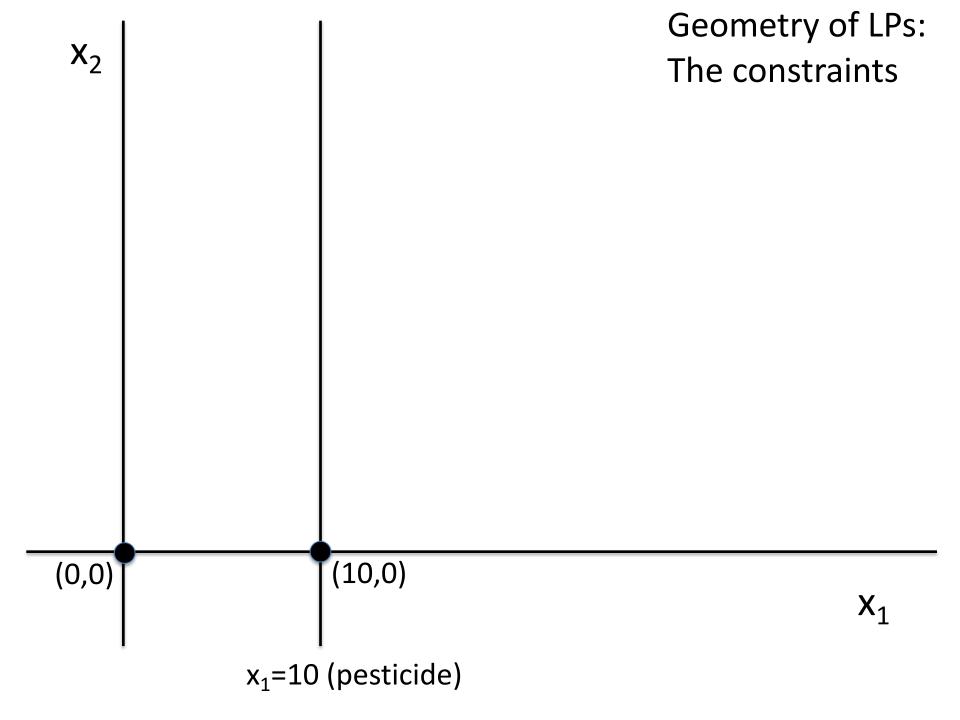
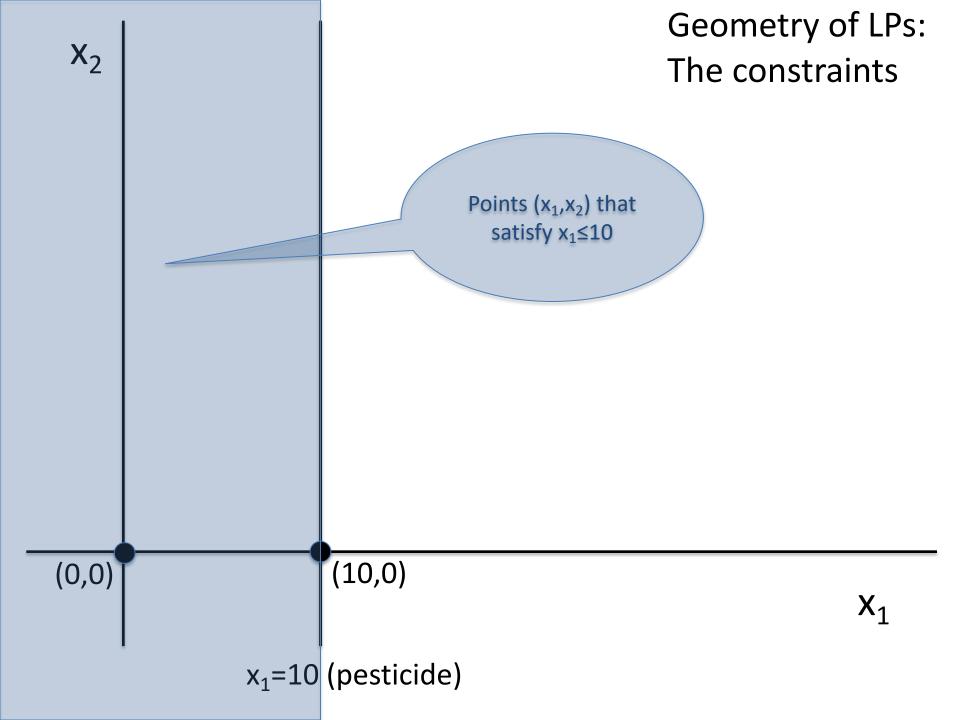
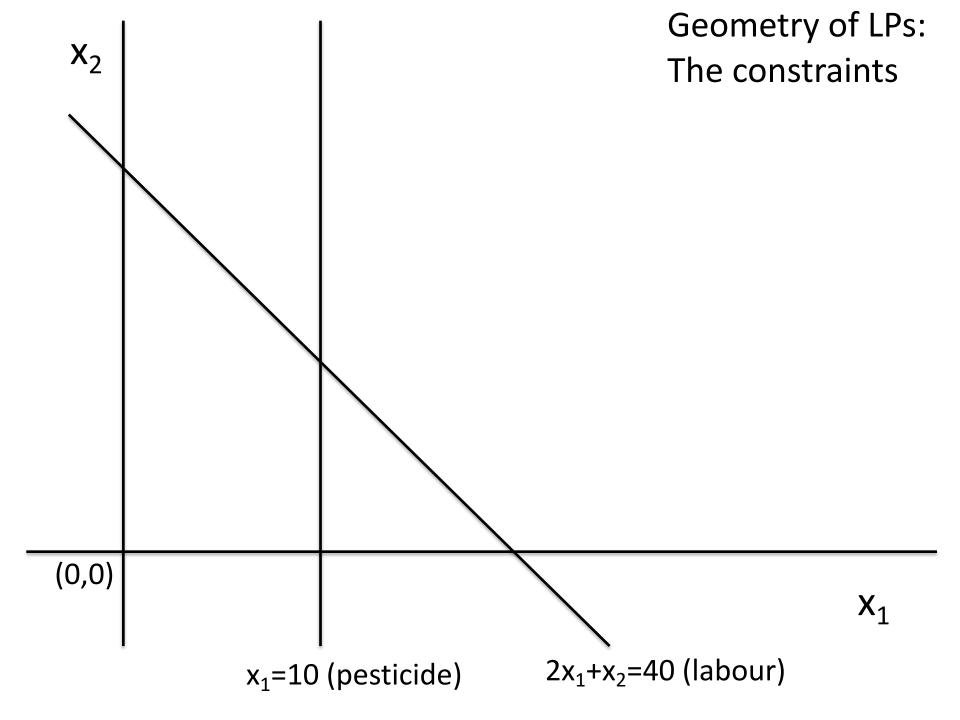
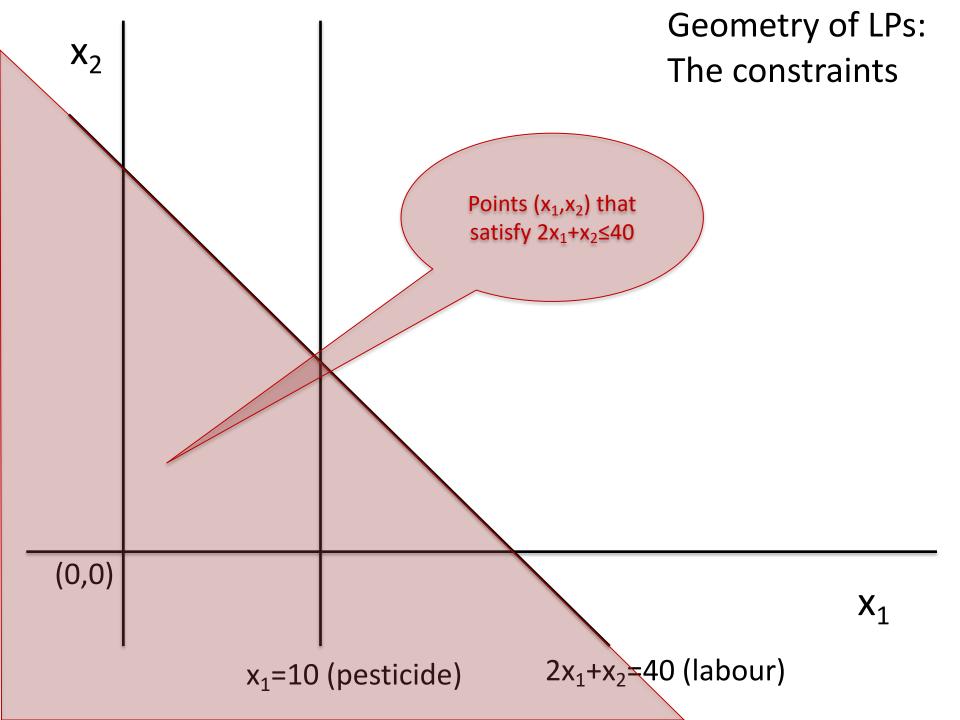
x ₂	maximize $3x_1+2x_2$ subject to: • $x_1 \le 10$ • $2x_1+x_2 \le 40$ • $x_1+3x_2 \le 100$ • $x_1, x_2 \ge 0$
(0,0)	x_1

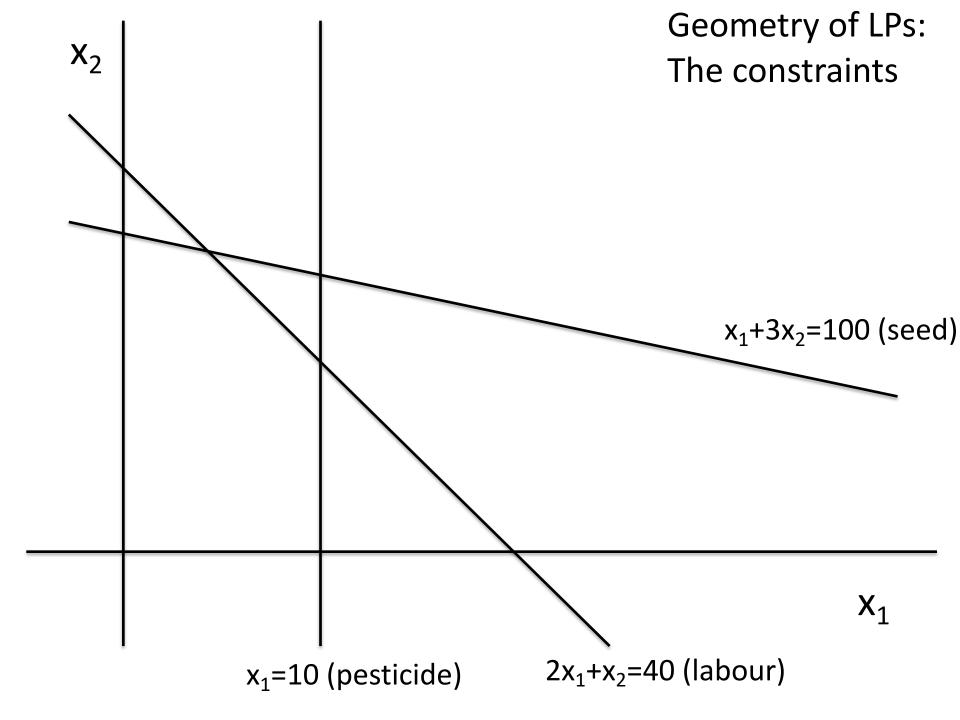
X 2	Geometry of LPs: The constraints
(0,0)	x ₁

