
Computer Science C63 Winter 2025
Scarborough Campus University of Toronto

The arithmetic hierarchy
Vassos Hadzilacos1

1 Definition and basic properties

The arithmetic hierarchy is a classification of some languages based on their “degree of uncomputability”:
At the bottom of the hierarchy lie the decidable languages, contained by the larger sets of recognizable
and co-recognizable languages. These, in turn, are contained by a larger set of undecidable languages
and their complements; and these sets are contained by a larger set of languages that contain “even more
undecidable” languages and their complements; and so on ad infinitum. Each such pair of sets defines a
“level” of this infinite hierarchy of more and more undecidable languages. Remarkably, there are two quite
different, but equivalent, ways of arriving at the definition of these sets of languages: One is based on
oracle Turing machines (OTMs) and the other is based on the structure of first-order logic formulas that
can be used to describe them.

Note that OTMs can be encoded by strings in a way that is similar to how ordinary Turing machines
(TMs) are. Furthermore, there is a Universal OTM MU which, given the code 〈M,x〉 of an OTM M and
input x, uses oracle A to simulate the computation of MA on x. The Universal OTM works just like the
Universal Turing machine, and uses its oracle for the query steps. (For more information on OTMs see the
document entitled “Reductions”, specifically the discussion of Turing reductions; and for more information
on the Universal Turing machine see the document entitled “Church’s thesis and the Universal Turing
machine.)

Definition 1 For every i ∈ N, we define the sets ∆i, Σi, and Πi inductively as follows:

• ∆0 = Σ0 = Π0 = the set of decidable languages.

• For each i > 0,

– ∆i is the set of languages that are decided by OTMs that use oracles in Σi−1.

– Σi is the set of languages that are recognized by OTMs that use oracles in Σi−1; and Πi is the
set of complements of languages in Σi.

The sets ∆i, Σi, and Πi comprise the i-th level of the arithmetic hierarchy.

A decidable language is of no help as an oracle, since membership in it can be decided by a Turing
machine, without needing to resort to an oracle. Therefore, the following important fact about level 1 of
the arithmetic hierarchy is an immediate corollary of Definition 1.

Corollary 2 ∆1 is the set of decidable languages, Σ1 is the set of recognizable languages, and Π1 is the
set of co-recognizable languages.

We have seen that the set of decidable languages, ∆1, is closed under complementation. This is also
true for every ∆i for essentially the same reason: By swapping the accept and reject states of an OTM
that decides L using L′, we obtain an OTM that decides L using L′.

1I am grateful to Yiyang Zhou, former teaching assistant for this course, who provided extensive comments and corrections
that improved this document significantly. Naturally I am responsible for any remaining errors.

1

Corollary 3 For each i ∈ N, ∆i is closed under complementation.

The next result states that each level of the arithmetic hierarchy is contained in the next.

Theorem 4 For each integer i ≥ 1, (a) ∆i ⊆ Σi ⊆ ∆i+1, and (b) ∆i ⊆ Πi ⊆ ∆i+1.

Proof. Let i ≥ 1.
For part (a), the fact that ∆i ⊆ Σi follows immediately from the fact that a decider that uses L is, a

fortiori, a recognizer that uses L. To show that Σi ⊆ ∆i+1, consider any language L ∈ Σi. We define an
OTM M such that ML decides L: M simply copies its input x to the query tape, enters the query state,
and accepts if the response to the query is 1 and rejects if the response is 0. Clearly ML decides L, and
since L ∈ Σi, by definition L ∈ ∆i+1. Thus, Σi ⊆ ∆i+1.

For part (b), let L ∈ ∆i. By Corollary 3 L ∈ ∆i and by part (a) L ∈ Σi and so L ∈ Πi, proving
∆i ⊆ Πi. Now let L ∈ Πi and so L ∈ Σi; by part (a) L ∈ ∆i+1, and by Corollary 3 L ∈ ∆i+1, proving that
Πi ⊆ ∆i+1. Thus ∆i ⊆ Πi ⊆ ∆i+1.

Are the containments in Theorem 4 proper? That is, is it the case that for all i ≥ 1, ∆i (Σi (∆i+1,
and ∆i (Πi (∆i+1? It is conceivable that once we give an OTM a powerful enough oracle in Σ1, say an
oracle that solves the Halting problem for Turing machines, the OTM becomes all-powerful, in the sense
that it can solve all problems solvable by OTMs and the hierarchy “collapses” — there is only our familiar
level 1 and then all other problems in a second level. As we will prove next, this is not the case: Although
an OTM with an oracle for the Halting problem for TMs can trivially solve the Halting problem for TMs
(and therefore can decide any recognizable language) it cannot solve the Halting problem for OTMs with
an oracle for the Halting problem for TMs! This “jump” in difficulty occurs at every level and so the
containments of Theorem 4 are indeed proper: The arithmetic hierarchy has an infinite number of distinct
levels, each properly contained in the next. Figure 1 illustrates the structure of the arithmetic hierarchy
as a Venn diagram of the sets involved. The languages H i, H i, and Di that “separate” each level i from
the previous one will be defined shortly, as we develop the technical machinery needed to prove that the
containments of Theorem 4 are indeed proper.

Definition 5 The Halting problem with oracle L is the problem of determining whether a given OTM
N using oracle L halts on a given input x; that is, it is the language

HL = {〈N, x〉 : N is an OTM such that NL halts on input x}.

Theorem 6 For every language L, the language

DiagL = {〈N〉 : N is an OTM such that NL does not halt on input 〈N〉}

is not recognizable by any OTM using L.

Proof. Let L be any language and suppose, for contradiction, that there is an OTM M such that ML

recognizes DiagL. Without loss of generality, assume that M never rejects — it loops instead. Thus, for
any input 〈N〉,

ML halts on 〈N〉 ⇔ ML accepts 〈N〉 ⇔ NL does not halt on 〈N〉.

In particular, taking N = M , i.e., running M with oracle L on its own code, we get

ML halts on 〈M〉 ⇔ ML does not halt on 〈M〉,

which is a contradiction.

2

Di+1

Σ1

∆1

Π1

∆3

∆2

∆i

∆i+1

...

