Computer Science C63 Winter 2025
Scarborough Campus University of Toronto

Definition of the “yields” relation +
Vassos Hadzilacos

Let M = (Q,%,T,0,q0,ha,hr) be a Turing machine. Without loss of generality, we assume that
QNI = g, so that state symbols cannot be confused with tape symbols.

Notational conventions:

e Lower case characters near the beginning of the alphabet (a,b,c,...) denote tape symbols (elements
of T').

e Lower case characters near the end of the alphabet (w,x,y,z,...) denote strings of tape symbols
(elements of I'*).

e p,q (decorated with accents, subscripts, superscripts etc.) denote states (elements of Q).

e LI is the blank symbol (element of I")

A configuration of M is a string of the form xqy, where x,y € I'* and ¢ €), where y does not end
with the blank symbol LI. This describes the complete state of the Turing machine at some point in its
computation: The machine is in state g, its tape contains the string xy starting in cell 1 (the leftmost cell)
followed by an infinite number of blanks; and the tape head is positioned over cell |z| + 1, i.e., the first
symbol of y, if y # €, or the leftmost of the infinite sequence of trailing blanks, if y = e.

We define the relation Fj; between configurations (written simply F, if M is clear from the context) to
hold if M can move from one configuration to the other in a single step, based on its transition function.

More precisely, let C' = zqy; then C)y, C’ if and only if:

Case 1. y=ay/, for some a € T'. (Thus, y # €, and if a = U then ¢’ # €.)
SUBCASE 1(a). 0(g,a) = (p,b,R): C" = xbpy'.
SUBCASE 1(b). 6d(q,a) = (p,b, L) and z = 2’¢c, for some c € I":

2'peby’, ifb#Uory #e
C" =< 2'pe, ifb=Uandy =ecand c# U
x'p, ifb=Uandy =eand c=U

SUBCASE 1(c). d(g,a) = (p,b, L) and x = € (thus the head is on cell 1):

o - pby’, ifb#Uory #e
o ifb=Uandy =€

CASE 2. y = €. (Thus, in C the tape head is on the leftmost of the infinitely many trailing blanks.)
SUBCASE 2(a). 6(q,U) = (p,b, R): = zbp.

SUBCASE 2(b). d(q,U) = (p,b,L) and = = ¢, for some ¢ € T' (thus = # € and the head is not on
cell 1):

x'peb, if b#U
C'=<{a2'pe, ifb=Uandc#L
z'p, ifb=Uand c=U

SUBCASE 2(c). d(¢,U) = (p,b, L) and = = € (thus the head is on cell 1):

o pb, if b# U
B p, ifb=1U

Note that if C' = yhaz of C = yhgz, there is no C’ such that C' ,; C’": No case applies then, since the
transition function is not defined for the two halt states.

The transitive closure of the ks relation and is denoted 3,. Intuitively, C' k3, C” if and only if the
TM M transforms C' to C’ in a finite number of steps (including zero). More precisely, C' 3, C” if and
only if:

e C'=0C,or

e for some integer k > 1, there are configurations Cy,Cs, ..., C} such that C; = C, C), = C’, and for
all 1, 1 <1< k, Ci by C/L'+1.

Based on the I}, relation we can now define what it means for a TM M to accept a string, to recognize
a language, and to decide a language:

e M accepts x € ¥* if and only if, for some strings y,z € I'*, gox F}, yhaz. That is, started in the
initial state gg with only the input z on the tape, and the head on the leftmost cell, after a finite
number of steps M enters the accept state h4 with some string yz on its tape — we don’t care what
Yz is.

M rejects x € ¥* if and only if, for some strings y, 2z € I'*, qox -}, yhr2.

M loops on x € ¥* if and only if there is an infinite sequence of confituations Cy, Cy, Co, ... such
that Cy = qozx and, for all n € N, C; Fpr Ciq1.

e M recognizes a language L if and only if L = {z € ¥*: M accepts x}. That is, for every z € L, M
accepts x, and for every x ¢ L, M rejects = or loops on . In this case, we say that M is a recognizer
for L. A language is recognizable if there is a TM that recognizes it. Common alternative terms
for recognizable language are recursively enumerable language or semi-decidable language.

M decides a language L if and only if M is a recognizer for L and halts on every input. That is,
for every x € L, M accepts x, and for every = ¢ L, M rejects x. In this case, we say that M is a
decider for L. A language is decidable if there is a TM that decides it. A common alternative term
for decidable language is recursive language.

Recalling that a language is a set (of strings) and that a decision problem can be thought of as a language
(the set of strings that represent yes-instances of the problem), we sometimes speak of recognizable (or
recursively enumerable or semi-decidable) sets or decision problems; as well as of decidable (or recursive)
sets or decision problems.