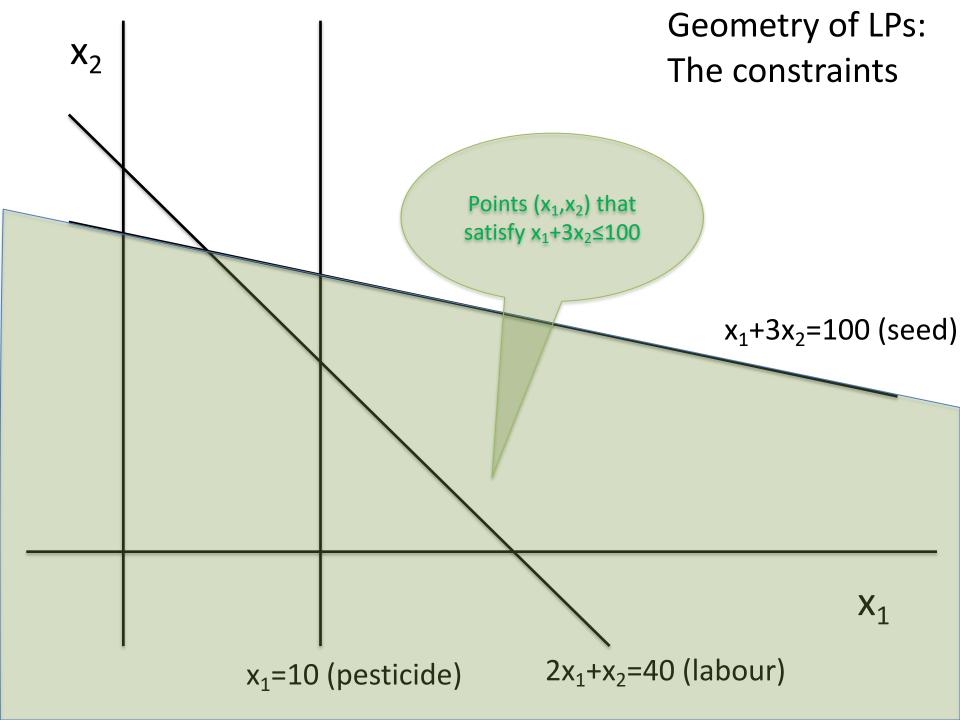


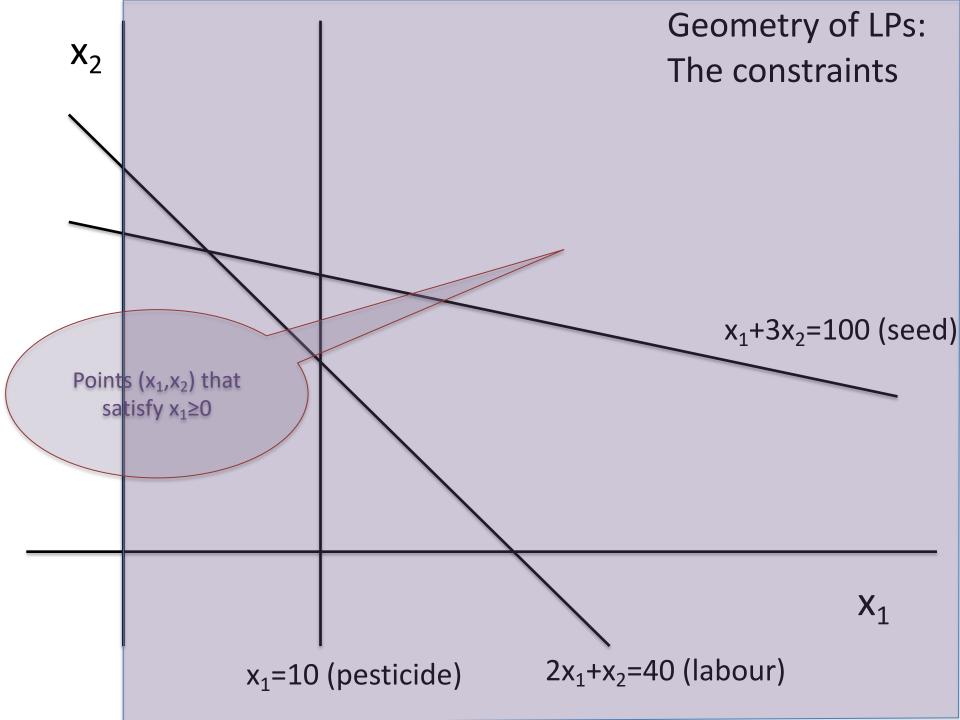


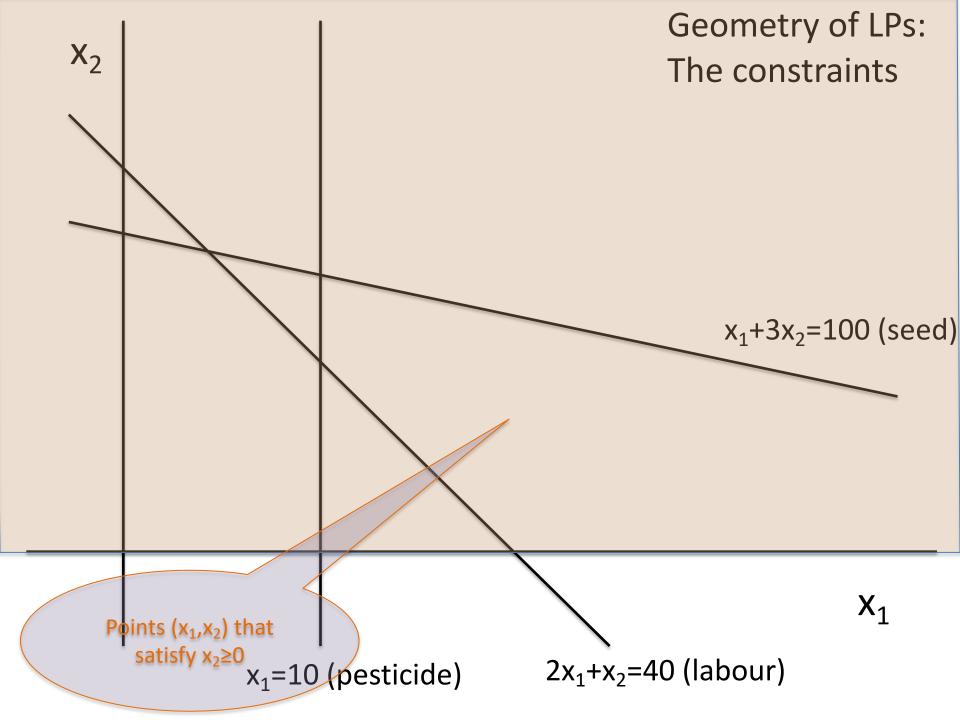












Geometry of LPs: The constraints

 $x_1 + 3x_2 = 100$ (seed)

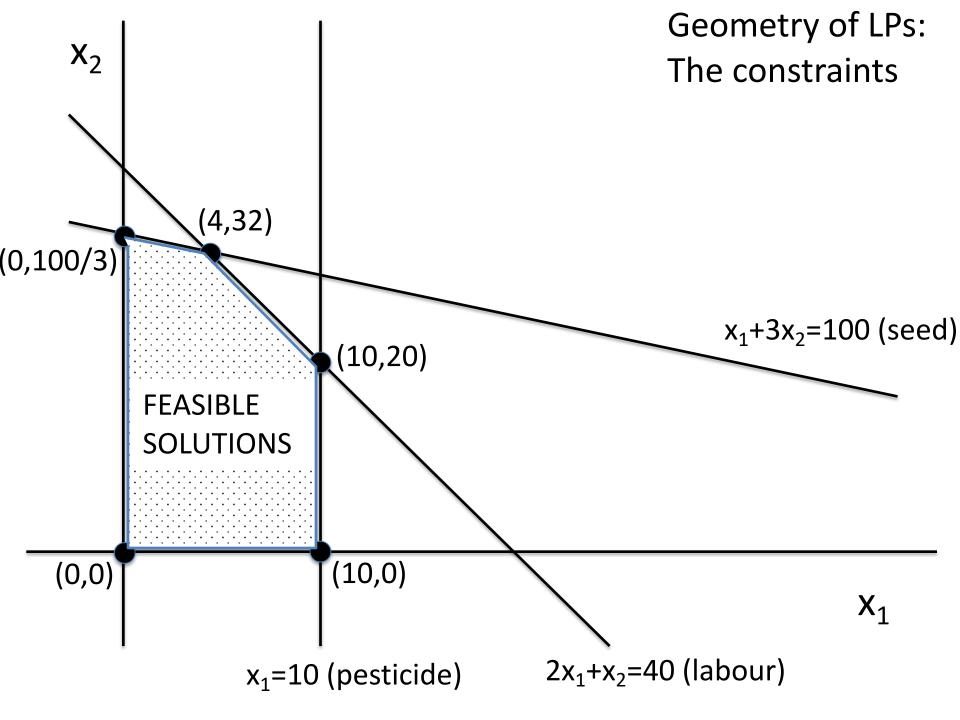
X₁

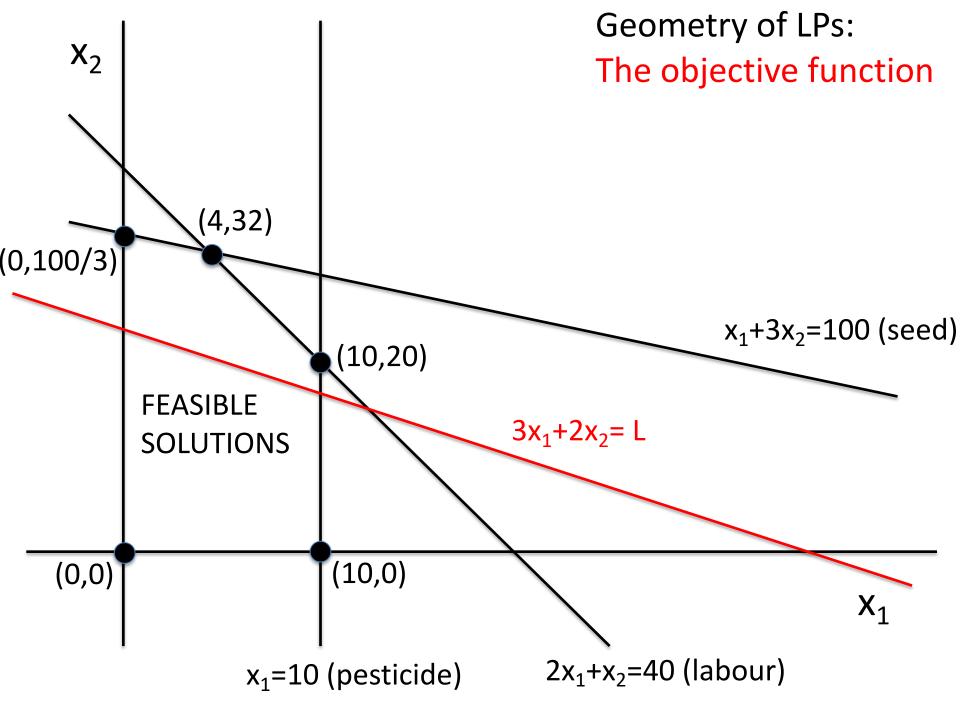
Points (x₁,x₂) that satisfy <u>all</u> the constraints

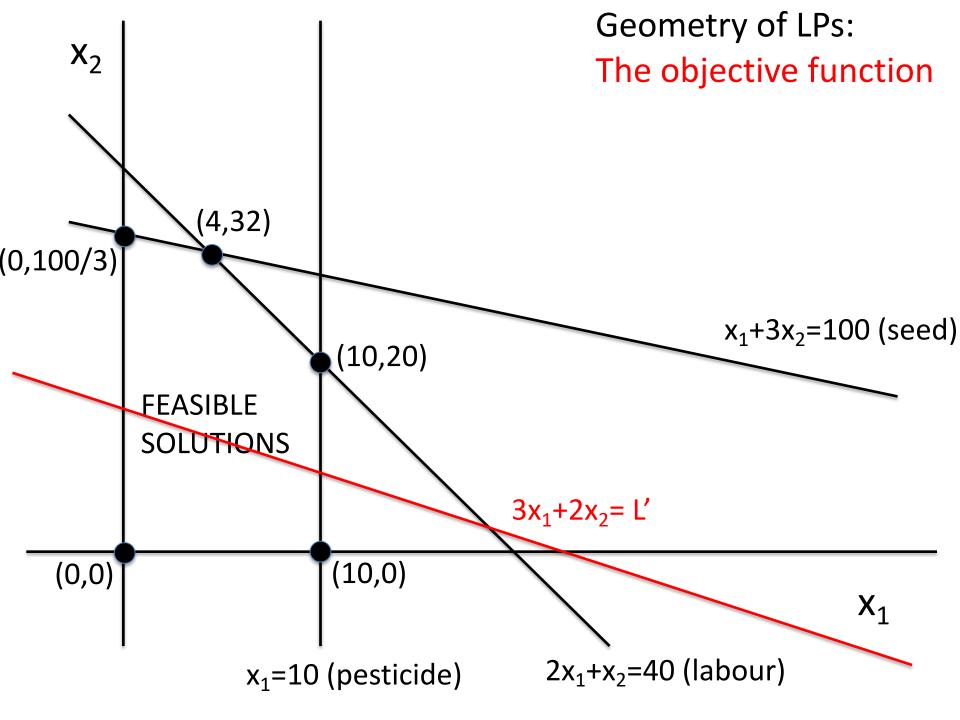
 $2x_1 + x_2 = 40$ (labour)

