
Computer Science C63 Winter 2025
Scarborough Campus University of Toronto

Colourability
Vassos Hadzilacos

Colourability is the following decision problem, abbreviated Col:

Instance: 〈G, k〉, where G = (V,E) is an undirected graph and k ∈ Z+.

Question: Is there a function f : V → [0..k − 1] such that if {u, v} ∈ E, f(u) 6= f(v). Such a function is
called a colouring of G, and if it exists we say that G is k-colourable and that it has a k-colouring.

As the name suggests, we think of the numbers assigned to the nodes by the function f as “colours”,
and the colouring requirement is that adjacent nodes be assigned different colours.

Theorem 10.1 Col is NP-complete.

Proof. It is straightforward to show that Col ∈ NP: A nondeterministic Turing machine can, in
polynomial time, “guess” a sequence of pairs (u, i), where u ∈ V and i ∈ [0..k − 1] and then check that
(a) there is such a pair for each node u of G and (b) adjacent nodes of G have different “colours”.

We prove that Col is NP-hard by showing that 3Sat ≤p
m Col. Given a 3-CNF formula F we show

how to construct, in polynomial time, a graph G and a positive integer k such that

F is satisfiable if and only if G has a k-colouring. (*)

Let F = C1 ∧ C2 ∧ · · · ∧ Cm be a 3-CNF formula with variables x1, x2, . . . , xn. For each j ∈ [1..m],
Cj = `1j ∨ `2j ∨ `3j , where each `tj is either xi or xi for some i ∈ [1..n]. Without loss of generality we assume

that n ≥ 4.1

The instance of Col that we construct from F consists of the following graph G = (V,E) and k = n+1.
(Recall that n is the number of variables and m is the number if clauses in F .) We group the nodes and
edges according to their purpose, which is to simulate certain aspects of the formula.

V = {v1, . . . , vn}︸ ︷︷ ︸
“palette” nodes

∪{x1, . . . , xn} ∪ {x1, . . . , xn}︸ ︷︷ ︸
“literal” nodes

∪{C1, . . . , Cm}︸ ︷︷ ︸
“clause” nodes

E =
{
{vi, vi′} : i, i′ ∈ [1..n] and i 6= i′

}
←− type I edges

∪
{
{xi, xi} : i ∈ [1..n]

}
←− type II edges

∪
{
{xi, vi′} : i, i′ ∈ [1..n] and i 6= i′

}
∪
{
{xi, vi′} : i, i′ ∈ [1..n] and i 6= i′

}
←− type III edges

∪
{
{Cj , xi} : xi is not a literal in Cj

}
∪
{
{Cj , xi} : xi is not a literal in Cj

}
←− type IV edges

There is a useful abuse of notation here, as we use Cj to denote both a clause of F and a node of G,
and xi and xi to denote both literals of F and nodes of G.

Let us first examine the time needed to construct G and k from F . |V | = 3n+m and |E| = Θ(n2) +
Θ(n) + Θ(n2) + Θ(mn) = Θ(n2 +mn). So the sizes of G and k are polynomial in the size of F , and they
can be constructed from it in polynomial time. It remains to prove (∗).
[Only if] Suppose F is satisfiable, and let τ be a truth assignment that satisfies it. Then for each j ∈ [1..m]

there is some tj ∈ [1..3] such that τ(`
tj
j) = 1. Define the function f : V → [0..n] as follows:

1We can justify this assumption in various ways: We can add new clauses with new variables, say (x ∨ x ∨ x), until we
have enough variables; the resulting formula is obviously satisfiable if and only if F is (the new clauses are trivially satisfiable
without affecting the original ones). Alternatively we can observe that if n ≤ 3 there are at most eight truth assignments, so
we can determine in polynomial time if F is satisfiable and accordingly map it to a graph that is or is not k-colourable.

1

(1) f(vi) = i.

(2) If there is some j ∈ [1..m] and i ∈ [1..n] such that `
tj
j = xi then f(xi) = i, f(xi) = 0, and f(Cj) = i.

(3) If there is some j ∈ [1..m] and i ∈ [1..n] such that `
tj
j = xi then f(xi) = 0, f(xi) = i, and f(Cj) = i.

(4) If, for every j ∈ [1..m] and i ∈ [1..n], `
tj
j /∈ {xi, xi} then arbitrarily set one of f(xi) and f(xi) to i and

the other to 0.

First note that f is well-defined: Rules (2) and (3) do not result in contradictory definitions for f(xi)
and f(xi), because for this to happen there would have to be j 6= j′ ∈ [1..m] such that for some i ∈ [1..n],

`
tj
j = xi and `

tj′

j′ = xi; this is impossible because then τ cannot satisfy both xi and xi.
We can now verify that f is a valid (n+1)-colouring of G: By (1), all palette nodes get different colours,

so f respects edges of type I. By (2), (3), and (4), each pair of literal nodes, xi and xi, get different colours,
so f respects edges of type II. Since the literal nodes xi and xi, one of which is coloured i and the other 0,
are only connected to palette nodes vi′ , for i′ 6= i, and each vi′ is coloured i′, f respects edges of type III.
By (2) and (3), clause node Cj has different colour than every literal node except `

tj
j , where `

tj
j is a literal

that satisfies clause Cj under τ . By the definition of type IV edges, there is no edge between Cj and `
tj
j ,

so f respects type IV edges.

[If] Suppose G is (n+1)-colourable, and let f be an (n+1)-colouring of G. The type I edges form a clique
among the n palette nodes. Thus we need n distinct colours for these nodes. Without loss of generality,
let i be the colour of vi.

Type III edges imply that for each i ∈ [1..n], literal nodes xi and xi cannot be coloured with any of the
colours [1..n] except i. Furthermore, type II edges require that these nodes have different colours, since
one of them is coloured i the other must be coloured 0. Therefore, for every i ∈ [1..n],

one of xi and xi is coloured i and the other is coloured 0. (†)

We now define a truth assignment τ that satisfies F :

τ(xi) =

{
1, if f(xi) = i

0, otherwise — i.e., by (†), f(xi) = 0.
(‡)

Consider any clause Cj , j ∈ [1..m]. We claim that τ satisfies at least one of the three literals of Cj . The
clause node Cj is connected by type IV edges to every literal node except the three that correspond to the
literals in clause Cj . Since n ≥ 4, there is at least one variable xi′ , i

′ ∈ [1..n], that is not involved in the
three literals of Cj , so, by (†), node Cj is not coloured 0 and it is not coloured i′ for any variable xi′ that
does not appear in its literals. So it must be coloured by one of the colours assigned to the three literal
nodes that correspond to the three literals of clause Cj . Let `tj be this literal node and i be the colour
assigned to it and to Cj , so `tj is either xi or xi. We consider these two cases:

Case 1. `tj = xi. Then f(xi) = f(Cj) = i and so, by (‡), τ(xi) = 1. Thus, τ satisfies clause Cj .

Case 2. `tj = xi. Then f(xi) = f(Cj) = i. By (†), f(xi) = 0; by (‡), τ(xi) = 0 and so τ(xi) = 1. Thus,
τ satisfies clause Cj .

Therefore τ satisfies Cj , for every j ∈ [1..m], and so it satisfies F .

It turns out that even the 3-colourability problem (fixing the parameter k to 3) is NP-complete. On the
other hand, 2-colourability can be decided in polynomial (in fact linear) time using breadth- or depth-first
search: A graph is 2-colourable if and only if it is bipartite.

2