Π2 Σ2

Σ3

Σi

Σi+1

Π3

Πi

Πi+1

H1

c
o
re
c
o
g
n
iz
a
b
le

decidable

re
c
o
g
n
iz
a
b
le

H1

H2

H3

Hi

Hi+1

H2

Hi

H3

Hi+1

D2

D3

Di

Figure 1: Structure of the arithmetic hierarchy

Theorem 7 For every language L, HL is (a) recognizable by some OTM that uses L, but (b) not decidable
by any OTM that uses L.

Proof. The following is a recognizer for HL: on input 〈M,x〉, run M using L on input x. If this
computation halts, then accept. This proves part (a).

For part (b) suppose, for contradiction, that there is some language L and some OTM M such that
ML decides HL. Then the language DiagL is also decidable by the following OTM using L: On input
〈N〉, run M using L on input 〈N,N〉 and do the opposite of what M does on that input: accept if M
rejects and reject if M accepts. This contradicts Theorem 6.

Recall the language Halt = {〈M,x〉: M is a TM (with no orace) that accepts x}. Since Halt is a

language, HHalt is also a language (the halting problem for OTMs with oracle Halt), and so H(HHalt)

is also a language (the halting problem for OTMs with oracle HHalt), from iterating this construction
i times. More precisely,

Definition 8 For any i ∈ N, define H i inductively as follows:

• H0 = {ε} 2

• for i > 0, H i = HHi−1
(the halting problem for OTMs using H i−1 as the oracle).

Note that H1 is the usual halting problem for Turing machines (with no oracle).

2We could use any decidable set as H0 — except, for somewhat technical reasons, ∅ and Σ∗ — so we fix a specific very
simple decidable set other than these two.

3

Next we define the important concept of a language being complete for a set of languages L. A variant
of this concept plays a key role in the second part of the course, when we discuss complexity theory.

Definition 9 Let L be a set of languages, and L be a language. We say that L is complete for L (or
L-complete) if

(a) L ∈ L, and

(b) for every L′ in L, L′ ≤m L.

Thus, a language is L-complete if it is one of the “hardest” languages in L: If we can decide it, the we can
decide all languages in L.3

Lemma 10 Let L be a language that is recognized (respectively, decided) by an OTM ML using oracle A,
and let A′ be such that A ≤m A′. Then L is also recognized (respectively, decided) by an OTM NL using
oracle A′.

Proof. Intuitively this is clear because A ≤m A′ means that A′ is at least as strong as A, so if something
can be done using A it can also be done using A′. More precisely we argue as follows.

Let f be a mapping reduction of A to A′. Let ML be an OTM that uses A to recognize (respectively,
decide) L. We define an OTM NL that works like M except that, when ML is about to ask its oracle the
query “x ∈ A?”, OTM NL first computes f(x) (which it can do because f , being a mapping reduction,
is computable) and then asks its oracle the query “f(x) ∈ A′?”. The two queries have identical answers
(because x ∈ A if and only if f(x) ∈ A′), so MA

L on any input performs exactly the same computation as
NA′

L on the same input. Therefore NA′
L recognizes (respectively, decides) L, just as MA

L does.

Theorem 11 (Post) For every i ∈ N, H i is complete for Σi.

Proof. We use induction to prove that, for every i ∈ N,

(a) H i ∈ Σi, and

(b) for every L ∈ Σi, L ≤m H i.

For the basis i = 0, recall that H0 = {ε} and Σ0 is the set of decidable languages, so (a) is obvious.
For (b), let L be any language in Σ0. Then consider the function f that maps every x ∈ L to ε, and every
x /∈ L to some string other than ε.4 The function f is computable because L is decidable, and so there is
a TM to decide whether x ∈ L.

For the induction step, let i > 0 and suppose the result holds for i− 1. By definition, H i = HHi−1
and

so, by Theorem 7(a), H i is recognizable using H i−1. Since, by the induction hypothesis, H i−1 ∈ Σi−1, it
follows that H i ∈ Σi, proving part (a) of the induction step. For part (b), let L be any language in Σi.
We will prove that L ≤m H i.

Since L ∈ Σi, for i > 0, there is an OTM ML and a language A ∈ Σi−1 such that MA
L recognizes L. By

the induction hypothesis, A ≤m H i−1. Thus, by Lemma 10, there is also an OTM NL such that NHi−1

L

recognizes L. We now describe a mapping reduction of L to H i. Given x, we construct the code of the
following OTM M :

3There are, in fact, two kinds of completeness, mapping-completeness (based on mapping reductions ≤m) and Turing-
completeness (based on Turing reductions ≤T). In this course we will deal exclusively with the more refined notion of
completeness, based on mapping reductions.

4You can see now why we could not use ∅ or the set of all strings for H0.

4

M := on input y:
1 run NL on x (using M ’s oracle)
2 if NL accepts x then halt (either accept or reject y, it doesn’t matter which)
3 else loop

Using oracle H i−1, this OTM halts on x if and only if x ∈ L:

• If x ∈ L then line 1 terminates with N
Hi−1

L having accepted x, and so M on any input (and in
particular on input x) halts in line 2. Thus, in this case, 〈M,x〉 ∈ H i.

• If x /∈ L then N
Hi−1

L either loops on x and so line 1 does not terminate, or it rejects x and so line 3 is

executed. Either way N
Hi−1

L loops on every input (and in particular on input x). Thus, in this case,
〈M,x〉 /∈ H i.

Clearly the mapping x 7→ 〈M,x〉 can be computed by a Turing machine, so this is a mapping reduction of
L to H i, as wanted.

An immediate consequence of this and Lemma 10 is the following:

Corollary 12 If L ∈ Σi (respectively, L ∈ ∆i) then there is an OTM that recognizes (respectively, decides)
L using H i−1.

Another immediate consequence of Theorem 11 is the following:

Corollary 13 H i is Πi-complete.

Definition 14 For all integers i ≥ 1, define

Di = {〈M,x, 0〉: 〈M,x〉 ∈ H i−1} ∪ {〈M,x, 1〉: 〈M,x〉 ∈ H i−1}

Intuitively, a string 〈M,x, b〉 in Di tells us whether 〈M,x〉 ∈ H i−1 (b = 0) or not (b = 1).
We can now prove a number of useful facts about the arithmetic hierarchy, some of which generalize

things we have proved about its first level, i.e., the set of decidable, recognizable, and co-recognizable
languages.