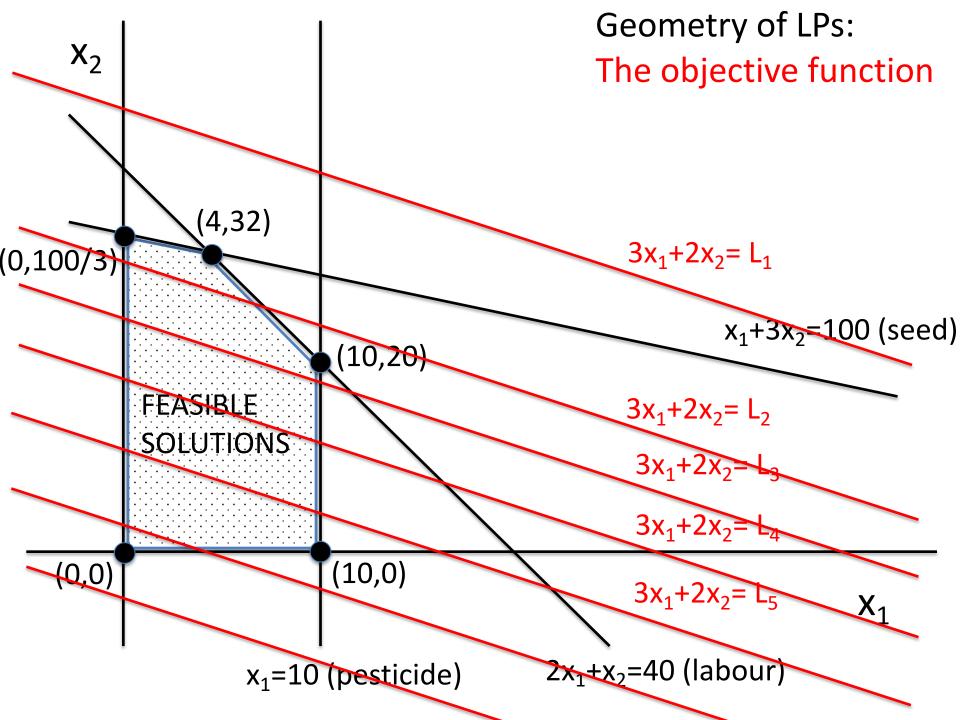
x₁=10 (pesticide)

