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The Directed Hamiltonian Cycle problem, abbreviated DHC, is the following decision problem:

Instance: 〈G〉, where G is a directed graph.

Question: Does G have a simple cycle that visits every node? (A cycle u1, u2, . . . , uk, u1 is simple if the
nodes u1, . . . , uk are all distinct.)

A simple cycle that includes every node is called a Hamiltonian cycle, and a graph that has such a cycle
is called a Hamiltonian graph. Figure 1 shows a Hamiltonian and a non-Hamiltonian graph.

Figure 1: A non-Hamiltonian graph (left) and a Hamiltonian graph (right)

Theorem 10.3 DHC is NP-complete.

Proof. It is straightforward to show that DHC ∈ NP. Let G = (V,E), and let |V | = n, |E| = m.
The certificate is a sequence of nodes u1, u2, . . . , un; this can be represented as a string of O(m log n) bits.
The verifier checks that the nodes in the sequence are pairwise distinct, and that, for every i ∈ [1..n− 1],
(ui, ui+1) is an edge of G, and that (un, u1) is also an edge of G. This can be done in polynomial time in
n and m.

We prove that DHC is NP-hard by showing that VertexCover ≤p
m DHC.

Given 〈G, k〉 where G = (V,E) is an undirected graph and k is an integer in [1..|V |], we show how to
construct, in polynomial time, a directed graph GD = (VD, ED) such that

G has a vertex cover of size k ⇔ GD has a Hamiltonian cycle. (*)

To define the nodes and edges of GD we need some notation. We abbreviate the edge {u, v} of G as uv;
since G is undirected, uv is exactly the same edge as vu. We list the edges of G adjacent to node u in some
arbitrary order and denote them as e1u, e

2
u, . . . , e

du
u , where du is the degree of node u, i.e., the number of

edges incident on u. The edge uv is listed both among the edges adjacent to u and also among the edges
adjacent to v, so uv is eiu for some i ∈ [1..du] as well as ejv for some j ∈ [1..dv].

We now describe the nodes and edges of the directed graph GD.

• GD has the following nodes:

– k nodes denoted c1, . . . , ck, which we will call “cover” nodes, and
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Figure 2: The four nodes of GD that correspond to the edge uv of G

– four nodes for every edge uv of G, denoted (u, uv, 0), (u, uv, 1), (v, uv, 0), and (v, uv, 1). Getting
a little ahead of ourselves, these four nodes will be connected as shown in Figure 2, with the edges
coming from points A and B and going to points C and D to be explained shortly. Imagine the
nodes of GD of the form (u,−,−) being arranged vertically in a column in the order (u, e1u, 0),
(u, e1u, 1), (u, e2u, 0), (u, e2u, 1), . . . , (u, eduu , 0), (u, eduu , 1).

• GD has the following edges:

– For each i ∈ [1..k] and each u ∈ V , the edge
(
ci, (u, e

1
u, 0)

)
— i.e., edges from each “cover” node

ci to the first node of the column of GD nodes that corresponds to each node u of G.

– For each i ∈ [1..k] and each u ∈ V , the edge
(
(u, eduu , 1), ci

)
— i.e., edges from the last node of

the column of GD nodes that corresponds to each node u of G to each “cover” node ci.

– For each uv ∈ E, the edges

◦
(
(u, uv, 0), (u, uv, 1)

)
and

(
(v, uv, 0), (v, uv, 1)

)
— the vertical edges shown in Figure 2;

◦
(
(u, uv, 0), (v, uv, 0)

)
,
(
(u, uv, 1), (v, uv, 1)

)
,
(
(v, uv, 0), (u, uv, 0)

)
,
(
(v, uv, 1), (u, uv, 1)

)
—

the horizontal edges shown in Figure 2.

– For each u ∈ V and i ∈ [1..du − 1], the edge
(
(u, eiu, 1), (u, ei+1

u , 0)
)

— the edges from A and B
to C and D, respectively, shown in Figure 2.

An example of the construction of GD from G is shown in Figure 3. You may also find useful the
step-by-step illustration of the construction in this example described here.

Let us first examine the time needed to construct GD from G. We have

|VD| = 4m + k

|ED| = 2kn + 6m +
∑
u∈V

(du − 1) = 2kn + 6m + 2m− n = (2k − 1)n + 8m.

Without loss of generality we can assume that k ≤ n: otherwise the given instance of Vertex Cover
is obviously a no-instance and therefore we can map any such instance to a trivial no-instance of DHC.
Therefore, |VD| = O(m + n) and |ED| = O(n2 + m) = O(n2). So the size of GD is polynomial in the size
of G, and obviously it can be constructed from it in polynomial time.

It remains to prove (∗).