Theorem 15 For every integer i ≥ 1,

(a) ∆i = Σi ∩Πi,

(b) H i, H i ∈ ∆i+1 −∆i,

(c) H i ∈ Σi −Πi, and

(d) H i ∈ Πi − Σi,

(e) Di ∈ ∆i, and

(f) Di+1 /∈ Σi ∪Πi.

Proof.

(a) From Theorem 4 we have that ∆i ⊆ Σi∩Πi. For the reverse inclusion, consider any language L ∈ Σi∩Πi.
Then there are OTMs M and M that recognize L and L, respectively, using some oracles A and A′

in Σi−1. By Corollary 12, there are OTMs N and N that recognize L and L using H i−1. Then the
following OTM using H i−1 decides L:

5

1 on input x:
2 for t := 1, 2, 3, . . . do
3 run N on x for t steps or until it halts, whichever happens first
4 if N accepts x within t steps then accept x
5 run N on x for t steps or until it halts, whichever happens first
6 if N accepts x within t steps then reject x

Since every x belongs to either L or to L, either NHi−1
accepts x within some number of steps, in

which case x ∈ L, and the above OTM using H i−1 accepts x; or N
Hi−1

accepts x within some number
of steps, in which case x /∈ L, and the above OTM using H i−1 rejects x. Therefore the above OTM
using H i−1 decides L. By Theorem 11 H i−1 ∈ Σi−1. So, L is decidable by an OTM using an oracle in
Σi−1; by definition of ∆i, L ∈ ∆i.

(b) H i and H i are clearly both in ∆i+1 since they can be trivially decided using oracle H i, which is in Σi by
Theorem 11. To show that H i /∈ ∆i suppose, for contradiction, that H i ∈ ∆i. Then, by Corollary 12,
there is an OTM M that decides H i using oracle H i−1. But recall that, for i > 0, H i = HHi−1

, so
there is an OTM that decides HHi−1

using oracle H i−1, which contradicts Theorem 7, thereby proving
that H i /∈ ∆i. Since ∆i is closed under complementation (Corollary 3), H i is also not in ∆i.

(c) The fact that H i ∈ Σi follows from Theorem 11. To show that H i /∈ Πi, suppose for contradiction that
H i ∈ Πi. So, by part (a), H i ∈ ∆i, contradicting part (b).

(d) Follows directly from part (c), since each of Σi and Πi contains the complements of the languages in
the other.

(e) Di is clearly decidable using oracle H i−1, which is in Σi−1 by part (c); therefore Di ∈ ∆i.

(f) We have:

H i ≤m Di+1 (via the mapping 〈M,x〉 7→ 〈M,x, 0〉) and

H i ≤m Di+1 (via the mapping 〈M,x〉 7→ 〈M,x, 1〉) (1)

Suppose, for contradiction, that Di+1 ∈ Σi ∪ Πi. Since H i is Σi-complete and H i is Πi-complete
(Theorem 11 and Corollary 13), either Di+1 ≤m Hi or Di+1 ≤m Hi. Thus, by (1) and transitivity of
mapping reductions, either H i ≤m H i or H i ≤m H i, which imply, respectively, that either H i ∈ Σi or
H i ∈ Πi. These contradict parts (c) and (d).

Theorem 16 The inclusions in Theorem 4 are proper. That is, for each integer i ≥ 1, (a) ∆i (Σi (∆i+1,
and (b) ∆i (Πi (∆i+1.

Proof. This follows from Theorem 4 and the following facts:

• H i ∈ Σi −∆i (Theorem 15(c) and (b)),

• H i ∈ Πi −∆i (Theorem 15(d) and (b)),

• Di+1 ∈ ∆i+1 − (Σi ∪Πi) (Theorem 15(e) and (f)).

6

2 Alternative characterization of the arithmetic hierarchy

2.1 Predicates as languages

Let R(x1, . . . , xk) be a k-place predicate whose arguments x1, . . . , xk take on values from sets of finite
mathematical objects, i.e., ones that can be encoded by strings over some alphabet. For example consider
the predicate T (M,x, c) defined as follows:

T (M,x, c) is true if and only if c is an accepting computation of Turing machine M on input x.

This is known as Kleene’s T -predicate. We have seen that Turing machines and their inputs can be
encoded by strings. An accepting computation c of a Turing machine M on input x can also be encoded by a
string as follows: c is a finite sequence of configurations C0, C1, . . . , C`, where C0 is the initial configuration
q0x of M on x, C` is an accepting configuration y1hAy2 of M , and for each i ∈ [0..` − 1], Ci `M Ci+1 —
i.e., each configuration is obtained from the previous one by a legal move of M . Each configuration is a
finite string, and a finite sequence of strings can be encoded by a string (e.g., the concatenation of the
configurations separated by a special symbol not occurring in the configurations).

Since the values of each argument of R can be encoded as strings over some alphabet, the values of
R’s k free variables can be encoded by a k-tuple of strings, and that k-tuple can be encoded by a single
string over some alphabet. In this manner, R represents a language LR, consisting of the set of encodings
of k-tuples of values that satisfy the predicate: LR = {〈x1, . . . , xk〉: R(x1,xk)}.

It is sometimes convenient to abuse terminology and say that the predicate R has a property to mean
that the language LR that it represents has that property; in this way, we can say that the predicate R is
decidable or recognizable or in Π4, instead of saying that LR is decidable or recognizable or in Π4.

Observation 17 Kleene’s T -predicate is decidable.

This is because a Turing machine, given input 〈M,x, c〉, can decide whether T (M,x, c) holds: it uses
the universal Turing machine to simulate M on input x for as many steps as c encodes, checks that c is an
accepting computation of M on x, and accepts if this is the case and rejects if not.

We note the following technicality. Let Σ be the alphabet used to encode elements of a set, say
Turing machines or k-tuples of strings. The encoding rules are typically such that some strings in Σ∗ are
syntactically invalid encodings. It is useful to insist that all strings of Σ∗, even syntactically invalid ones,
actually represent some element of the set. We do this by thinking of all syntactically invalid strings as
representing some default element of the set, typically a “simple” one. For example, in our encodings of
Turing machines we thought of syntactically invalid strings as representing the Turing machine that rejects
all inputs in zero steps (i.e., its initial state is the same as the reject state). In this way, if LR is the
language that represents predicate R, LR is the language that represents the predicate ¬R. Note that in
this manner, although every object has an encoding, the default object chosen to be represented by all
invalid strings has multiple encodings.

