Encoding of arbitrary TM $M = (Q, \Sigma, \Gamma, \delta, q_0, h_A, h_R)$ as a string over {0,1,#}.

- Encode each $q \in Q$ by a unique binary string $\langle q \rangle$ of length $\lceil \log_2 |Q| \rceil$.
- Encode $Q = \{q_1, q_2, ..., q_n\}$ as the string $\langle Q \rangle = \langle q_1 \rangle \# \langle q_2 \rangle \# ... \# \langle q_n \rangle$ with the convention that
 - $\langle q_1 \rangle$ is the encoding of the initial state
 - $\langle q_2 \rangle$ is the encoding of the accept state
 - $\langle q_3 \rangle$ is the encoding of the reject state.

- Encode each a ∈ Γ by a unique binary string ⟨a⟩ of length [log₂ |Γ|].
- Encode $\Sigma = \{a_1, a, ..., a_m\}$ as the string $\langle \Sigma \rangle = \langle a_1 \rangle \# \langle a_2 \rangle \# ... \# \langle a_m \rangle.$
- Encode Γ similarly with the convention that the encoding of ⊔ is listed first; the encoding of Γ is denoted (Γ).
- Encode string x = a₁a₂ ... a_k ∈ Γ*as the string ⟨x⟩ = ⟨a₁⟩⟨a₂⟩...⟨a_k⟩.
 (Since we have fixed-length codes for the symbols in Γ we don't need separators.)

- Encode the state transition $\delta(q, a) = (p, b, D)$ as the string $\langle q \rangle \langle a \rangle \langle p \rangle \langle b \rangle \langle D \rangle$, where $\langle D \rangle = 0$ if D = Land $\langle D \rangle = 1$ if D = R.
- Encode the entire state transition function as $\langle \delta \rangle = \langle \text{trans}_1 \rangle \langle \text{trans}_2 \rangle \dots \langle \text{trans}_\ell \rangle.$
- Encode the entire TM *M* as $\langle M \rangle = \langle Q \rangle \# \# \langle \Sigma \rangle \# \# \langle \Gamma \rangle \# \# \langle \delta \rangle$

<u>Conventions</u>:

Strings in $\{0,1,\#\}^*$ that do not encode a TM according to the above conventions are assumed to encode a fixed TM, say one that rejects all strings in zero moves (i.e., initial state = reject state).

Strings in $\{0,1,\#\}^*$ that do not encode a string in Γ^* according to the above conventions are assumed to encode a fixed string, say ε (empty string).

Encoding mathematical objects

Fix any alphabet sufficient to encode Turing machines (e.g., $\{0,1,\#\}$ or even just $\{0,1\}$).

- For any finite mathematical object O (natural number, set, sequence, graph, ...) the encoding of O is denoted (O).
- The encoding of a sequence O₁, O₂, ..., O_k of finite mathematical objects is denoted (O₁, O₂, ..., O_k).
 E.g., the encoding of the pair consisting of a Turing machine M and an input x is denoted (M, x).

Encoding mathematical objects

- The details of how we encode different (finite) mathematical objects are not important, but we assume that:
 - Given $\langle O_1 \rangle$, $\langle O_2 \rangle$, ..., $\langle O_k \rangle$, some TM constructs $\langle O_1, O_2, ..., O_k \rangle$.
 - Given $\langle O_1, O_2, ..., O_k \rangle$, for each $i \in 1..k$, some TM constructs $\langle O_i \rangle$.

That is, encodings and decodings are computable functions.

A Turing machine M_U that, given $\langle M, x \rangle$, simulates the computation of machine M on input x.

 $\mathcal{L}(M_U) = \{ \langle M, x \rangle : \text{Turing machine } M \text{ accepts input } x \}$

- Tape 1: Input tape --- always contains input $\langle M, x \rangle$
- Tape 2: Contains (encoding of) *M*'s tape; initially blank
- Tape 3: Contains (encoding of) *M*'s state; initially blank

- 1. From tape 1 copy $\langle q_0 \rangle$ (found in $\langle M \rangle$) to tape 3 and copy $\langle x \rangle$ to tape 2. Move the head of tape 2 to the leftmost cell.
- 2. If the (encoded) state of M on tape 3 is $\langle h_A \rangle$, accept; if it is $\langle h_R \rangle$, reject.
- 3. Determine the encoding (a) of the symbol of M that starts at the present position of the head on tape 2, and the encoding (q) of the current state of M on tape 3. On tape 1 find the encoding (q)(a)(p)(b)(D) of the state transition that starts with (q)(a).

- 4. Simulate the execution of this transition:
 - on tape 3 change the encoding of M's state from $\langle q \rangle$ to $\langle p \rangle$
 - on tape 2 change the encoding of M's symbol that starts at the present position of the tape 2 head from (a) to (b)
 - position the head of tape 2 to the beginning of the encoding of the next or previous symbol of *M*, depending on (*D*)
- 5. Go to step 2

- 1. From tape 1 copy $\langle q_0 \rangle$ (found in $\langle M \rangle$) to tape 3 and copy $\langle x \rangle$ to tape 2. Position the head of tape 2 on the leftmost cell.
- 2. If the (encoded) state of M on tape 3 is $\langle h_A \rangle$, accept; if it is $\langle h_R \rangle$, reject.
- 3. Determine the encoding (a) of the symbol of M that starts at the present position of the head on tape 2, and the encoding (q) of the current state of M on tape 3. On tape 1 find the encoding (q)(a)(p)(b)(D) of the state transition that starts with (q)(a).