify the algorithm to find the actual set of items
of maximum value whose weight does not exceed
the knapsaCk Ca paCity C- copyright © 2023 Vassos Hadzilacos

Question 2 — answer (cont‘d)

* Recursive formula to compute the subproblems.

Case 1: v > V;_,. (Lightest set oPitems of value = v
must use item i.)

W(,v) =W(> —1;max(0,v —v;)) + w;

Case 2: v < V;_;. (Lightest set of items of value = v
may or may not use item i.)
W(i,v) =min(W({i — 1,v),
W@ —1,max(0,v —v;)) + w;)

copyright © 2023 Vassos Hadzilacos

Question 2 — answer (cont‘d)

* Describe your DP algorithm in pseudocode.

V|0] :=0;fori:= 1tondoV|[i] ;= V[i — 1] + v,
fori :=0tondoW|i,0] :=0
forv:=1toV[n]do W|0,v}i=0
fori := 1tondo
forv:= 1toV]i]do
if v > V]i — 1] then
Wli,v] == W — 1, max(0,v — v;)] + w;
else
Wli,v}e= min(W|i — 1, v],
Wi — 1, max(0,v — v;)] + w;)
returmmax{v: W[n,v]| < C}

Question 2 — answer (cont‘d)

* Analyze the running time of your algorithm.

n

on - ZUi)

i=1
This is pseudopolynomial.

This version of the algorithm (with subproblems based
on value rather than weight) is the basis for a

polynomial-time approximation algorithm for
knapsack that we will see at the end of the course.

copyright © 2023 Vassos Hadzilacos

Approximation local search algorithm for max cut

Graph with 8 nodes
and 11 edges

A cut of
the graph

This cut has
3 cross edges

Node 5 has more
internal edges (1)
than cross edges (0).

Increase the number
of cross edges by
moving it to the blue
side.

This cut has
4 cross edges

Node 7 has more
internal edges (2)
than cross edges (1).

Increase the number
of cross edges by
moving it to the
yellow side.

This cut has
5 cross edges

Node 3 has more
internal edges (3)
than cross edges (1).

Increase the number
of cross edges by
moving it to the
yellow side.

This cut has
7 cross edges.

No local improvement
is possible.

But as we will see, it is
not a max cut!

Back to the
original cut with
3 cross edges.

Now move nodes in
a different order.

Node 7 has more
internal edges (2)
than cross edges (1).

Improve the number
of cross edges by
moving it to the
yellow side (instead of
moving node 5 to the
blue side, as before).

This cut has
4 cross edges

V.

Node 2 has more
internal edges (2)
than cross edges (1).

Improve the number
of cross edges by
moving it to the

C
yellow side. /

This cut has
5 cross edges

Node 7 has more
internal edges (2)
than cross edges (1).

Improve the number
of cross edges by
moving it to the blue
side.

NB: Moving back!

This cut has
6 cross edges

Node 1 has more
internal edges (2)
than cross edges (0).

Improve the number
of cross edges by
moving it to the
yellow side.

This cut has
8 cross edges

Node 5 has more
internal edges (1)
than cross edges (0).

Improve the number
of cross edges by
moving it to the blue
side.

This cut has
9 cross edges.

This is @ max cut.

Why?

Hint: Disjoint
triangles 1,3,8 and
4,6,7.

Approximation algorithm for metric TSP

Step 1: Find a MST of the graph

Step 1: Find a MST of the graph

Step 2: Do a DFS of the MST

(each edge of the MST is visited twice: once when
discovered and once again when backtracking)

1,2,1,3,1,5,4,5,6,8,6, 7,6,5,1

Step 2: Do a DFS of the MST

Record the sequence of nodes in the order visited

1,2,1,3,1,5,4,5,6,8,6, 7,6,5,1 "Trail" produced by the DFS of the MIST }

L2, 3 54 68 7 1 ﬁTour produced by the algorithm }

Step 3: Keep only the first occurrence of
each node, then back to the first node

L2, 3 54 68 7 1 ﬁTour produced by the algorithm

Step 3: This is the algorithm's tour

(its cost is at most twice the cost of the optimal tour)

N

Metric TSP approximation algorithm

Find a MIST T* of the graph
Doa DFSof T*
S':=sequence of nodes in the order visited by the DFS

#S'is not a tour

S := subsequence of S' containing only the first
occurrence of each node, followed by the first node

#Sisatour

return S

