
Question 2 (cont’d)

Now we will define the subproblems differently.
Assume the 𝑣%s are positive integers.
For 𝑖 = 0,1, … , 𝑛 , let 𝑉% = ∑*+#% 𝑣* . (𝑉, = 0.)

For 𝑖 = 0,1, … , 𝑛, and 𝑣 = 0,1, … , 𝑉% ,
𝑊 𝑖, 𝑣 = the minimum weight of a subset of
items 1,2, … , 𝑖 whose value is ≥ 𝑣.

Compare to the subproblems we defined before:
For 𝑖 = 0,1, … , 𝑛, and 𝑐 = 0,1, … , 𝐶,
𝐾 𝑖, 𝑐 = the maximum value of a subset of items
1,2, … , 𝑖 whose weight is≤ 𝑐.

Total value of
items 1, … , 𝑖

copyright © 2023 Vassos Hadzilacos

Do n
ot

po
st

on
 th

e i
nte

rne
t w

ith
ou

t th
e c

op
yri

gh
t o

wne
r's

 w
ritt

en
 pe

rm
iss

ion

Question 2 (cont’d)
For 𝑖 = 0,1, … , 𝑛, and 𝑣 = 0,1, … , 𝑉% ,
𝑊 𝑖, 𝑣 = the minimum weight of a subset of items
1,2, … , 𝑖 whose value is ≥ 𝑣.

• Give a recursive formula to compute the
subproblems.

• Describe your DP algorithm in pseudocode.

• Analyze the running time of your algorithm.

• Modify the algorithm to find the actual set of items
of maximum value whose weight does not exceed
the knapsack capacity 𝐶. copyright © 2023 Vassos Hadzilacos

Do n
ot

po
st

on
 th

e i
nte

rne
t w

ith
ou

t th
e c

op
yri

gh
t o

wne
r's

 w
ritt

en
 pe

rm
iss

ion

Question 2 — answer (cont’d)

• Recursive formula to compute the subproblems.

Case 1: 𝑣 > 𝑉%-#. (Lightest set of items of value ≥ 𝑣
must use item 𝑖.)

𝑊 𝑖, 𝑣 = 𝑊 𝑖 − 1,max 0, 𝑣 − 𝑣% +𝑤%

Case 2: 𝑣 ≤ 𝑉%-#. (Lightest set of items of value ≥ 𝑣
may or may not use item 𝑖.)

𝑊 𝑖, 𝑣 = min(𝑊 𝑖 − 1, 𝑣 ,
𝑊 𝑖 − 1,max 0, 𝑣 − 𝑣% +𝑤%)

copyright © 2023 Vassos Hadzilacos

Do n
ot

po
st

on
 th

e i
nte

rne
t w

ith
ou

t th
e c

op
yri

gh
t o

wne
r's

 w
ritt

en
 pe

rm
iss

ion

Question 2 — answer (cont’d)
• Describe your DP algorithm in pseudocode.

𝑉 0 ≔ 0; for 𝑖 ∶= 1 to 𝑛 do 𝑉[𝑖] ∶= 𝑉[𝑖 − 1] + 𝑣%
for 𝑖 ∶= 0 to 𝑛 do 𝑊[𝑖, 0] ∶= 0
for 𝑣 ∶= 1 to 𝑉[𝑛] do 𝑊 0, 𝑣 ∶= 0
for 𝑖 ∶= 1 to 𝑛 do

for 𝑣 ∶= 1 to 𝑉[𝑖] do
if 𝑣 > 𝑉 𝑖 − 1 then
𝑊 𝑖, 𝑣 ≔ 𝑊[𝑖 − 1,max 0, 𝑣 − 𝑣%] + 𝑤%

else
𝑊 𝑖, 𝑣 ∶= min(𝑊 𝑖 − 1, 𝑣 ,

𝑊[𝑖 − 1,max 0, 𝑣 − 𝑣%] + 𝑤%)
return max{𝑣:𝑊[𝑛, 𝑣] ≤ 𝐶} copyright © 2023 Vassos Hadzilacos

Do n
ot

po
st

on
 th

e i
nte

rne
t w

ith
ou

t th
e c

op
yri

gh
t o

wne
r's

 w
ritt

en
 pe

rm
iss

ion

Question 2 — answer (cont’d)

• Analyze the running time of your algorithm.

Θ(𝑛 6W
%+#

!