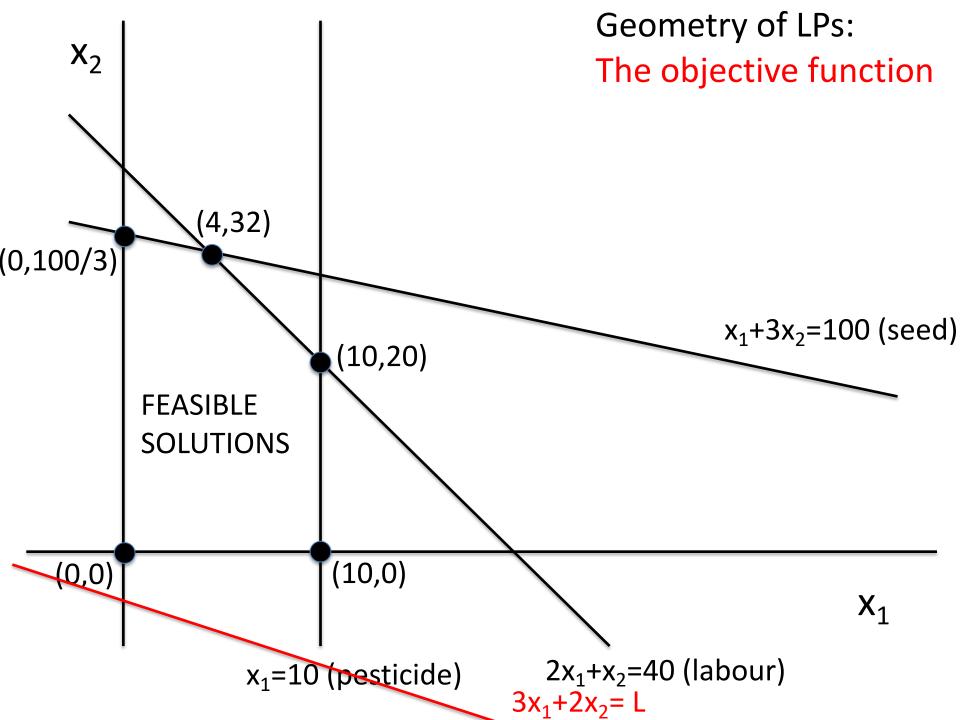
X₂

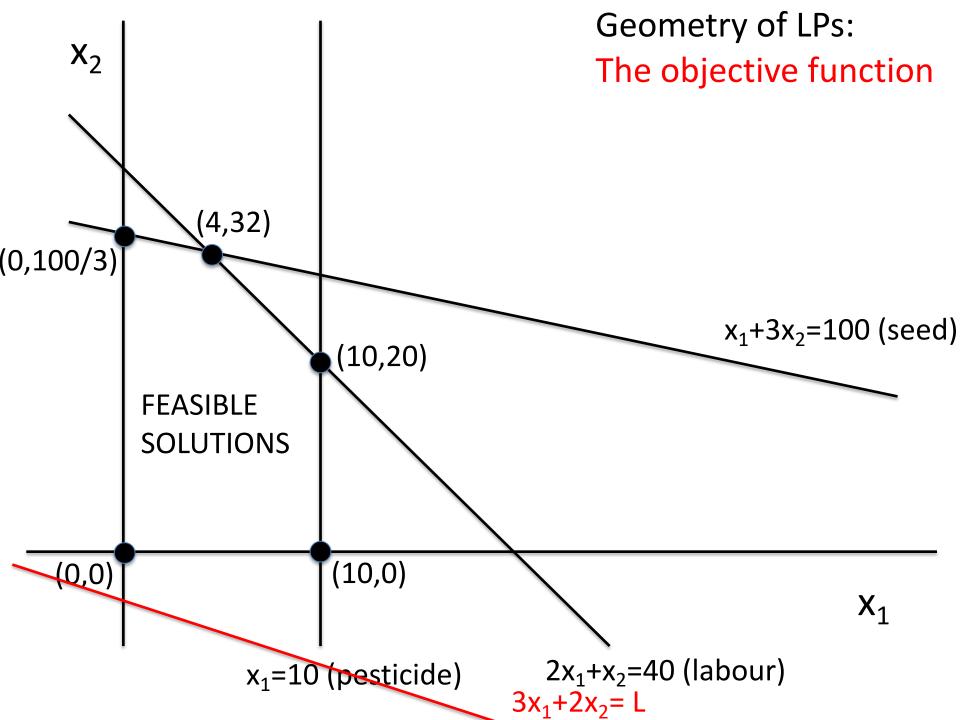


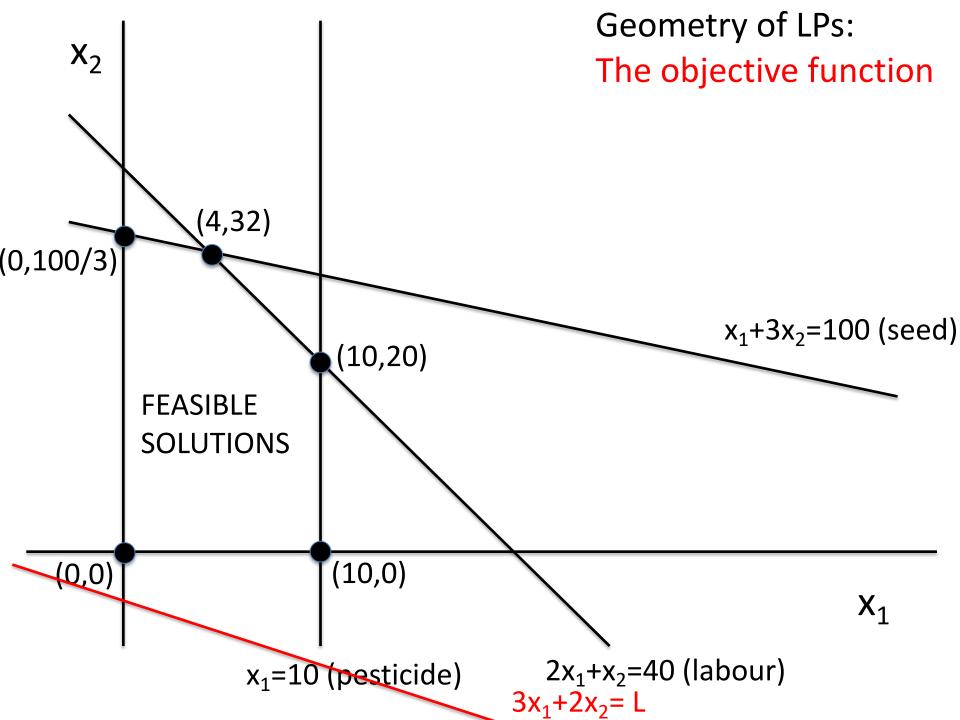


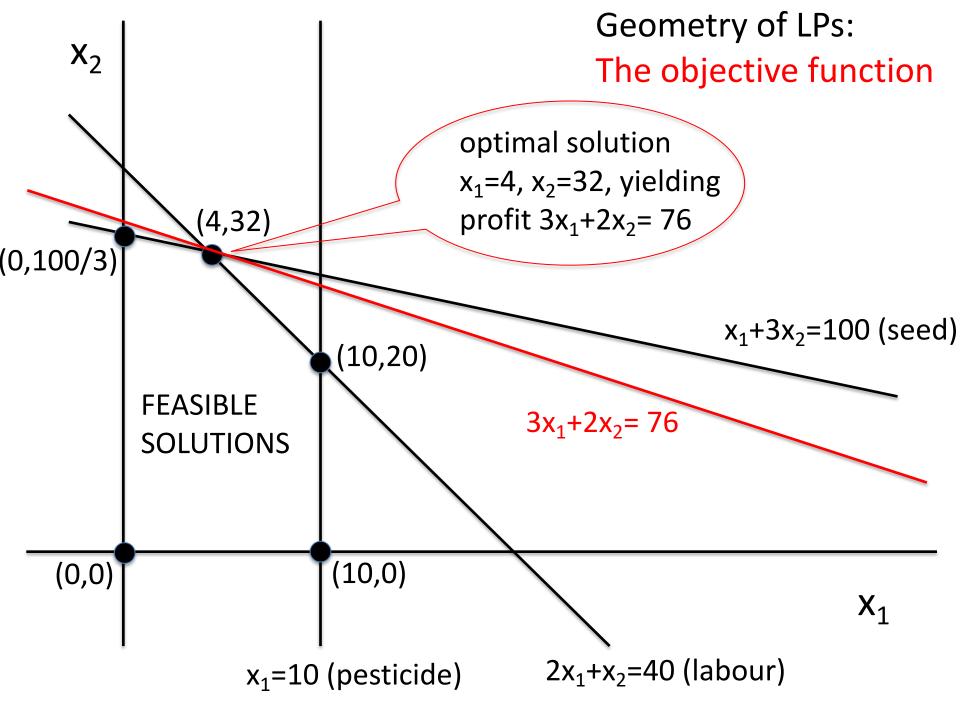


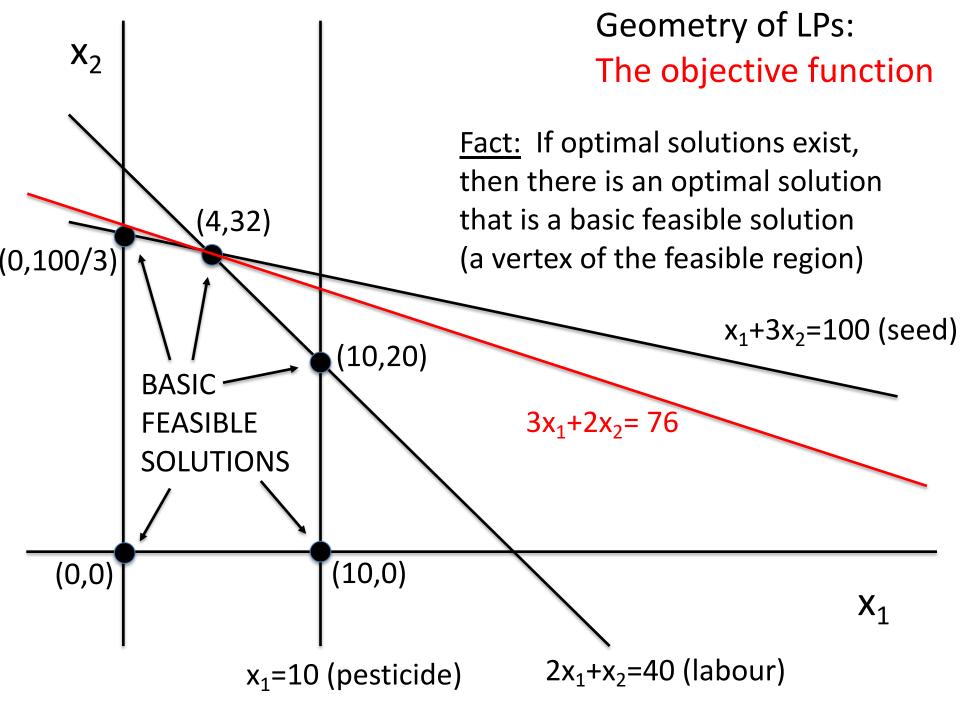


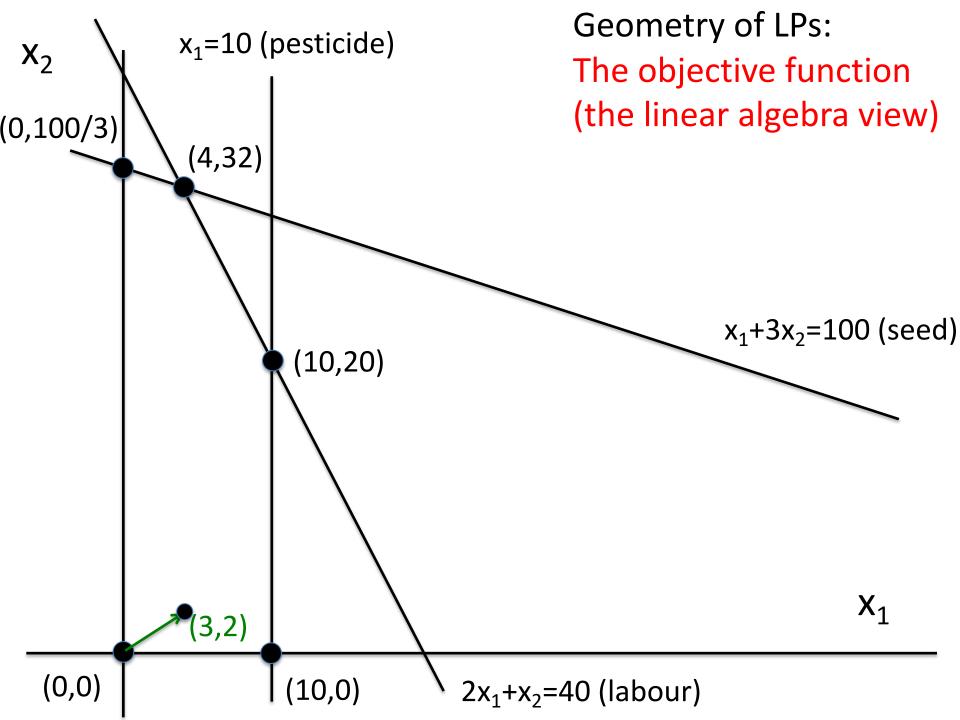


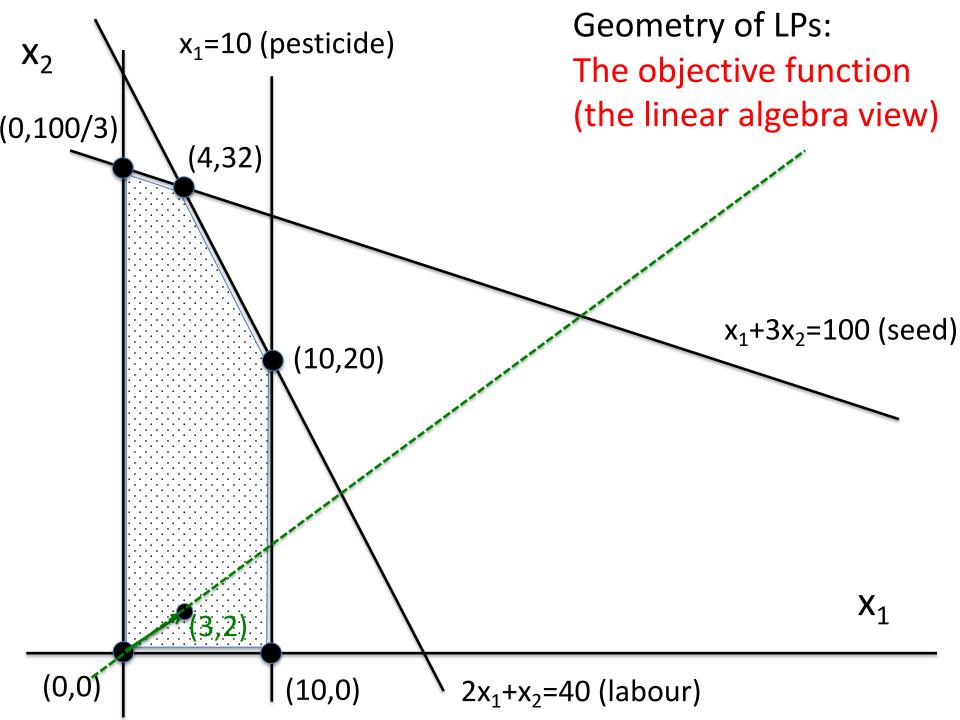


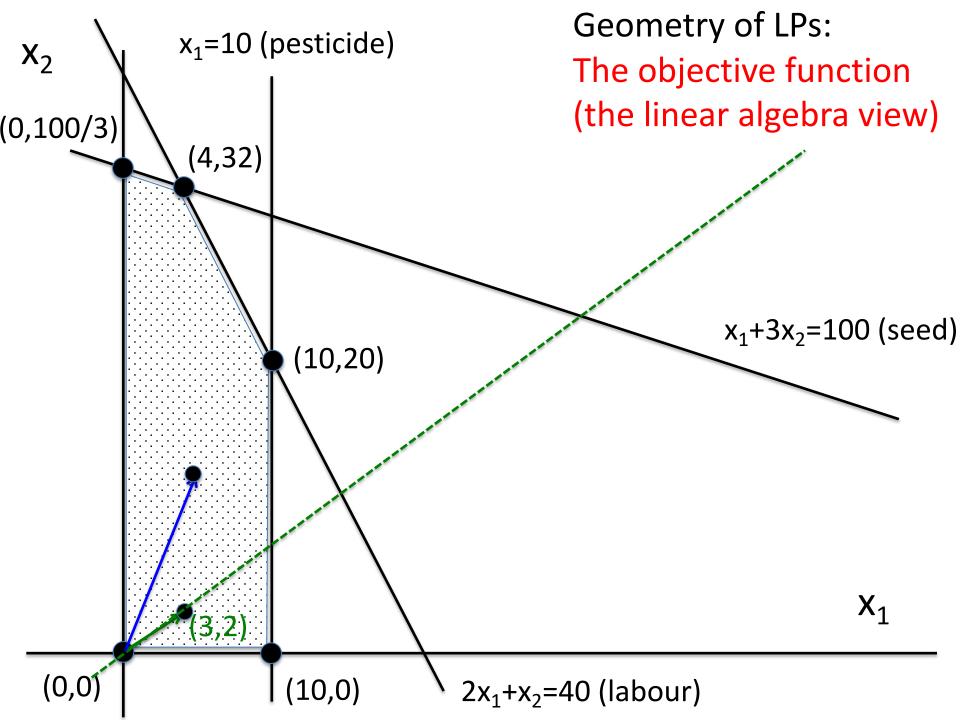


