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Throughout this document G = (V,E) is a directed graph, n = |V |, m = |E|, and wt : E → Z is an edge
weight function. Edge weights can be positive, negative, or zero.

Given an algorithm A that solves the single-source shortest paths problem we can solve the all-pairs
shortest paths problem by running A n times, once with each node as the source. If A runs in Θ

(
f(m,n)

)
time, this takes Θ

(
nf(m,n)

)
time. In particular, if A is Dijkstra’s algorithm, it takes Θ(nm log n) time.

(For simplicity, we assume here that n = O(m), which is typically the case.) This is worse that the Θ(n3)
running time of the Floyd-Warshall algorithm if G is a dense graph, i.e., m is roughly n2. But if G is a
sparse graph, say m = O(n) or even O(n log n), Θ(nm log n) is faster than Θ(n3).

Unfortunately, as we have seen, Dijkstra’s algorithm does not work if edges can have negative weights.
So the question arises: Can we re-weigh the edges in a way that
(a) makes all edge weights non-negative, and
(b) preserves shortest paths: a u→ v path p is shortest under the original weight function wt if and only

if p is shortest under the new weight function wt′.
We have seen that a naive way to re-weigh the edges so as to satisfy (a), namely by adding the same
amount to the weight of every edge so as to make them all non-negative, does not satisfy (b): it punishes
disproportionately paths with many edges.

Johnson’s algorithm involves a clever way of re-weighing the edges that achieves both (a) and (b),
when that is possible: If G has no negative-weight cycles under wt, we can find (relatively quickly, using
the Bellman-Ford algorithm) new weights for the edges that satisfy both (a) and (b). We can then run
Dijkstra n times with these new weights, and obtain an all-pairs shortest paths algorithm that runs faster
than the Floyd-Warshall algorithm, if the graph is sparse.

Let us first focus on goal (b). Suppose we assign weight xu to each node u of G; for now, this is an
arbitrary integer — it could be positive, negative, or zero. Having assigned these weights to the nodes, we
can now define the new weight function wt′ on the edges:

wt′(u, v) = wt(u, v) + xu − xv, for each (u, v) ∈ E. (1)

So, the weight of edge (u, v) increases (by the amount xu − xv) if xu > xv; it decreases if xu < xv, and it
remains unchanged if xu = xv.

Now, consider any path p = u1, u2, . . . , uk. We have

wt′(p) = wt(u1, u2) + xu1 −��xu2

+ wt(u2, u3) +��xu2 −��xu3

+ wt(u3, u4) +��xu3 −��xu4

...

+ wt(uk−2, uk−1) +���xuk−2
−���xuk−1

+ wt(uk−1, uk) +���xuk−1
− xuk

Therefore, wt′(p) = wt(p)+xu1−xuk
. In other words, if we fix two nodes u and v in the graph, the weight

of every path from u to v under the new weight function wt′ changes by the same amount relative to its
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weight under the old weight function, namely the difference xu − xv. In particular, a shortest path from u
to v under the old weight function wt remains a shortest path from u to v under the new weight function
wt′. So, this way of re-weighing the edges achieves property (b): it preserves shortest paths. It remains
to determine whether there are values we can choose for the node weights xu that will also make the new
edge weights non-negative, thereby also achieving property (a).

Let us view the xu’s as unknown variables. The question is whether there are values we can assign to
these variables that satisfy, for every edge (u, v) of G

wt(u, v) + xu − xv︸ ︷︷ ︸
wt′(u,v)

≥ 0.

Or, rearranging the inequalities, the question is whether there are values for the variables xu, u ∈ V , such
that

xv − xu ≤ wt(u, v), for every (u, v) ∈ E (2)

Example: Consider the following graph:
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This gives rise to the following inequalities, one for each edge of the graph:

xB − xA ≤ −4

xC − xA ≤ −2

xC − xB ≤ 1

xD − xC ≤ 2

xA − xD ≤ 3

It turns out that these can be satisfied, for example by setting xA = 0, xB = −4, xC = −3, xD = −1.
(Verify that this assignment satisfies all of the above inequalities; we will see shortly how these values were
obtained.)

Claim: The inequalities (2) are satisfiable if and only if G has no negative-weight cycle (under the edge
weight function wt).

Proof: [Only if] Suppose there are values x̂u for the variables xu, u ∈ V , that satisfy (2), and let
C = u1, u2, . . . , uk, u1 be any cycle of G. We want to prove that wt(C) ≥ 0. Since the inequalities (2) are
satisfied, we have:

x̂u2 − x̂u1 ≤ wt(u1, u2)

x̂u3 − x̂u2 ≤ wt(u2, u3)

x̂u4 − x̂u3 ≤ wt(u3, u4)

...

x̂uk
− x̂uk−1

≤ wt(uk−1, uk)

x̂u1 − x̂uk
≤ wt(uk, u1)
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If we add these inequalities, all the terms on the left-hand side cancel out and the terms on the right-hand
side add up to the weight of the cycle C. So, wt(C) ≥ 0, as wanted.