2.2 Characterization of level 1

Consider the following languages:

• Univ = {〈M,x〉: M accepts x}.

• Empty = {〈M〉: L(M) 6= ∅}.

• Common = {〈M1,M2〉: L(M1) ∩ L(M2) 6= ∅}.

7

We have proved that the first two are recognizable (but undecidable), and it is easy to show that so is
the third. Now consider the following ways of representing these languages with predicates expressed as
formulas in first-order logic:

• Univ is represented by ∃c T (M,x, c), since M accepts x if and only if there is a an accepting
computation c of M on x.

• Empty is represented by ∃x∃c T (M,x, c), since the language recognized by M is nonempty if there
is some string x and an accepting computation c of M on x.

• Common is represented by ∃x∃c1∃c2

(
T (M1, x, c1) ∧ T (M2, x, c2)

)
, since the languages of M1 and

M2 have a nonempty intersection if and only if there is some string x and accepting computations c1

and c2 of M1 and M2 on x, respectively.

Notice the following about these three examples:

• Each language is represented by a formula that consists of one or more existential quantifiers applied
to a predicate.

• The predicate that follows the existential quantifiers is decidable. This is immediate in the first two
examples since T is decidable, as we have already pointed out. In the third example the quantifier-free
part of the formula is the conjunction of two decidable predicates, which is therefore also decidable
(recall that the intersection of decidable languages is decidable).

• The objects that belong (or not) to each language are encodings of the free variables of the cor-
responding formula. For instance, in the third example, the free variables of the formula are M1

and M2 (because the formula defines a predicate that depends on M1 and M2); and the elements of
the language Common that the predicate represents are encodings of the pair of M1 and M2.

This is not an accident about the above three languages. As the following theorem states, it is true of
all recognizable languages and only of recognizable languages!

Theorem 18 A language L is recognizable (i.e., L ∈ Σ1) if and only if L = {x: ∃y P (x, y)} for some
decidable predicate P (x, y).

The existentially quantified variable y in the above formula is sometimes called a certificate. This is
because, through the predicate P , which is called a verifier, it confirms x’s membership in the language L:
if a certificate y exists so that P (x, y) is satisfied, then x is in L; and, conversely, if no such y exists, then
x is not in L.

Proof.
If: Suppose L is a language such that L = {x: ∃yP (x, y)}, for a decidable predicate P . Let MP be a
Turing machine that decides P . Then the following TM is a recognizer for L:

L-Recognizer := on input x:
1 for each y in shortlex order do
2 run MP on 〈x, y〉
3 if MP accepts then accept

If x ∈ L then, by definition of L, there is some y such that P (x, y) holds. Therefore the decider MP on
input 〈x, y〉 accepts, and so L-Recognizer accepts x. If x /∈ L then there is no y such that P (x, y) holds
and so L-Recognizer on input x will loop and it does not accept x. Therefore L-Recognizer is indeed
a recognizer for L.

8

Only if: Suppose L is a recognizable language. Thus, there is a Turing machine, sayML, that recognizes L.
We want to find a decidable predicate P (x, y) such that x ∈ L if and only if ∃y P (x, y). What would
constitute a certificate y that confirms x’s membership in L? But, of course, an accepting computation of
ML on x would! So, we have that x ∈ L if and only if ∃c T (ML, x, c), and by Observation 17 we have a
formula of exactly the desired form. (Note that T (ML, x, c) is actually a predicate with only two variables,
x and c, since the first argument is instantiated with the specific Turing machine ML.)

You may be wondering about the discrepancy between the statement of this theorem, which asserts
that there is a formula with a single existential quantifier that represents a recognizable language, and
the formulas for Empty, which has two existentially quantified variables, and Common, which has three.
There is in fact no discrepancy, since we can encode three variables x, y, z as a triple 〈x, y, z〉, and refer to
x, y, and z by decoding 〈x, y, z〉. So, we could write the formula for Common as

∃〈x, c1, c2〉
(
T (M1, x, c1) ∧ T (M2, x, c2)

)
. (2)

More accurately, we could write it as

∃y T ′(M1,M2, y)

where T ′(M1,M2, y) is the predicate that is true if and only if y decodes into the three elements x, c1, c2,
where c1 is an accepting computation of M1 on x and c2 is an accepting computation of M2 on x. The
predicate T ′(M1,M2, y) is decidable because a Turing machine can decode the string y into the unique
three strings x, c1, and c2, that y encodes and then use the universal Turing machine to check that c1 and
c2 are indeed accepting computations of M1 and M2, respectively, on x. Henceforth we will write formulas
such as (2) to indicate the combination of multiple variables quantified by the same quantifier — all ∃ or
all ∀ — into a single variable under that quantifier.

Theorem 18 is very useful as it allows us to quickly classify certain languages as recognizable: All we
have to do is find a (correct!) description of the language by a formula that has the proper form: an
existentially quantified formula of a decidable predicate. For example, consider the language

B = {〈M〉: M accepts a string whose length is exactly equal to the number of states of M}.

This language is recognizable because

B =
{
〈M〉: ∃x∃c

(
T (M,x, c)︸ ︷︷ ︸

(1)

∧ |x| = number of states of M︸ ︷︷ ︸
(2)

)}

Note that the predicates (1) and (2) are both decidable ((1) by Observation 17, and a Turing machine can
certainly decide (2) given 〈M,x, c〉) and therefore so is their conjunction. Thus B can be expressed as an
existentially quantified formula of a decidable predicate (the two existentially quantified variables can be
combined into one, as we have seen) and so by Theorem 18, B is recognizable. Note that B is undecidable,
but Theorem 18 does not allow us to conclude this. All that theorem says is that B is recognizable; some
recognizable languages are decidable and some, like B, are not. (You can prove that B is undecidable
using the Recursion Theorem.)