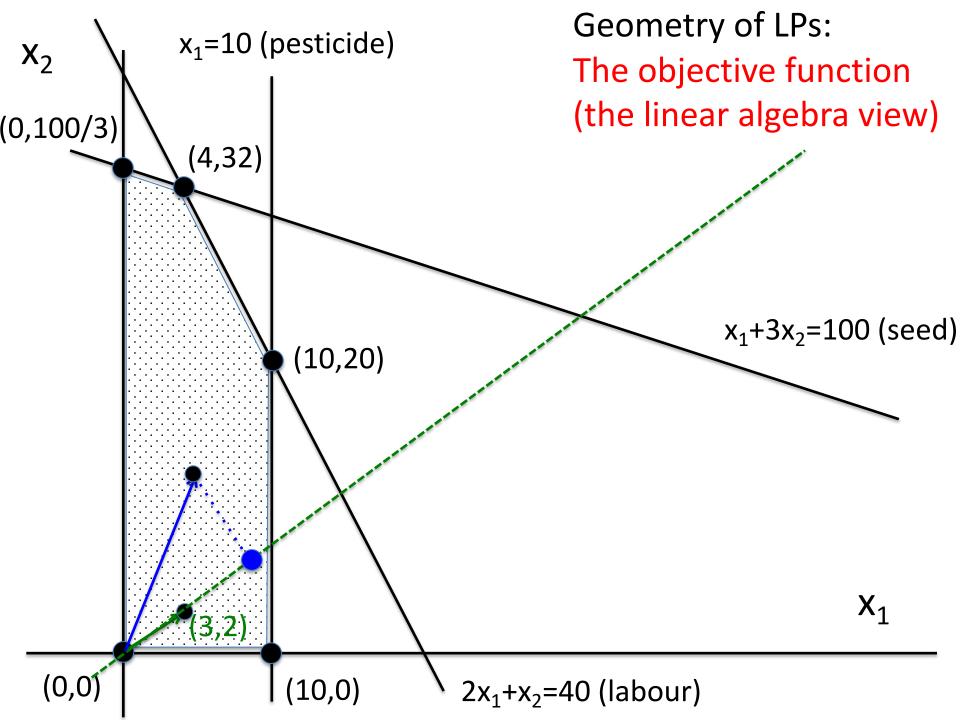


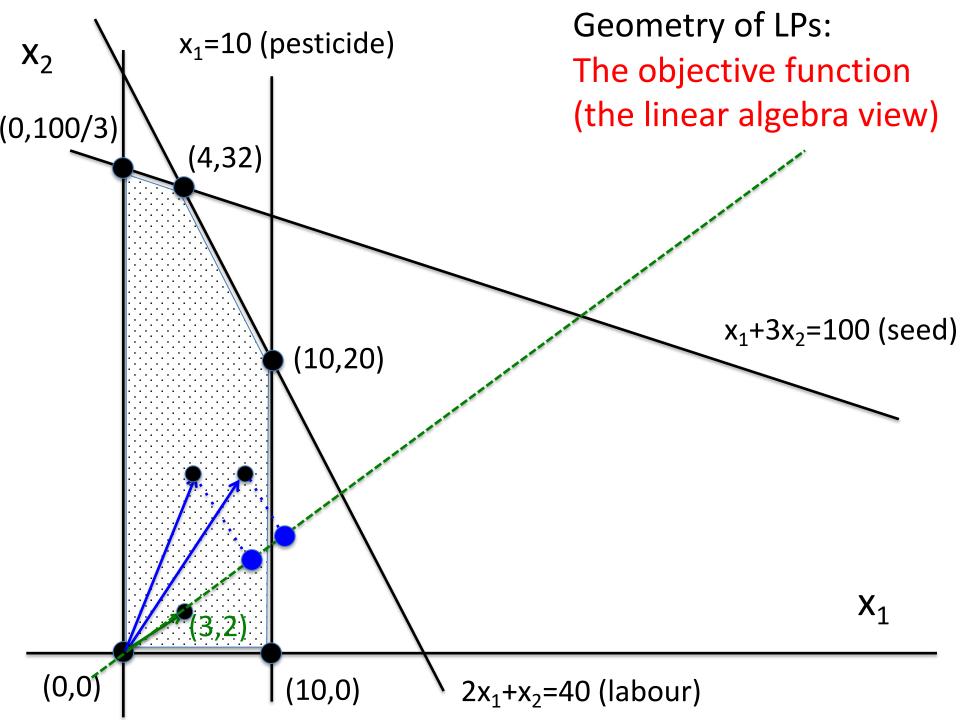


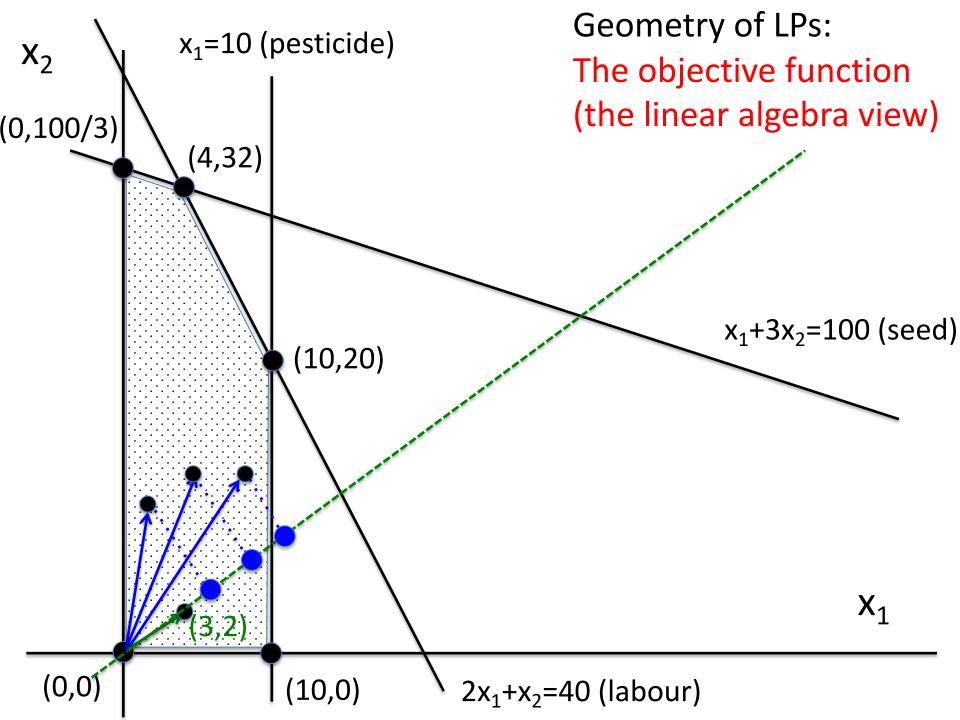


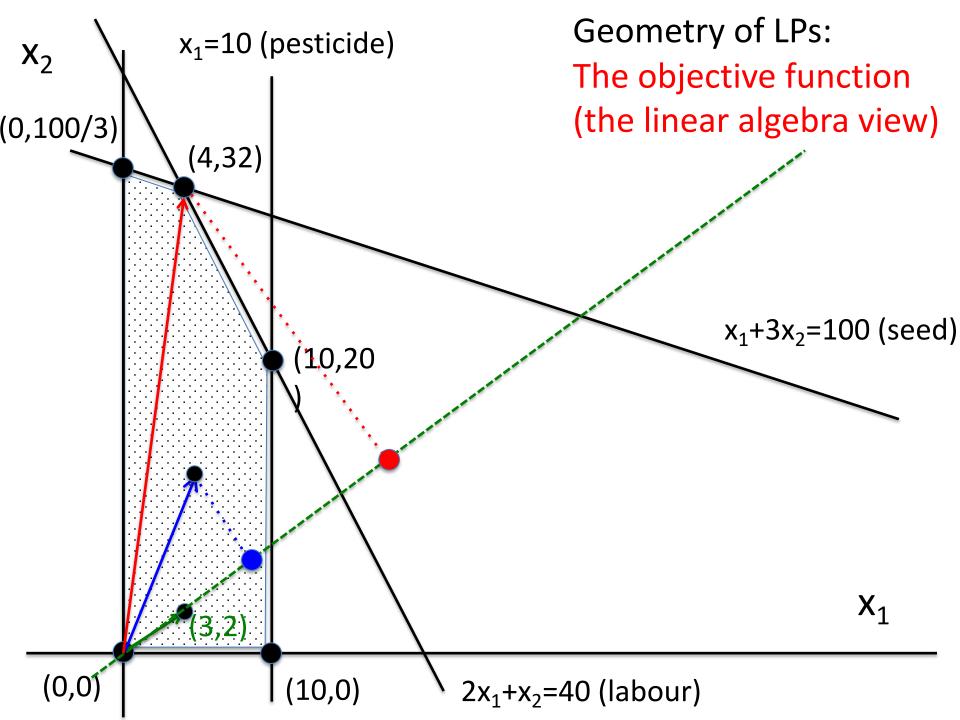


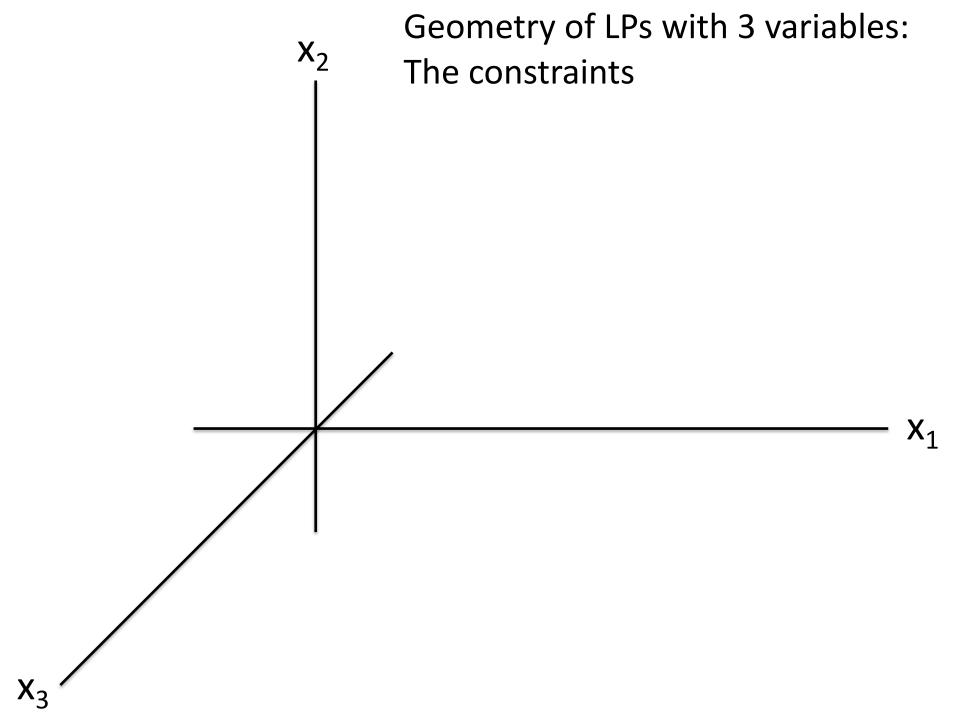


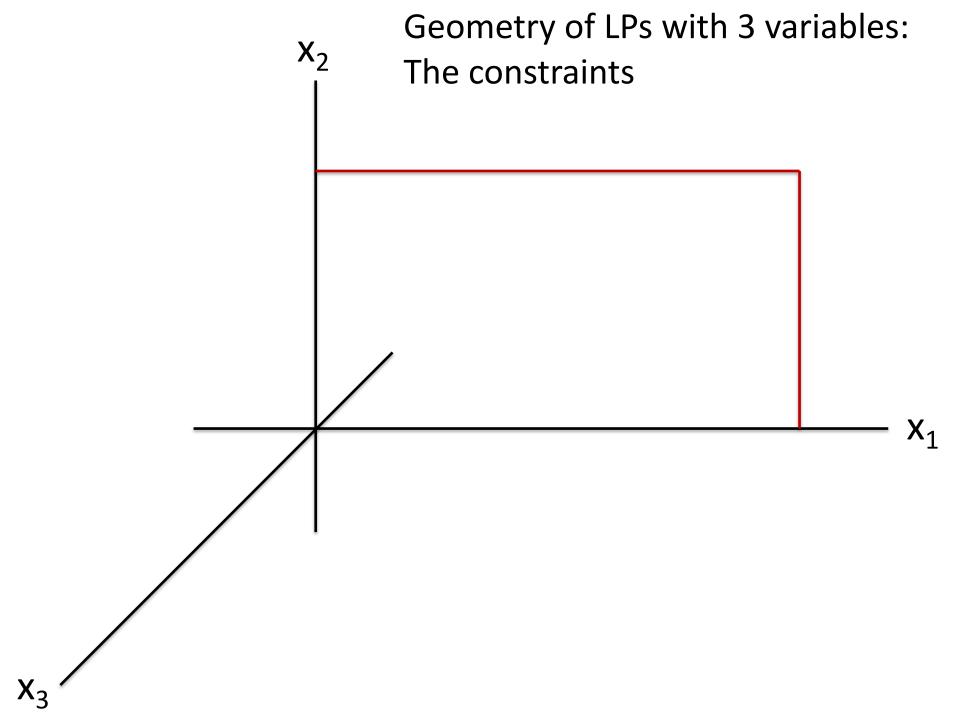


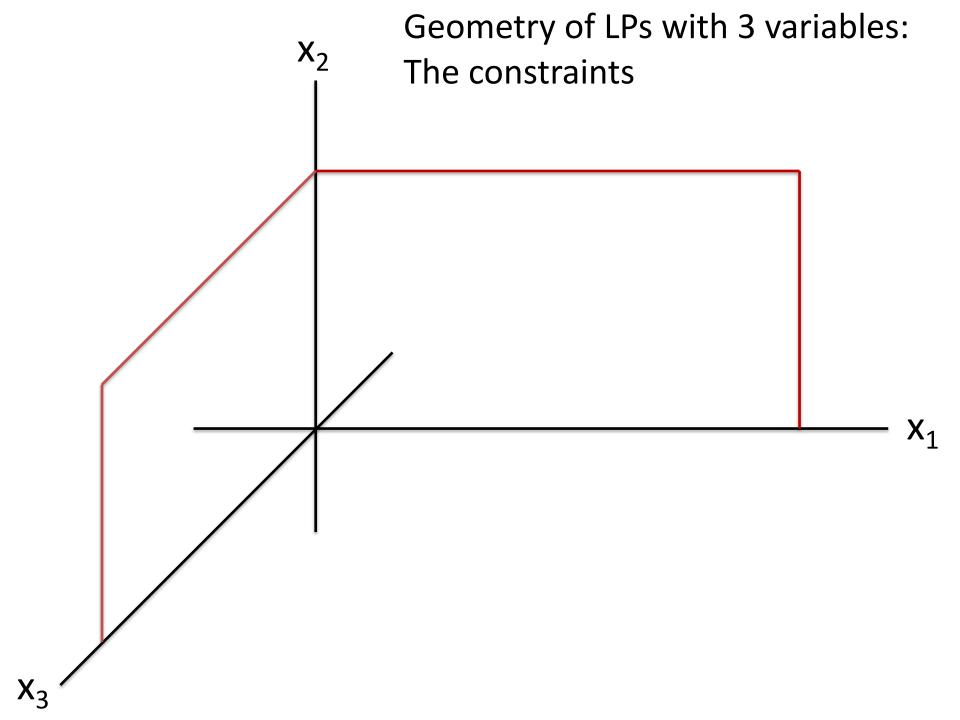