[If] Suppose G has no negative-weight cycle. Therefore, shortest paths between any two nodes of G are
well-defined. We want to show that there are values x̂u for the variables xu, u ∈ V , that satisfy all the
inequalities (2). Rewrite (2) as

xv ≤ xu + wt(u, v), for every (u, v) ∈ E. (3)

Let s be a new “dummy” node that is not in V . We define the graph Gs = (V s, Es) as follows:
V s = V ∪ {s} and Es = E ∪ {(s, u) : u ∈ V } — that is, we add to G a new node s and edges from s to
every other node. We also define an edge weight function wts as follows: wts(u, v) = wt(u, v) for every
edge (u, v) ∈ E and wts(s, u) = 0 for every u ∈ V . That is, the weights of G’s edges do not change, and
the weights of the new edges (from s to all nodes) are 0.

Since s has no incoming edges, G and Gs have the same cycles, and the weight of each cycle is the
same in both graphs. In particular, Gs has no negative weight cycle — since, by assumption, G does not.
Therefore, the weight of a shortest s→ u path is well-defined in Gs.

If, for every node v, we interpret the variable xv as the weight of a shortest s → v path in Gs, the
inequalities (3) hold: They state that, for any node v and any predecessor u of v, the weight of a shortest
s→ v path is no greater than the weight of a shortest s→ u path plus the weight of the edge (u, v); this
statement is certainly true, by a straightforward cut-and-paste argument. Therefore, we can satisfy (2) by
assigning to each xv the weight of a shortest s→ v path in Gs.

The proof of the “if” direction of the above claim suggests the following effective procedure to find
values for the variables xu that satisfy the inequalities (2), which we need in order to re-weigh the edges so
as to satisfy requirements (a) and (b): Construct the graph Gs from G, run the Bellman-Ford algorithm
on Gs using s as the source node and the edge weight function wts. If the algorithm reports that a
negative-weight cycle is reachable from s, then G has a negative weight cycle and shortest paths on G are
not well-defined. Otherwise, we can use the weight of a shortest s→ u path computed by the Bellman-Ford
algorithm as the weight xu of node u, and then use these node weights to re-weigh the edges of G. (In the
example on page 2 the weights of the nodes are shortest paths from node A. In this example, we don’t
need to invent a dummy source s since there already exists a node, namely A, so that there is a path from
it to every node.) Since all edges now have non-negative weights, and the new weights preserve shortest
paths, we can use Dijkstra’s algorithm to compute shortest paths from each node u. This is Johnson’s
algorithm. It is described in pseudocode below.

Johnson(G = (V,E),wt)
1 V s := V ∪ {s} I construct Gs and wts from G and wt
2 Es := E ∪ {(s, u) : u ∈ V }
3 for each u ∈ V do wts(s, u) = 0
4 for each (u, v) ∈ E do wts(u, v) = wt(u, v)
5 L := Bellman-Ford(Gs, s,wts) I compute node weights as weights of shortest paths from s in Gs

6 if L = ⊥ then return ⊥ I shortest paths not well-defined
7 else
8 for each u ∈ V do xu := L[u] I assign node weigts
9 for each (u, v) ∈ E do I reweigh the edges
10 wt′(u, v) = wt(u, v) + xu − xv

11 for each u ∈ V do I run Dijkstra from each node using new weights
12 D′[u] := Dijkstra(G, u,wt′)
13 for each u ∈ V do I adjust the weights of shortest paths found under wt′ to the original weights wt
14 for each v ∈ V do
15 D[u, v] := D′[u, v] + xv − xu

16 return D[−,−]
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In the pseudocode we assume that Bellman-Ford(G, s,wt) returns the special value ⊥ if G has a negative
weight cycle reachable from s; otherwise it returns an array L indexed by the nodes, with L[u] containing
the weight of a shortest s → u path in G. We also assume that Dijkstra(G, s,wt) returns an array
D indexed by the nodes of G, so that D[v] is the weight of a shortest s → v path. So in line 12, the
assignment D′[u] := Dijkstra(G, u,wt′) sets D′[u] to an array indexed by the nodes of G so that D′[u, v]
is the weight of a shortest u→ v path (under weight function wt′).

Running time: We assume that the graph G = (V,E) is given in adjacency list form, which is well-suited
for sparse graphs. The weight wt(u, v) of edge (u, v) is stored together with node v in the adjacency list
of node u. As usual let n = |V | and m = |E|.

The construction of Gs from G (lines 1-4) can be done in Θ(m+n) time. The Bellman-Ford algorithm
in line 5 takes Θ(mn) time. The computation of the new edge weights in lines 9-10 takes Θ(m) time. The
n executions of Dijkstra’s algorithm (lines 11-12) take Θ(nm log n) time. Finally, the computation of the
weight of shortest paths between every pair of nodes under the original weight function wt (lines 14-15)
takes Θ(n2) time. So, the overall running time of the algorithm is

Θ(m + n) + Θ(mn) + Θ(nm log n) + Θ(n2) = Θ(nm log n).

The running time is dominated by the n executions of Dijkstra’s algorithm in lines 11-12.
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