Co-recognizable languages

By definition, language L is co-recognizable if and only if L is recognizable. By Theorem 18 L is co-
recognizable if and only if there is a decidable predicate P such that x ∈ L⇔ ¬∃y P (x, y). But, ¬∃y P (x, y)
is logically equivalent to ∀y ¬P (x, y). Furthermore, P (x, y) is decidable if and only if ¬P (x, y) is decidable
(simply by swapping the accept and reject states of any Turing machine that decides P (x, y)). Therefore
we have the following characterization for co-recognizable languages:

9

Corollary 19 A language L is co-recognizable (i.e., L ∈ Π1) if and only if there is a decidable predicate
P (x, y) such that L = {x : ∀y P (x, y)}.

Consider, for example, the language Empty of codes of Turing machines that accept no input: Empty =
{〈M〉: L(M) = ∅}. We have proved that this is a co-recognizable language (by giving a deterministic Turing
machine that recognizes its complement Empty using dovetailing or by giving a nondeterministic Turing
machine that recognizes Empty by “guessing” a string and verifying that it is accepted by M) but here is
another proof of this fact, based on Corollary 19, simply by noting that Empty = {〈M〉: ∀x∀c ¬T (M,x, c)}.
Since T (M,x, c) is decidable so is ¬T (M,x, c) and we can combine the two universally quantified variables
into one, as usual. So, by Corollary 19, Empty is a co-recognizable language.

2.3 Characterization of higher levels of the hierarchy

It is nice and useful to have this logical characterizable of the languages in the first level of the hierarchy.
As we will see next, each level of the hierarchy is characterized exactly by logical formulas adhering to a
specific format of increasing complexity as the level increases!

Lemma 20 The language Fin = {〈M〉 : L(M) is finite} is in Σ2.

Proof. Consider the language

A = {〈M,x〉 : M accepts some input y that is after x in shortlex order}.

It is easy to see that A is recognizable. (We can prove this by giving a Turing machine that recognizes it
or by noting that A is represented by the following formula

∃〈y, c〉
(
y is after x in shortlex order ∧ T (M,y, c)

)︸ ︷︷ ︸
decidable predicate of M,x, y, c

so, since the quantifier-free part of the formula is a decidable predicate (of M , y, z, and c), Theorem 18
immediately implies that A ∈ Σ1.)

Consider now the following OTM that uses A as an oracle.

1 on input 〈M〉:
2 for each x in shortlex order do
3 write 〈M,x〉 on the query tape
4 enter the query state
5 if the response of the oracle is “no” then accept

• If M accepts a finite set of strings, then there is some string x such that M accepts no string that is
after x in shortlex order. When the loop is executed for the first such x, the oracle will respond “no”
and the OTM accepts 〈M〉.

• If M accepts an infinite set of strings, then for every x there is some string y that is after x is shortlex
order and M accepts y. So in that case the oracle answers “yes” in every iteration, the while loop
never ends, and the OTM does not accept 〈M〉.

Therefore, the above OTM with oracle A recognizes Fin. Since A ∈ Σ1, by Definition 1, Fin ∈ Σ2.

To say that the language of a Turing machine M is finite is to say that there is some string x so that
M accepts no string y that comes after x in shortlex order. Thus Fin can be represented by the formula

∃x∀〈y, c〉
(
y is after x in shortlex order→ ¬T (M,y, c)

)︸ ︷︷ ︸
decidable predicate of M,x, y, c

10

Note that the predicate in the quantifier-free part of the formula, over the brace, is decidable: Given 〈M〉,
x, y, and c, a Turing machine can check whether y is after x in shortlex order and then, using the universal
Turing machine, check whether c is an accepting computation of M on y.

The format of the formula that represents the Σ2 language Fin is not an accident. It turns out that the
pattern established by Theorem 18 for Σ1 is extended for Σ2 and, in fact, for all levels of the Arithmetic
Hierarchy:

• A language L is in Σ2 if and only if L = {x : ∃y1∀y2 P (x, y1, y2)}, for some decidable predicate P ,

• a language L is in Σ3 if and only if L = {x : ∃y1∀y2∃y3 P (x, y1, y2, y3)}, for some decidable predi-
cate P ,

• a language L is in Σ4 if and only if L = {x : ∃y1∀y2∃y3∀y4 P (x, y1, y2, y3, y4)}, for some decidable
predicate P ,

• . . .
and, in general,

• a language L is in Σi if and only if L = {x : ∃y1∀y2∃y3 . . .Qyi P (x, y1, y2, y3, . . . yi)}, and for some
decidable predicate P , where the quantifier Q is ∀ if i is even, and ∃ if i is odd.

By complementing the language, negating the formula, and noting that if a predicate is decidable then
so is its negation, we also have:

• A language L is in Πi if and only if L = {x : ∀y1∃y2∀y3 . . .Qyi P (x, y1, y2, y3, . . . yi)}, for some
decidable predicate P , where the quantifier Q is ∀ if i is odd, and ∃ if i is even.

A few remarks about are in order before we prove this important and useful fact.

(1) The logical formulas that describe the predicates are in prenex normal form, i.e., they consist of
a sequence of quantifiers, followed by a quantifier-free formula. You know from CSCB36 that every
predicate logic formula is equivalent to a formula in prenex normal form.

(2) The quantifier-free part of the formula defines a predicate that is decidable: There is a Turing machine
that, given specific values for all the arguments, can determine whether the predicate is true or not for
those values.

(3) For languages in Σi, the string of quantifiers starts with ∃ and then the type of quantifiers alternate
between ∃ and ∀; for languages in Πi, the string of quantifiers starts with ∀ and then the type of
quantifiers alternates.

(4) What determines the level i is the number of alternations, not the number of quantifiers. This is
because, as we mentioned earlier, we can encode a run of similarly-quantified variables by a single
quantified variable; for example, ∀yi1∀yi2 . . . ∀yik can be written as ∀yi, where yi = 〈yi1, yi2, . . . , yik〉;
and similarly for a run of existential quantifiers.

Notation 21 For every positive integer i we will use the symbol Qi to stand for the quantifier ∃ if i is
odd and for the quantifier ∀ if i is even; the symbol Qi stands for the dual quantifier: ∀ if i is odd and ∃
if i is even.

11

Theorem 22 (Kleene) For every i ≥ 1, a language L is in

(a) Σi if and only if L = {x : ∃y1∀y2∃y3 . . .Qiyi P (x, y1, y2, y3, . . . yi)}, and

(b) Πi if and only if L = {x : ∀y1∃y2∀y3 . . .Qiyi P (x, y1, y2, y3, . . . yi)},

where P is some decidable predicate.