𝑣%)

This is pseudopolynomial.
This version of the algorithm (with subproblems based
on value rather than weight) is the basis for a
polynomial-time approximation algorithm for
knapsack that we will see at the end of the course.

copyright © 2023 Vassos Hadzilacos

Do n
ot

po
st

on
 th

e i
nte

rne
t w

ith
ou

t th
e c

op
yri

gh
t o

wne
r's

 w
ritt

en
 pe

rm
iss

ion

Approximation local search algorithm for max cut

1

8

7

2

3

6 4

5

Graph with 8 nodes
and 11 edges

1

8

7

2

3

6 4

5

A cut of
the graph

1

8

7

2

3

6 4

5

This cut has
3 cross edges

1

8

7

2

3

6 4

5

Node 5 has more
internal edges (1)
than cross edges (0).

Increase the number
of cross edges by
moving it to the blue
side.

1

8

7

2

3

6 4

5

1

8

7

2

3

6 4

5This cut has
4 cross edges

1

8

7

2

3

6 4

5Node 7 has more
internal edges (2)
than cross edges (1).

Increase the number
of cross edges by
moving it to the
yellow side.

1

8

7

2

3

6 4

5

1

8

7

2

3

6 4

5This cut has
5 cross edges

1

8

7

2

3

6 4

5Node 3 has more
internal edges (3)
than cross edges (1).

Increase the number
of cross edges by
moving it to the
yellow side.

1

8

7

2

3

6 4

5

1

8

7

2

3

6 4

5This cut has
7 cross edges.

No local improvement
is possible.

But as we will see, it is
not a max cut!

1

8

7

2

3

6 4

5

Back to the
original cut with
3 cross edges.

Now move nodes in
a different order.

1

8

7

2

3

6 4

5

Node 7 has more
internal edges (2)
than cross edges (1).

Improve the number
of cross edges by
moving it to the
yellow side (instead of
moving node 5 to the
blue side, as before).

1

8

7

2

3

6 4

5

1

8

7

2

3

6 4

5

This cut has
4 cross edges

1

8

7

2

3

6 4

5

Node 2 has more
internal edges (2)
than cross edges (1).

Improve the number
of cross edges by
moving it to the
yellow side.

1

8

7

2

3

6 4

5

1

8

7

2

3

6 4

5

This cut has
5 cross edges

1

8

7

2

3

6 4

5

Node 7 has more
internal edges (2)
than cross edges (1).

Improve the number
of cross edges by
moving it to the blue
side.

NB: Moving back!

1

8

7

2

3

6 4

5

1

8

7

2

3

6 4

5

This cut has
6 cross edges

1

8

7

2

3

6 4

5

Node 1 has more
internal edges (2)
than cross edges (0).

Improve the number
of cross edges by
moving it to the
yellow side.

1

8

7

2

3

6 4

5

1

8

7

2

3

6 4

5

This cut has
8 cross edges

1

8

7

2

3

6 4

5

Node 5 has more
internal edges (1)
than cross edges (0).

Improve the number
of cross edges by
moving it to the blue
side.

1

8

7

2

3

6 4

5

1

8

7

2

3

6 4

5

This cut has
9 cross edges.

This is a max cut.

Why?

Hint: Disjoint
triangles 1,3,8 and
4,6,7.

Approximation algorithm for metric TSP

1 2

8

6 5

4

3

7

1 2

8

6 5

4

3

7

Step 1: Find a MST of the graph

1 2

8

6 5

4

3

7

Step 1: Find a MST of the graph

1 2

8

6 5

4

3

7

Step 2: Do a DFS of the MST
(each edge of the MST is visited twice: once when
discovered and once again when backtracking)

1 2

8

6 5

4

3

7

1, 2, 1, 3, 1, 5, 4, 5, 6, 8, 6, 7, 6, 5, 1

Step 2: Do a DFS of the MST
Record the sequence of nodes in the order visited

1 2

8

6 5

4

3

7

1, 2, 1, 3, 1, 5, 4, 5, 6, 8, 6, 7, 6, 5, 1

1, 2, 3, 5, 4, 6, 8, 7, 1

"Trail" produced by the DFS of the MST

Tour produced by the algorithm

Step 3: Keep only the first occurrence of
each node, then back to the first node

1 2

8

6 5

4

3

7

1, 2, 3, 5, 4, 6, 8, 7, 1 Tour produced by the algorithm

Step 3: This is the algorithm's tour
(its cost is at most twice the cost of the optimal tour)

Metric TSP approximation algorithm

1. Find a MST T* of the graph
2. Do a DFS of T*
3. S' := sequence of nodes in the order visited by the DFS

S' is not a tour
4. S := subsequence of S' containing only the first

occurrence of each node, followed by the first node
S is a tour

5. return S

