Question 2 (cont'd)

Now we will define the subproblems differently. Assume the v_{i} s are positive integers.
For $i=0,1, \ldots, n$, let $V_{i}=\sum_{t=1}^{i} v_{t} . \quad\left(V_{0}=0.\right)$
For $i=0,1, \ldots, n$, and $v=0,1, \ldots, V_{i}$,
Total value of items $1, \ldots, i$
$W(i, v)=$ the minimum weight of a subset of items $\{1,2, \ldots, i\}$ whose value is $\geq v$.

Compare to the subproblems we defined before:
For $i=0,1, \ldots, n$, and $c=0,1, \ldots, C$,
$K(i, c) \cong$ the maximum value of a subset of items
$\{1,2, \ldots, i\}$ whose weight is $\leq c$.

Question 2 (cont’d)

For $i=0,1, \ldots, n$, and $v=0,1, \ldots, V_{i}$,
$W(i, v)=$ the minimum weight of a subset of items $\{1,2, \ldots, i\}$ whose value is $\geq v$.

- Give a recursive formula to compute the subproblems.
- Describe your DP algorithm in pseudocode.
- Analyze the running time of your algorithm.
- Modify the algorithm to find the actual set of items of maximum value whose weight does not exceed the knapsack capacity C.

Question 2 - answer (cont

- Recursive formula to compute the subproblems.

Case 1: $v>V_{i-1}$. (Lightest set of items of value $\geq v$ must use item i.)

$$
W(i, v)=W\left(i-{ }^{2}, \max \left(0, v-v_{i}\right)\right)+w_{i}
$$

Case 2: $v \leq V_{i-1}$. (Lightest set of items of value $\geq v$ may or may not uise item i.)

$$
W(i, v)=\min (W(i-1, v)
$$

$$
\left.W\left(i-1, \max \left(0, v-v_{i}\right)\right)+w_{i}\right)
$$

Question 2 - answer (cont \hat{d})

- Describe your DP algorithm in pseudocode.
$V[0]:=0$; for $i:=1$ to n do $V[i] ;-1-1]+v_{i}$
for $i:=0$ to n do $W[i, 0]:=0$
for $v:=1$ to $V[n]$ do $W[0, v\} s:=0$
for $i:=1$ to n do
for $v:=1$ to $V[i]$ do
if $v>V[i-1]$ then

$$
W[i, v]:=W-\left[i-1, \max \left(0, v-v_{i}\right)\right]+w_{i}
$$

else

$$
W[i, v]_{0} \odot=\min (W[i-1, v],
$$

$$
\left.W\left[i-1, \max \left(0, v-v_{i}\right)\right]+w_{i}\right)
$$

return max $\{v: W[n, v] \leq C\}$

Question 2 - answer (contid)

- Analyze the running time of your algorithm.

$$
\Theta\left(n \cdot \sum_{\substack{0}}^{n}\right.
$$

This is pseudopolynomial.
This version of the algorithm (with subproblems based on value rather than weight) is the basis for a polynomial-time approximation algorithm for knapsack that we will see at the end of the course.

Approximation local search algorithm for max cut

Graph with 8 nodes and 11 edges

A cut of the graph

This cut has 3 cross edges

Node 5 has more internal edges (1) than cross edges (0).

Increase the number of cross edges by moving it to the blue
 side.

This cut has
4 cross edges

Node 7 has more internal edges (2) than cross edges (1).

Increase the number
 of cross edges by moving it to the yellow side.

This cut has 5 cross edges

Node 3 has more internal edges (3) than cross edges (1).

Increase the number of cross edges by moving it to the yellow side.

This cut has 7 cross edges.

No local improvement is possible.

But as we will see, it is not a max cut!

Back to the original cut with 3 cross edges.

Now move nodes in a different order.

Node 7 has more internal edges (2) than cross edges (1).

Improve the number of cross edges by moving it to the
 yellow side (instead of moving node 5 to the blue side, as before).

This cut has
4 cross edges

Node 2 has more internal edges (2) than cross edges (1).

Improve the number of cross edges by moving it to the yellow side.

This cut has 5 cross edges

Node 7 has more internal edges (2) than cross edges (1).

Improve the number of cross edges by moving it to the blue side.

NB: Moving back!

This cut has 6 cross edges

Node 1 has more internal edges (2) than cross edges (0).

Improve the number of cross edges by moving it to the yellow side.

This cut has 8 cross edges

Node 5 has more internal edges (1) than cross edges (0).

Improve the number of cross edges by moving it to the blue side.

This cut has 9 cross edges.

This is a max cut.

Why?

Hint: Disjoint triangles 1,3,8 and
 4,6,7.

Approximation algorithm for metric TSP

Step 1: Find a MST of the graph

Step 1: Find a MST of the graph

Step 2: Do a DFS of the MST (each edge of the MST is visited twice: once when discovered and once again when backtracking)

$$
1,2,1,3,1,5,4,5,6,8,6,7,6,5,1
$$

Step 2: Do a DFS of the MST Record the sequence of nodes in the order visited

$1,2,1,3,1,5,4,5,6,8,6,7,6,5,1$
"Trail" produced by the DFS of the MST
$1,2, \quad 3, \quad 5,4,6,8, \quad 7$,
Tour produced by the algorithm
Step 3: Keep only the first occurrence of each node, then back to the first node

$1,2, \quad 3, \quad 5,4,6,8, \quad 7$,

Step 3: This is the algorithm's tour (its cost is at most twice the cost of the optimal tour)

Metric TSP approximation algorithm

1. Find a MST T* of the graph
2. Do a DFS of T^{*}
3. $S^{\prime}:=$ sequence of nodes in the order visited by the DFS \# S^{\prime} is not a tour
4. $S:=$ subsequence of S^{\prime} containing only the first occurrence of each node, followed by the first node \# S is a tour
5. return S