The following lemma generalizes Theorem 18 and does most of the work for the proof of Theorem 22.

Lemma 23 For every i ≥ 1, a language L is in Σi if and only if L = {x : ∃yP (x, y)}, where P is a Πi−1

predicate.5

Proof of Lemma 23. Use induction on i, generalizing ideas in the proof of Theorem 18.
The basis, i = 1, is just Theorem 18, since a Π0 predicate is, by definition of Π0, decidable. For the

induction step, let i ≥ 2 and suppose that the lemma holds for i− 1; we will prove that it holds for i.

If: Suppose L = {x : ∃y P (x, y)} where P (x, y) is a Πi−1 predicate. We will prove that L ∈ Σi by
constructing an OTM that accepts L using an oracle in Σi−1.

Recall that to say P (x, y) is a Πi−1 predicate means that the language LP = {〈x, y〉: P (x, y)} is in
Πi−1. Thus, LP = {〈x, y〉: P (x, y)} is in Σi−1. Consider the following OTM, using oracle LP , where yi is
the ith string in shortlex order:

1 on input x:
2 for each i := 1, 2, 3, . . . do
3 write 〈x, yi〉 on the query tape
4 enter the query state
5 if the response of the oracle is “no” then accept

We now show that this OTM using oracle LP recognizes L.

• If x ∈ L, by definition of L, there is some string y such that P (x, y). Therefore, in some iteration of
the while loop the string 〈x, y〉 written on the query tape belongs to LP , and thus the oracle for LP

will reply “no”, and the OTM accepts x.

• If x /∈ L, by definition of L, there is no string y such that P (x, y). Therefore, in every iteration of
the while loop the string 〈x, y〉 written on the query tape does not belong to LP , and so the oracle
for LP will reply “yes” and the loop will not terminate. Thus, the OTM does not accept x.

This shows that the above OTM with oracle LP ∈ Σi−1 recognizes L, so L ∈ Σi, as wanted.

Only If: Now suppose that L ∈ Σi. We want to show that there is a predicate P in Πi−1 such that

x ∈ L ⇔ ∃y P (x, y). (3)

Since L ∈ Σi there is an OTM M that recognizes L using an oracle A ∈ Σi−1. By the induction hypothesis
applied to language A, there is a Πi−2 predicate R such that

y ∈ A ⇔ ∃v R(y, v), (4)

and therefore z /∈ A ⇔ ∀w ¬R(z, w). (5)

Roughly speaking, the predicate P (x, y) we are looking for, that satisfies (3), asserts that y encodes an
accepting computation c of M on x using A.

To see how to do this, let us consider such an accepting computation c of M on x using A. It consists
of a finite sequence of configurations. A step of the computation is the transition between successive

5Recall that “P is a Πi−1 predicate” is an abbreviation for “the language LP represented by the predicate P is in Πi−1”.

12

configurations in this sequence. We call a step from configuration C to configuration C ′ regular, if the
OTM is not in the query state q? in configuration C; we call it a yes query step (respectively, no query
step), if the OTM is in the query state in C and responds “yes” (respectively “no”) in C ′. To be an
accepting computation of M on x using oracle A, c must satisfy the following conditions:

(a) It starts with the initial configuration of M on x;

(b) it ends with an accepting configuration of M ;

(c) every regular step of c is consistent with the transition function of M ;

(d) in every yes query step of c, the string in the query tape before the step belongs to A; and

(e) in every no query step of c, the string in the query tape before the step does not belong to A.

As we noted when we justified Observation 17, (a)-(c) can be checked by a Turing machine; (d) and (e),
however, cannot necessarily be checked by a Turing machine because A is a language in Σi−1 and is therefore
quite possibly undecidable. To check (d) and (e) we will use the predicate R that acts as a verifier for A,
and leverage (4) and (5) to construct the predicate P that acts as a verifier for L.

Consider the predicate S(M,x, c, v, w) defined to be true if and only if all of the following hold:

(1) c encodes a finite sequence of configurations of M that starts with the initial configuration of M on
x, ends with an accepting configuration of M , and each configuration other than the first is obtained
from the previous configuration by a valid move of M .

(2) c has some number k of yes query steps with strings y1, y2, . . . , yk on the query tape, and some number `
of no query steps with strings z1, z2, . . . , z` on the query tape.

(3) v encodes a sequence of k strings v1, v2, . . . , vk.

(4) w encodes a sequence of ` strings w1, w2, . . . , w`.

(5) For each i ∈ [1..k], R(yi, vi) holds; i.e., vi certifies that yi ∈ A.

(6) For each i ∈ [1..`], ¬R(zi, wi) holds; i.e., wi does not certify that zi ∈ A.6

Since the predicate R is in Πi−2, the language it represents LR = {〈y, v〉: R(y, v)} is also in Πi−2;
therefore LR is in Σi−2. There is an OTM N that decides (not merely recognizes) S(M,x, c, v, w), using
the Σi−2 oracle LR: For (1)-(4) N does not need an oracle, and for (5) and (6) it uses LR: To determine
whether R(yi, vi) is true, N extracts yi from the sequence of configurations that c encodes, writes the
pair 〈yi, vi〉 on the query tape, and enters the query state; the LR oracle responds “no” if and only if
R(yi, vi) is true, and so N can determine whether (5) holds. Similarly, to determine whether R(zi, wi) is
true, N extracts zi from c, writes the pair 〈zi, wi〉 on the query tape, and enters the query state; the LR

oracle responds “yes” if and only if ¬R(zi, vi) is true, and so N can determine whether (6) holds. Thus,
the language LS represented by S is decided by the OTM N using LR, and therefore the language LS

represented by ¬S is decided by an OTM using LR (merely by swapping the accept and reject states of
N). Therefore,

the predicate ¬S(M,x, c, v, w) is decidable by an OTM using oracle LR. (6)

Claim 24 Let P ′(x, y) be any predicate that is decidable by an OTM using some oracle B. Then the
predicate ∃y P ′(x, y) is recognizable by an OTM using B.

6Be sure to understand the difference between wi not certifying that zi is a member of A (which is what we claim here),
and wi certifying that zi is not a member of A.