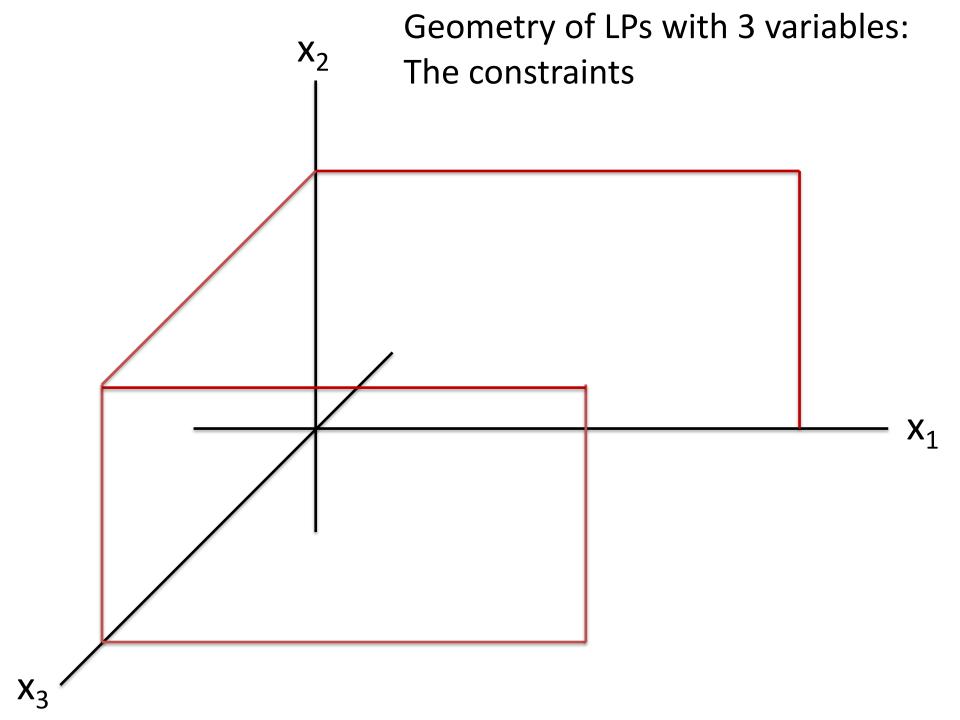


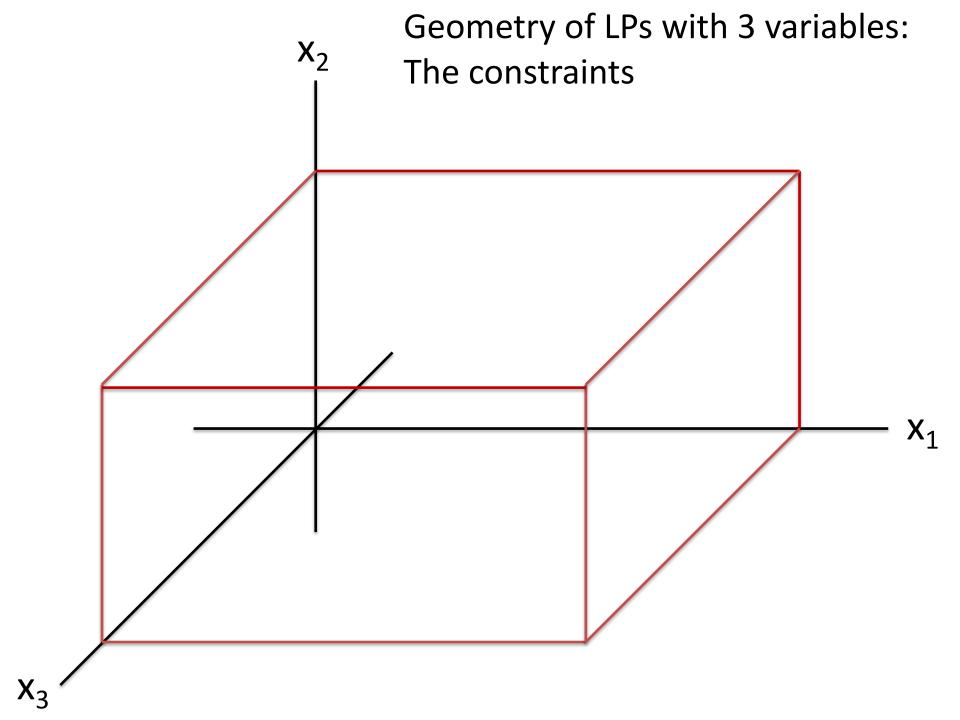


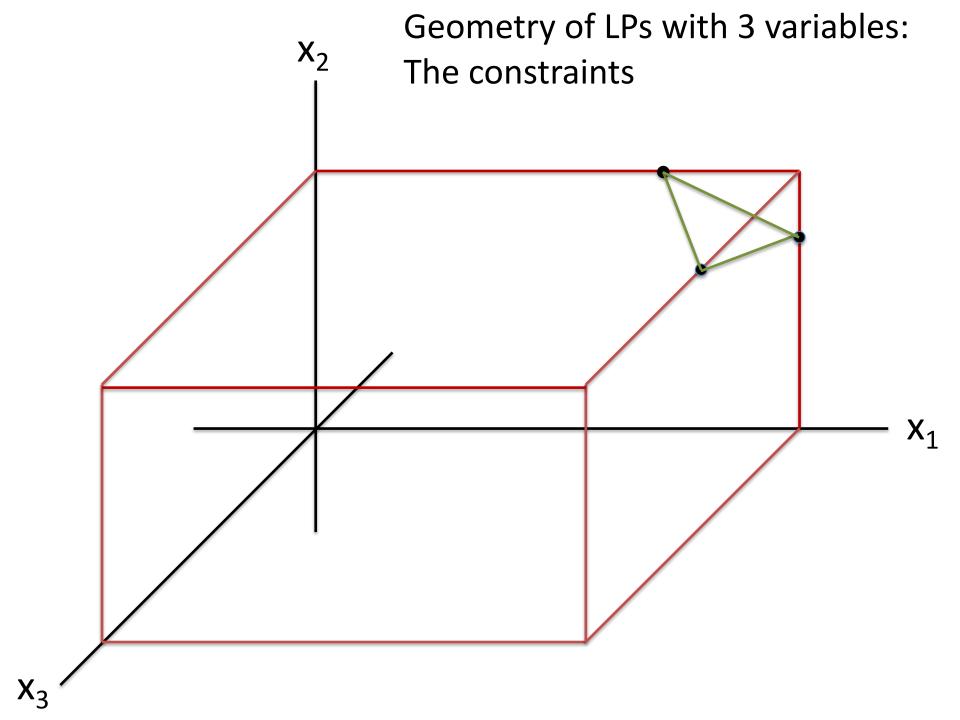


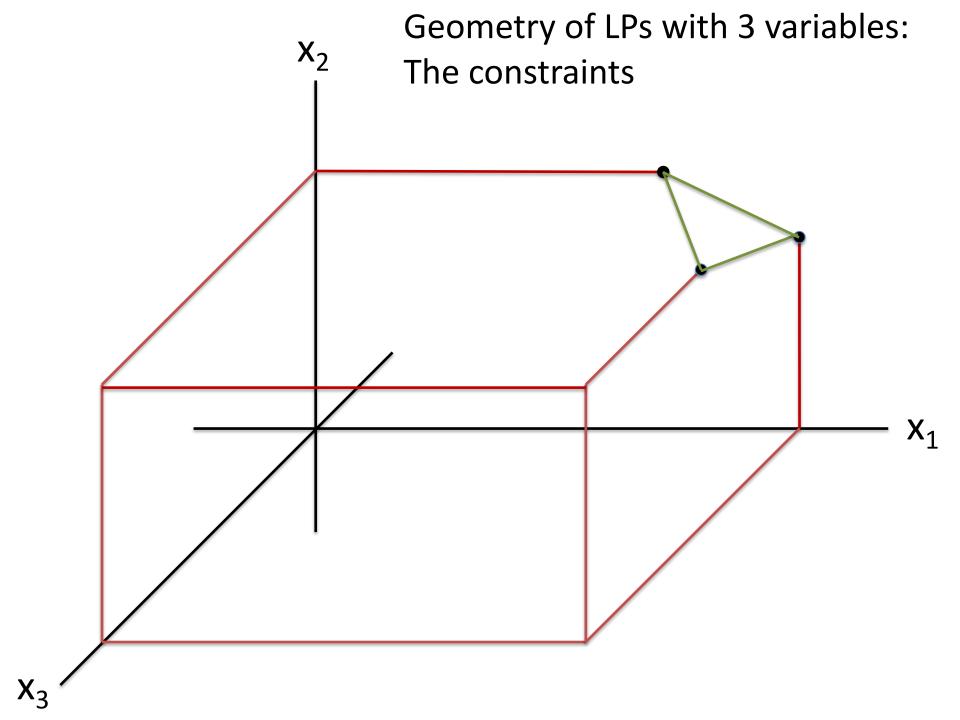


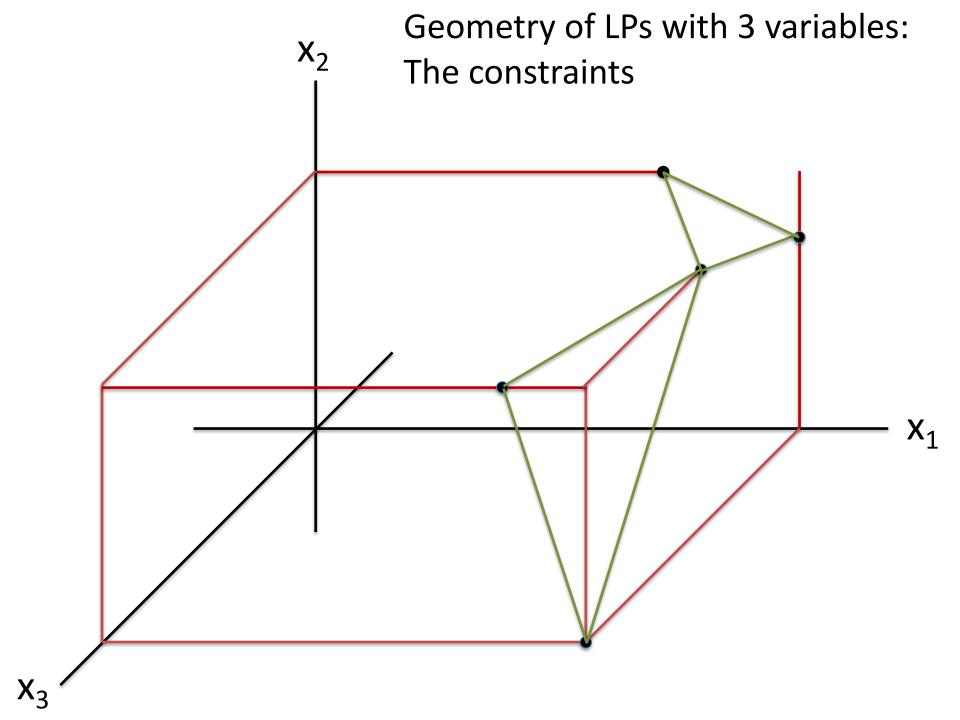


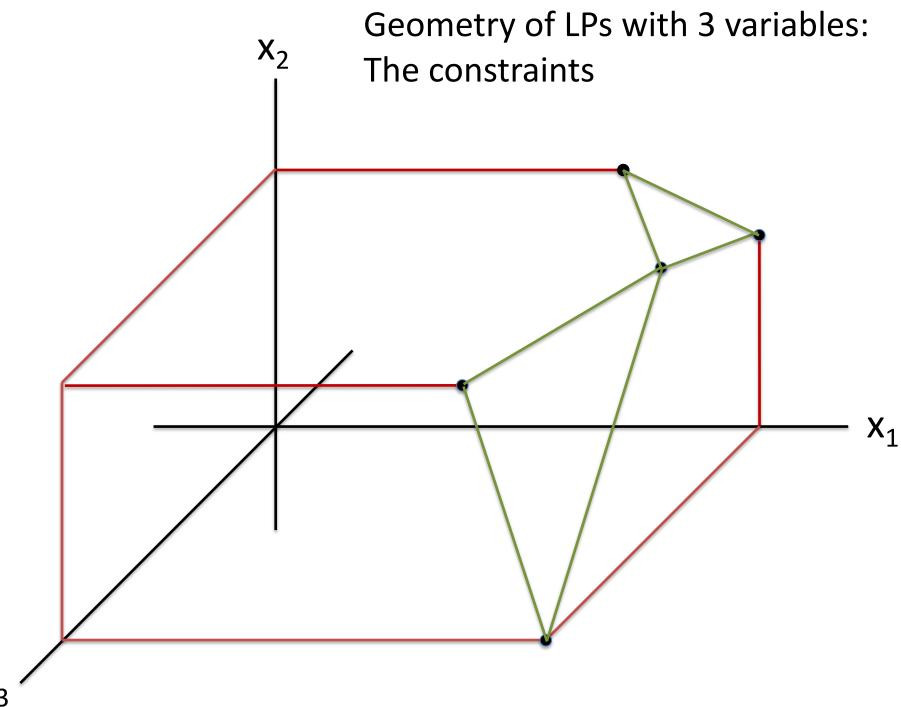




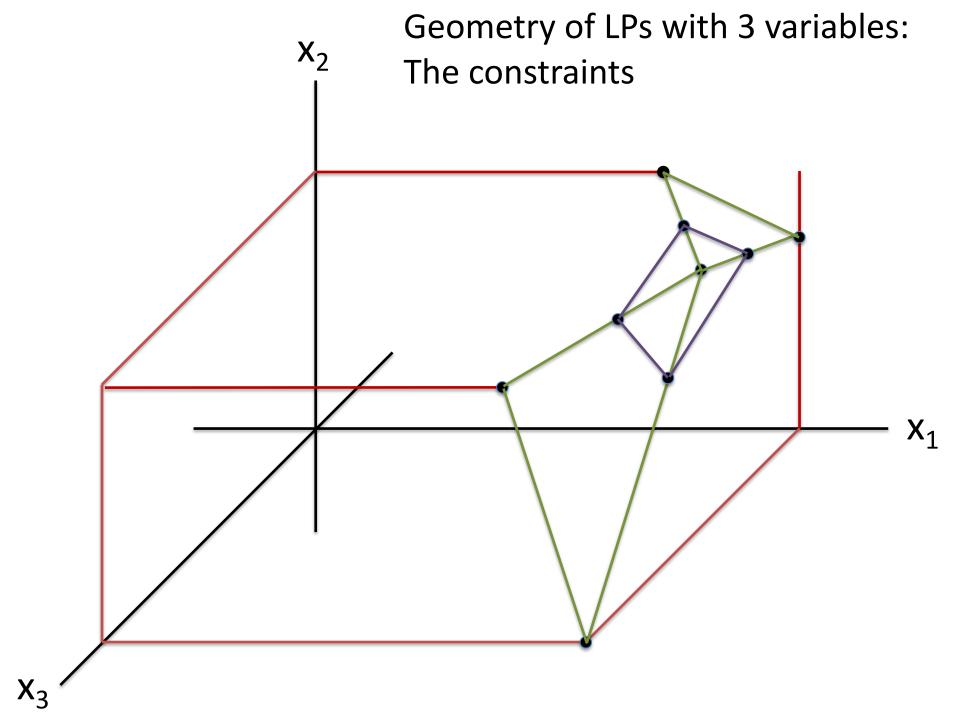


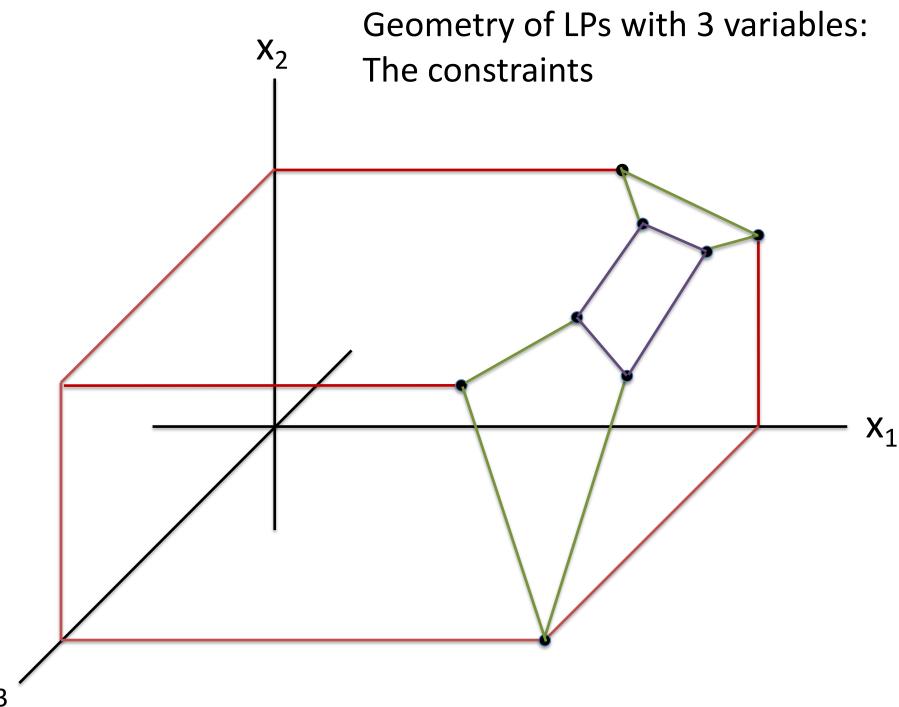




