
Computer Science C63 Winter 2025
Scarborough Campus University of Toronto

Definition of the “yields” relation `
Vassos Hadzilacos

Let M = (Q,Σ,Γ, δ, q0, hA, hR) be a Turing machine. Without loss of generality, we assume that
Q ∩ Γ = ∅, so that state symbols cannot be confused with tape symbols.

Notational conventions:
• Lower case characters near the beginning of the alphabet (a, b, c, . . .) denote tape symbols (elements

of Γ).
• Lower case characters near the end of the alphabet (w, x, y, z, . . .) denote strings of tape symbols

(elements of Γ∗).
• p, q (decorated with accents, subscripts, superscripts etc.) denote states (elements of Q).
• t is the blank symbol (element of Γ)

A configuration of M is a string of the form xqy, where x, y ∈ Γ∗ and q ∈ Q, where y does not end
with the blank symbol t. This describes the complete state of the Turing machine at some point in its
computation: The machine is in state q, its tape contains the string xy starting in cell 1 (the leftmost cell)
followed by an infinite number of blanks; and the tape head is positioned over cell |x| + 1, i.e., the first
symbol of y, if y 6= ε, or the leftmost of the infinite sequence of trailing blanks, if y = ε.

We define the relation `M between configurations (written simply `, if M is clear from the context) to
hold if M can move from one configuration to the other in a single step, based on its transition function.

More precisely, let C = xqy; then C `M C ′ if and only if:

Case 1. y = ay′, for some a ∈ Γ. (Thus, y 6= ε, and if a = t then y′ 6= ε.)

Subcase 1(a). δ(q, a) = (p, b, R): C ′ = xbpy′.

Subcase 1(b). δ(q, a) = (p, b, L) and x = x′c, for some c ∈ Γ:

C ′ =


x′pcby′, if b 6= t or y′ 6= ε

x′pc, if b = t and y′ = ε and c 6= t
x′p, if b = t and y′ = ε and c = t

Subcase 1(c). δ(q, a) = (p, b, L) and x = ε (thus the head is on cell 1):

C ′ =

{
pby′, if b 6= t or y′ 6= ε

p, if b = t and y′ = ε

Case 2. y = ε. (Thus, in C the tape head is on the leftmost of the infinitely many trailing blanks.)

Subcase 2(a). δ(q,t) = (p, b, R): = xbp.

Subcase 2(b). δ(q,t) = (p, b, L) and x = x′c, for some c ∈ Γ (thus x 6= ε and the head is not on
cell 1):

C ′ =


x′pcb, if b 6= t
x′pc, if b = t and c 6= t
x′p, if b = t and c = t

1

Subcase 2(c). δ(q,t) = (p, b, L) and x = ε (thus the head is on cell 1):

C ′ =

{
pb, if b 6= t
p, if b = t

Note that if C = yhAz of C = yhRz, there is no C ′ such that C `M C ′: No case applies then, since the
transition function is not defined for the two halt states.

The transitive closure of the `M relation and is denoted `∗M . Intuitively, C `∗M C ′ if and only if the
TM M transforms C to C ′ in a finite number of steps (including zero). More precisely, C `∗M C ′ if and
only if:

• C ′ = C, or

• for some integer k > 1, there are configurations C1, C2, . . . , Ck such that C1 = C, Ck = C ′, and for
all i, 1 ≤ i < k, Ci `M Ci+1.

Based on the `∗M relation we can now define what it means for a TM M to accept a string, to recognize
a language, and to decide a language:

• M accepts x ∈ Σ∗ if and only if, for some strings y, z ∈ Γ∗, q0x `∗M yhAz. That is, started in the
initial state q0 with only the input x on the tape, and the head on the leftmost cell, after a finite
number of steps M enters the accept state hA with some string yz on its tape — we don’t care what
yz is.

• M rejects x ∈ Σ∗ if and only if, for some strings y, z ∈ Γ∗, q0x `∗M yhRz.

• M loops on x ∈ Σ∗ if and only if there is an infinite sequence of confituations C0, C1, C2, . . . such
that C0 = q0x and, for all n ∈ N, Ci `M Ci+1.

• M recognizes a language L if and only if L = {x ∈ Σ∗: M accepts x}. That is, for every x ∈ L, M
accepts x, and for every x /∈ L, M rejects x or loops on x. In this case, we say that M is a recognizer
for L. A language is recognizable if there is a TM that recognizes it. Common alternative terms
for recognizable language are recursively enumerable language or semi-decidable language.

• M decides a language L if and only if M is a recognizer for L and halts on every input. That is,
for every x ∈ L, M accepts x, and for every x /∈ L, M rejects x. In this case, we say that M is a
decider for L. A language is decidable if there is a TM that decides it. A common alternative term
for decidable language is recursive language.

Recalling that a language is a set (of strings) and that a decision problem can be thought of as a language
(the set of strings that represent yes-instances of the problem), we sometimes speak of recognizable (or
recursively enumerable or semi-decidable) sets or decision problems; as well as of decidable (or recursive)
sets or decision problems.

2