13

Proof of Claim 24. We define a recognizer that uses B as follows: It runs through all possible y
and checks whether P ′(x, y) holds using the OTM decider for P ′(x, y); if the decider accepts, then our
recognizer accepts x, as it is true that the predicate ∃y P ′(x, y) is true; if the decider rejects, we continue
with the next y. So, if x satisfies the predicate ∃y P ′(x, y), then the OTM accepts x; and if x does not
satisfy the predicate ∃y P ′(x, y), the recognizer will loop and does not accept x.

Applying Claim 24 to (6), we conclude that ∃w ¬S(M,x, c, v, w) is recognizable using oracle LR; and
since LR is in Σi−2, the predicate ∃w¬S(M,x, c, v, w) is in Σi−1. Thus, its negation is in Πi−1:

the predicate ∀wS(M,x, c, v, w) is in Πi−1. (7)

Finally, consider the predicate
∃〈c, v〉∀wS(M,x, c, v, w).

The free variables of this formula are M and x, and the formula states that there is a computation c and
a string v so that for all strings w the following are true:

(1) c encodes a finite sequence of configurations of M that starts with the initial configuration of M on
x, ends with and accepting configuration of M , and each configuration other than the first is obtained
from the previous configuration by a valid move of M .

(2) c has some number k of yes query steps with strings y1, y2, . . . , yk on the query tape, and some number
` of no query steps with strings z1, z2, . . . , z` on the query tape.

(3) v encodes a sequence of k strings v1, v2, . . . , vk.

(4) w encodes a sequence of ` strings w1, w2, . . . , w`.

(5) For each i ∈ [1..k], R(yi, vi) holds; i.e., vi certifies that yi ∈ A.

(6) For each i ∈ [1..`], ¬R(zi, wi) holds; i.e., wi does not certify that zi ∈ A.

In other words, the predicate is true if and only if there is an accepting computation of the OTM M on
input x using oracle A, i.e., if and only if x ∈ L. So,

x ∈ L ⇔ ∃〈c, v〉 ∀wS(M,x, c, v, w)︸ ︷︷ ︸
in Πi−1(see (7)

.

Thus, taking P (x, 〈c, v〉) to be ∀wS(M,x, c, v, w), we have that

x ∈ L ⇔ ∃〈c, v〉P (x, 〈c, v〉)

for some Πi−1 predicate P , as wanted. This concludes the proof of Lemma 23.

From Lemma 23 we immediately get

Corollary 25 For every i ≥ 1, a language L is in Πi if and only if L = {x : ∀y P (x, y)}, where P is a
Σi−1 predicate.

Finally, using Lemma 23 and Corollary 25 , we can give the

Proof of Theorem 22. By induction on i. The base case i = 1 is just Theorem 18 and Corollary 19.
For the induction step, consider any i > 1 and assume that the Theorem holds for i− 1; we will prove that
it holds for i.

14

For part (a), consider any language L ∈ Σi. By Lemma 23,

x ∈ L ⇔ ∃y1P
′′(x, y1), for some Πi−1 predicate P ′′. (8)

By definition of the language LP ′′ represented by the predicate P ′′ and part (b) of the induction hypothesis
applied to LP ′′ , we have

P ′′(x, y1) ⇔ 〈x, y1〉 ∈ LP ′′ ⇔ ∀y2∃y3 . . .Qiyi P
′(〈x, y1〉, y2, y3, . . . , yi) (9)

for some decidable predicate P ′.

Now define the predicate P (x, y1, y2, y3, . . . , yi) to be true if and only if P ′(〈x, y1〉, y2, y3, . . . , yi) is true.
(That is, P is an (i+ 1)-place predicate that has the same truth value as the i-place predicate P ′ when we
replace in the first two arguments x and y1 of P by their encoding as a pair 〈x, y1〉 and plug this, along
with the remaining i− 1 arguments of P , into P ′.) Since P ′ is decidable, so is P .

From this, (8) and (9) we have

x ∈ L ⇔ ∃y1P
′′(x, y1) ⇔ ∃y1∀y2∃y3 . . .Qiyi P

′(〈x, y1〉, y2, y3, . . . , yi)

⇔ ∃y1∀y2∃y3 . . .Qiyi P (x, y1, y2, y3, . . . , yi)︸ ︷︷ ︸
decidable

which proves part (a).
Part (b) follows by noting that L ∈ Πi if and only if L ∈ Σi, representing L by a predicate according

to part (a), and negating that predicate to get one that represents L.

2.4 Placing some languages in the hierarchy

Theorem 22 is very helpful in placing languages in the arithmetic hierarchy. Given the definition of a
language, we look to represent that language using a formula in prenex normal form whose quantifier-free
part involves decidable predicates; the number i of quantifier alternations determines the level at which
the formula places the language and the type of the leading quantifier (∃ versus ∀) determines whether the
language is in Σi or Πi. We strive for the simplest (correct!) formula, to place the language in the lowest
(most restrictive) set. We have seen a few examples of this process already; we demonstrate it further with
more examples.

Some languages in level 2 of the arithmetic hierarchy

We have seen that Fin is in Σ2 based on two different approaches: First, we proved it by giving a recognizer
that uses a Σ1 oracle (see Lemma 20 and its proof). We also gave a Σ2-type predicate that represents Fin,
namely

∃x∀y∀c
(
y is after x in shortlex order→ ¬T (M,y, c)︸ ︷︷ ︸

decidable predicate of M,x, y, c

)
.

By definition of Π2, the complement of Fin, Infin, is in Π2. We can also see this by noting that Infin
is represented by the following formula:

∀x∃y∃c
(
y is after x in shortlex order ∧ T (M,y, c)

)︸ ︷︷ ︸
decidable predicate of M,x, y, c

which expresses the fact that M accepts an infinite number of string by asserting that for every string x,
however large in shortlex order, there is an even larger y that M accepts.

15

As another example of a Π2 language consider All = {〈M〉: L(M) = Σ∗M} (where ΣM denotes the
input alphabet of Turing machine M). We can express this language as the set of codes of Turing machines
M so that for every string x there is an accepting computation c of M on input x. So, All is represented
by the predicate ∀x∃c T (M,x, c). Since this has two alternations of quantifiers, starting with a universal
one, the corresponding language is in Π2. Since All is in Π2 its complement All is in Σ2. By Theorem 22
this can also be seen by the fact that All is represented by the predicate ∃x∀c ¬T (M,x, c): there is some
string x such that every c is not an accepting computation of M on x.