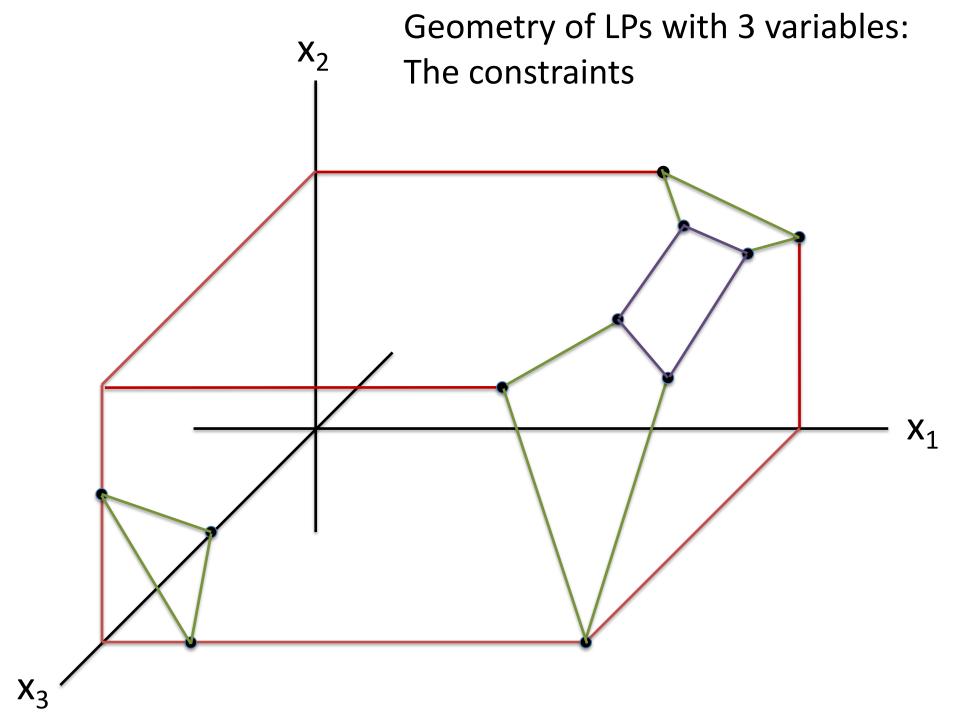


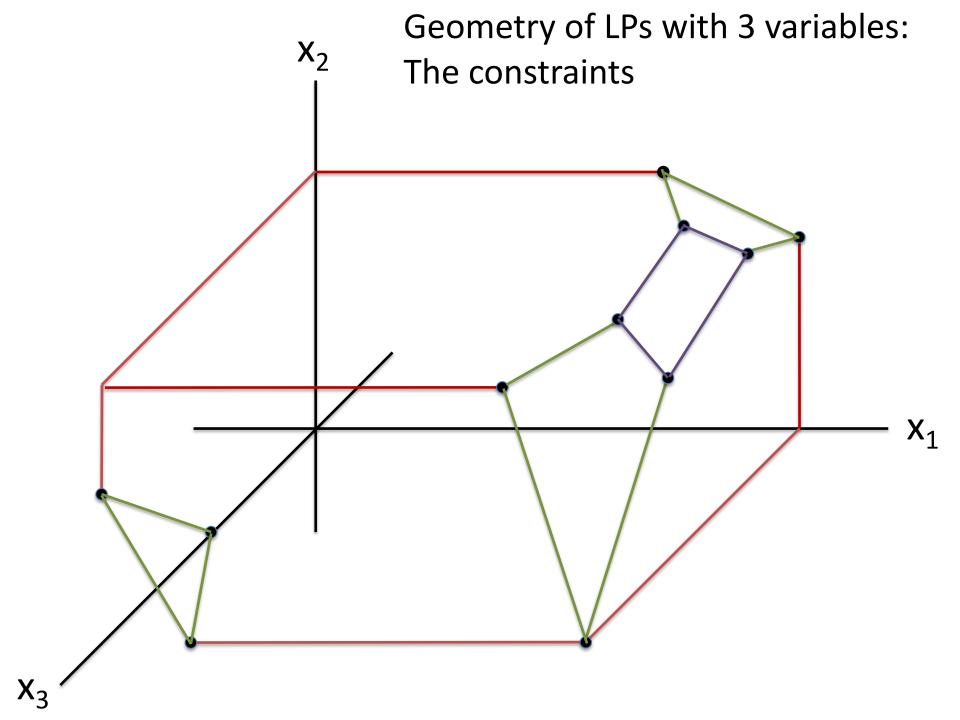
X₃



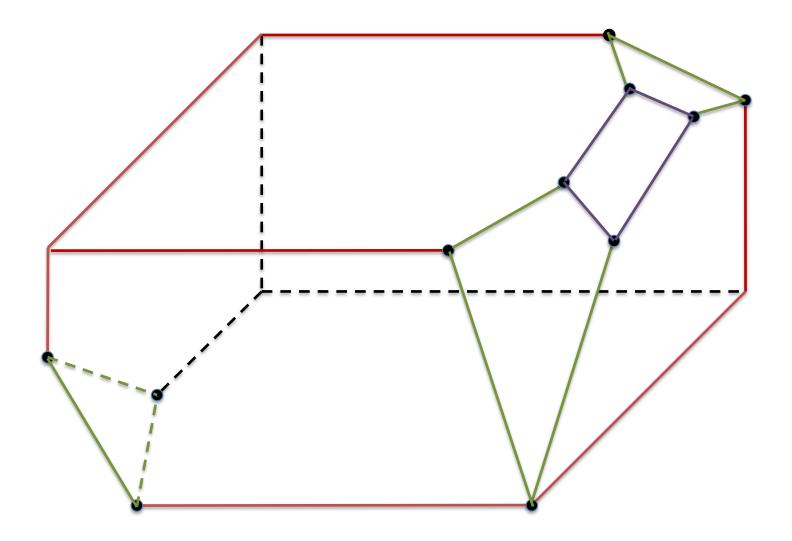


X₃



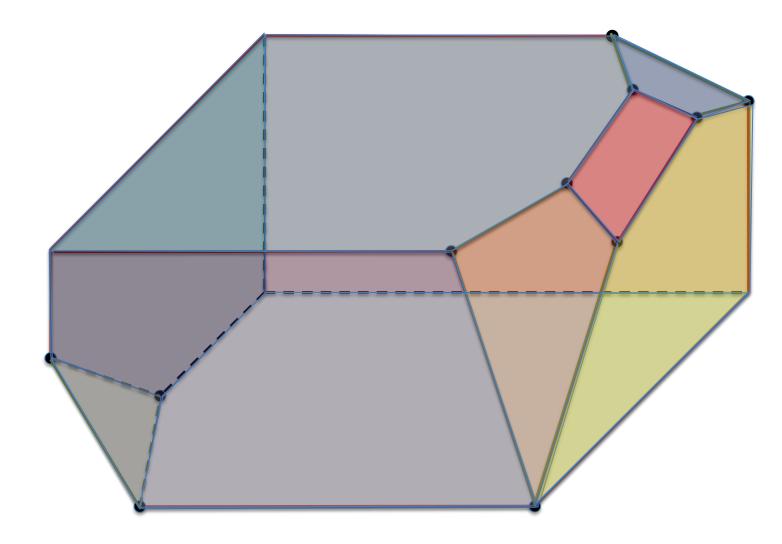


Geometry of LPs with 3 variables: The constraints



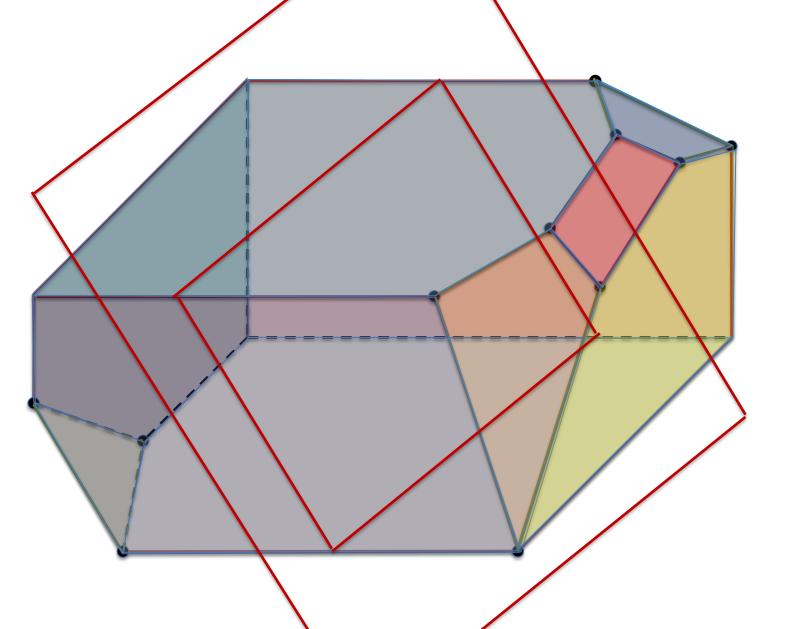
Geometry of LPs with 3 variables: The constraints