[Only If] Let u1, . . . , uk be a vertex cover of G. We will show that GD has a Hamiltonian cycle.
Consider the following path: Start at c1, continue to (u1, e

1
u1
, 0) (the first node in the “column” of GD

nodes that corresponds to the first node u1 of the vertex cover of G), and then visit every node of the
form (u1,−,−) in turn, following the “vertical” edges of that column. When the last node (u1, e

du
u1
, 1) of
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Figure 3: The directed graph GD obtained from the undirected graph G

that column is reached follow the edge to c2, continue to (u2, e
1
u2
, 0) (the first node in the “column” of GD

nodes that corresponds to the second node u2 of the vertex cover of G), and then visit the nodes of the
form (u2,−,−). After visiting these, follow the edge to c3 and so on, until we have done the same with
each node ui, i ∈ [1..k], in the vertex cover of G. From the last node of the column of nodes of the form
(uk,−,−), return to c1.

The path described above is a simple cycle, but it is not a Hamiltonian cycle because it misses the nodes
of the form (v, ejv, b) for all v 6= ui, i ∈ [1..k], j ∈ [1..dv], and b ∈ {0, 1} — i.e., the nodes in the columns
that do not correspond to nodes of G in the vertex cover. Consider any such node, say (v, ejv, b). Recall
that ejv is the edge vu in G, for some node u; and since v is not in the vertex cover of G, u must be. So,
ejv = eiu for some u in the vertex cover and i ∈ [1..du]. Thus, we can modify the above path to include the
nodes (v, ejv, b) by replacing the edge (u, eiu, 0), (u, eiu, 1) by the path (u, eiu, 0), (v, ejv, 0), (v, ejv, 1), (u, eiu, 1).
(See Figure 2: instead of going directly down from A to D, we take a detour to include the two nodes on
the right).

By adjusting the path in this manner for all the nodes it misses, we obtain a Hamiltonian cycle of GD.

[If] Suppose that H is a Hamiltonian cycle of GD. We will show that G has a vertex cover of size k.
The cycle H must pass through all the nodes c1, . . . , ck in some order. Without loss of generality,

assume that it does so in this order (we can ensure this by re-indexing the nodes c1, . . . , ck, if neces-
sary). So, H consists of k segments, each starting at ci and ending in ci⊕1, for i ∈ [1..k], where i ⊕ 1 =
(i mod k) + 1 (so the “next” integer after k is 1):

H = c1 ; c2 ; c3 ; · · ·; ck ; c1.

From the definition of GD, the first node after ci on the ci ; ci⊕1 segment of C is (ui, e
1
ui
, 0), for some

node ui of G. We will show that u1, u2, . . . , uk form a vertex cover of G.
To see why, first refer to Figure 2. If H enters this group of four nodes from A, it must exit from C:

if it exits from D it will miss one of the other two nodes of the group. Similarly, if H enters this group of
four nodes from B, it must exit from D. Therefore,

every node on the ci ; ci⊕1 segment of H, except ci and ci⊕1, is of the form (−, uiv,−)
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(recall that uiv is identical to vui). This implies that

for every node (−, e,−) on H, the edge e of G is covered by one of the nodes u1, . . . , uk.

Since H passes through every node of GD, and for every edge e of G there are nodes (−, e,−) in GD, it
follows that u1, . . . , uk is a vertex cover of G, as wanted.

The undirected Hamiltonian cycle problem

The undirected Hamiltonian cycle problem, UHC, is just like DHC, except that the graph G is undirected.
Note that a cycle in an undirected graph must have length at least three; that is, if {u, v} is an edge of G,
u, v, u is not a cycle. (In contrast, a directed graph can have cycles of length 2.) Figure 4 shows two
undirected graphs, one that has no Hamiltonian cycle and one that does.

Figure 4: Undirected graphs without (left) and with (right) Hamiltonian cycle

Theorem 10.4 UHC is NP-complete.

Proof Sketch. It is straightforward to show that UHC is in NP. To show that it is NP-hard, we
sketch a polytime mapping reduction of DHC to UHC, leaving the detailed argument as an exercise.

Given a directed graph G = (V,E) we construct an undirected graph G′ = (V ′, E′) such that G has
a Hamiltonian cycle if and only G′ does. Intuitively, the idea is to create three nodes u1, u2, u3 in G′ for
each node u of G. We add edges {u1, u2} and {u2, u3}, and for every (directed) edge (u, v) of G we add
the (undirected) edge {u3, v1} in G′. This construction is illustrated in Figure 5.

u u1 u2 u3 v1 v2 v3v

Figure 5: Illustration of reduction of DHC to UHC

More precisely, if G = (V,E), we define G′ = (V ′, E′) as follows:

V ′ = V × {1, 2, 3}
E′ =

{
{(u, 1), (u, 2)}, {(u, 2), (u, 3)}: u ∈ V

}
∪
{
{(u, 3), (v, 1)}: (u, v) ∈ E

}
It is obvious that G′ can be constructed in time polynomial in the size of G. We leave it as an exercise
to prove that G has a Hamiltonian cycle if and only if G′ does. The only-if direction is straightforward.
The converse is a little more delicate. (Check that your proof does not apply if instead we had “split”
each node u of G into two, rather than three, nodes in G′. Show, by means of a counterexample, that this
simpler construction is not a correct reduction.)
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