Feasible region: a <u>convex</u> polyhedron

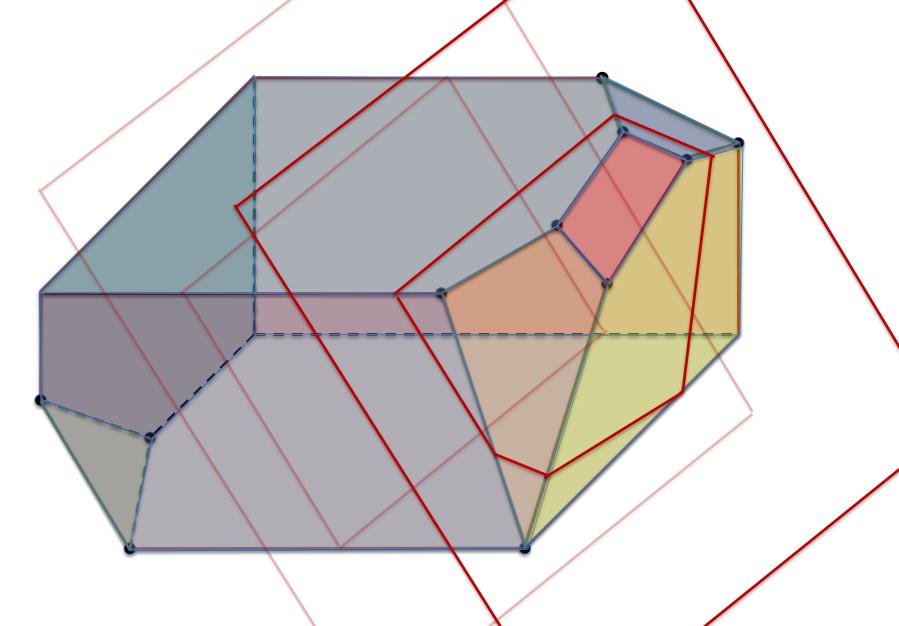


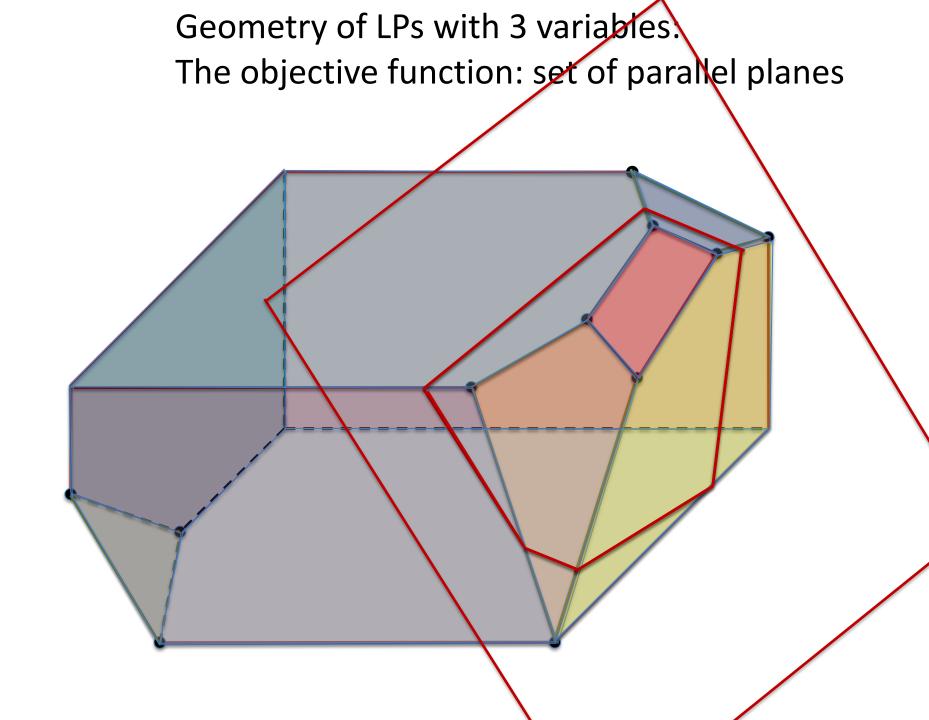
Geometry of LPs with 3 variables:

The objective function, set of parallel planes

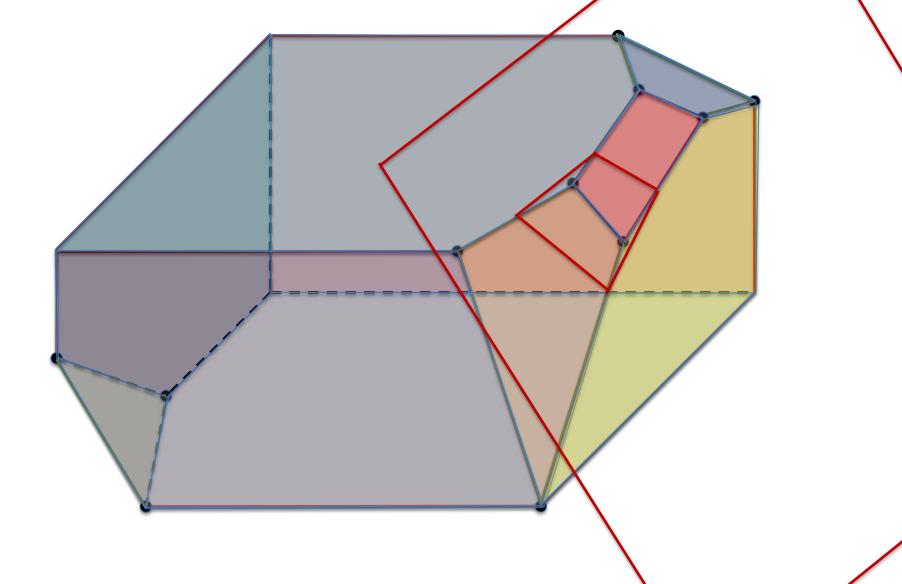


Geometry of LPs with 3 variables. The objective function: set of parallel planes

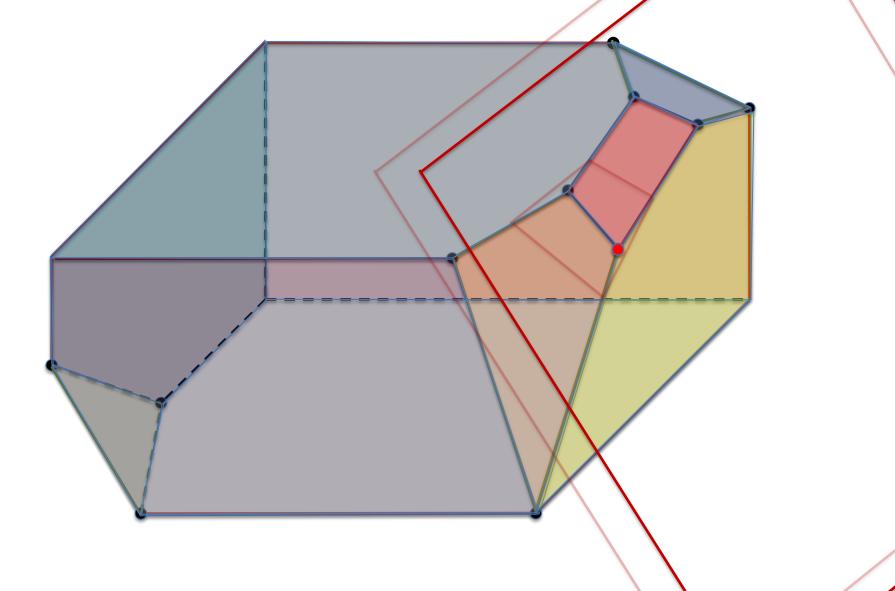


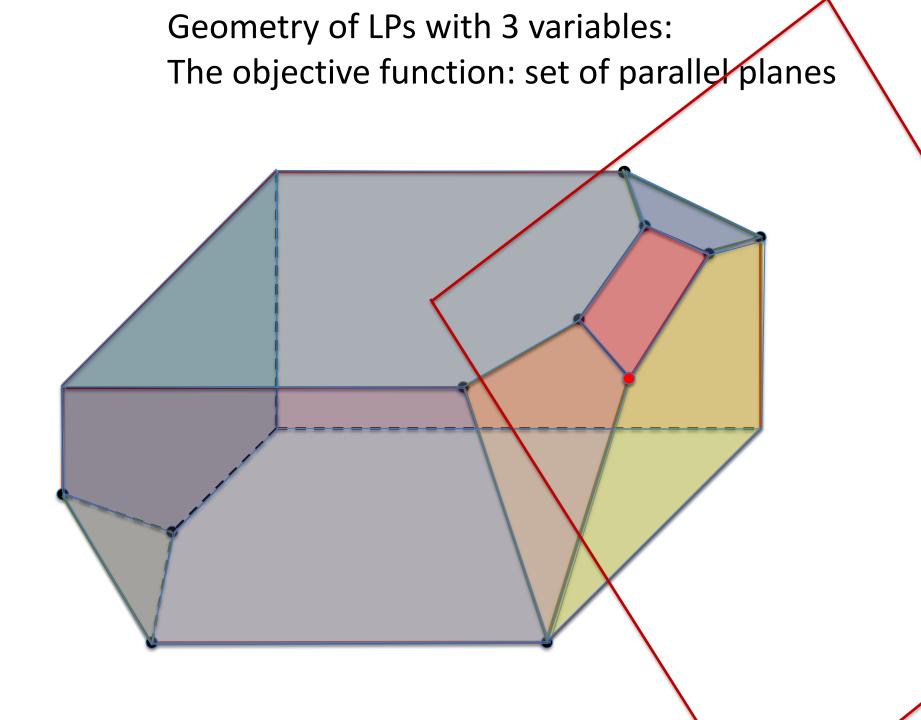


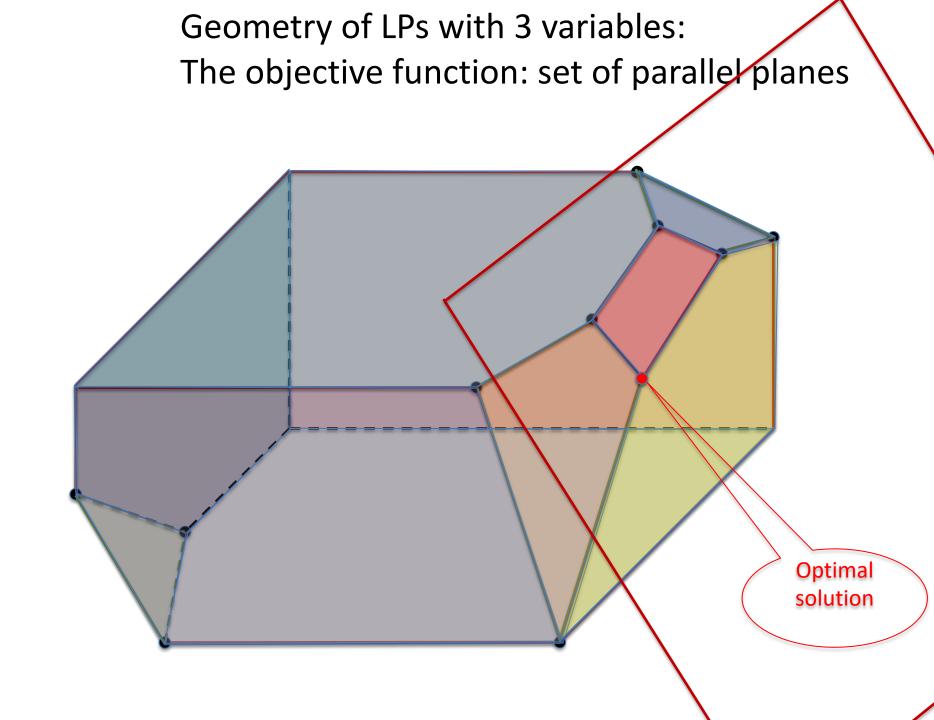
Geometry of LPs with 3 variables: The objective function: set of parallel planes Geometry of LPs with 3 variables: The objective function: set of parallel planes



Geometry of LPs with 3 variables: The objective function: set of parallel planes







Geometric interpretation of of LPs

	2 variables	3 variables	n variables
constraint	half-plane	half-space	half-hyperspace
feasible region	convex polygon	convex polyhedron	convex polytope
objective function	parallel lines	parallel planes	parallel hyperplanes
basic feasible solution	polygon vertex	polyhedron vertex	polytope vertex

LP terminology

Objective function: Function being minimized or maximized. Solution: Assignment of real values to the variables. Feasible solution: Solution that satisfies all the constraints. Feasible region: The set of feasible solutions; a convex polytope. Basic feasible solution: A vertex of the feasible solution polytope. Optimal solution: A feasible solution that minimizes or maximize the objective function; it is not necessarily unique and it might not exist (see below: infeasible and unbounded LP). Value of a solution: Value of objective function at a solution; sometimes called "cost" of a solution (for minimization problems) Optimal value: Value of optimal solution; sometimes called "optimal cost" (for minimization problems). Feasible LP: LP that has feasible solutions. Infeasible LP: LP with no feasible solutions. Bounded LP: LP with an optimal solution. Unbounded LP: LP that is feasible but has no optimal solution.