Consider the language Equiv = {〈M1,M2〉: L(M1) = L(M2)}. To say that two Turing machines
recognize the same language is to say that for each string x either both TMs do not accept x or both
accept x. So Equiv is represented by the predicate

∀x∀c1∀c2∃c3∃c4

((
¬T (M1, x, c1) ∧ ¬T (M2, x, c2)

)
∨
(
T (M1, x, c3) ∧ T (M2, x, c4)

)︸ ︷︷ ︸
decidable predicate of M1,M2, x, c1, c2, c3, c4

)
which, according to Theorem 22, places Equiv in Π2. Equiv is also represented by the predicate

∀x ∃c3∃c4 ∀c1∀c2

((
¬T (M1, x, c1) ∧ ¬T (M2, x, c2)

)
∨
(
T (M1, x, c3) ∧ T (M2, x, c4)

)︸ ︷︷ ︸
decidable predicate of M1,M2, x, c1, c2, c3, c4

)
which differs from the previous one only in the order of the underlined quantifiers. This formulation puts
Equiv in Π3!

There is no contradiction here: We know from Theorem 16 that Π2 ⊆ Π3. The second of these choices
represents Equiv with more quantifier alternations than is necessary. In general, the lowest possible level
of the hierarchy, being more restrictive, gives us more information about the language. So, in general,
we try to represent a language with the fewest possible number of quantifier alternations. We will return
briefly to this phenomenon later (see subsection entitled “Complete languages”).

It is important to understand that in general, we cannot move quantifiers around willy-nilly without
changing the meaning of the formula. In the case of the two formulas that represent Equiv we could
switch the order of the quantifiers for c1, c2, c3, c4 because, roughly speaking, each of them refers only to a
different part of the quantifier-free part of the formula. In general, however, ∀x∃y P (x, y) is not equivalent
to ∃y∀xP (x, y). For example, if P (x, y) means “x is before y in shortlex order”, then ∀x∃y P (x, y) is true
but ∃y∀xP (x, y) is false.

Placing a language in ∆2

We have seen in Theorem 15(a) that ∆i = Σi ∩ Πi. Thus, one way of placing a language in ∆i is to
find two formulas that represent it, one placing it in Σi and one placing it in Πi. Consider the language
Unique = {〈M〉: |L(M)| = 1}. This can be represented by the formula

∃x∃cx∀y∀cy
(
T (M,x, cx) ∧

(
y 6= x→ ¬T (M,y, cy)

))︸ ︷︷ ︸
decidable predicate of M,x, cx, y, cy

where of course we can combine the two existential quantifiers into one ∃〈x, cx〉 and the two universal ones
into one ∀〈y, cy〉, and then have the encoded pairs be decoded in the (still decidable) quantifier-free part of
the formula. This formula says that there is an accepting computation of M on some input x and that all
other inputs y have no accepting computation by M . Since there are two quantifier alternations starting
with ∃, this places Unique into Σ2.

Unique can also be represented by the formula

∀x∀cx∀y∀cy∃z∃cz
((
T (M,x, cx) ∧ T (M,y, xy)→ x = y

)
∧ T (M, z, cz)

)
︸ ︷︷ ︸

decidable predicate of M,x, cx, y, cy , x, cz

.

16

This expresses the fact that M accepts exactly one string in a different way: Any two strings x and y that
M accepts are the same, and there is some string z that M accepts. The form of this predicate places
Unique into Π2, since there are two quantifier alternations and the leading quantifier is ∀. Since Unique
is in both Σ2 and Π2, it is in ∆2.

Some languages in level 3 of the arithmetic hierarchy

A language is called cofinite if its complement is finite. Clearly every cofinite language is infinite, but not
every infinite language is cofinite. For example, the set of even-length strings over some alphabet is an
infinite language that is not cofinite since its complement, the set of odd-length strings, is also infinite. A
language is cofinite if, starting with some string x, it contains every string y after x in shortlex order. So,
the set Cofin = {〈M〉: L(M) is cofinite} is represented by the formula

∃x∀y∃c
(
y is after x in shortlex order→ T (M,y, c)

)︸ ︷︷ ︸
decidable predicate of M,x, y, c

.

This places Cofin into Σ3.
Consider the language Reg = {〈M〉: L(M) is regular}, i.e., the set of codes of Turing machines that

recognize regular languages. Just as we can encode Turing machine as strings, we can encode finite
state automata (FSA) as strings by establishing conventions for how to represent states, symbols, and the
transition function, and how to identify the start state and the accepting states of the automaton. Without
giving the details of such an encoding, let us assume an arbitrary, reasonable one; by “reasonable” we mean
an encoding so that, given the code 〈A〉 of a FSA A, a Turing machine can determine the component parts
of the FSA (e.g., it can determine the code of the initial state) and can use the encoding of the transition
function to simulate the operation of A on any input string x.7 We can then represent the language Reg
by the following formula:

∃〈A〉∀x∀c∃c′
((
¬A accepts x→ ¬T (M,x, c)

)
∧
(
A accepts x→ T (M,x, c′)

))︸ ︷︷ ︸
decidable predicate of A, x, c, c′

.

This states that there is a FSA A that accepts the same strings as M , i.e., M recognizes the same language
as some FSA. Since a language is regular if and only if it is accepted by a FSA, the above formula represents
Reg, and this places Reg in Σ3: the formula has three quantifier alternations starting with an existential
quantifier applied to a decidable quantifier-free predicate. (Recall that by our assumption of a reasonable
encoding for FSA, given 〈A〉 and x, a Turing machine can determine if A accepts x or not; there is no
danger of looping in FSA!)

Consider the language Undec = {〈M〉: L(M) is undecidable}, i.e., the set of codes of Turing machines
that recognize undecidable languages. A language is undecidable if every Turing machine that recognizes it
loops on some input. Let H(M,x, c) be the predicate that is true if and only if c is a halting computation
of Turing machine M on input x; i.e., c takes M from the initial configuration q0x to a configuration where
M ’s state is the accept or reject state. Like Kleene’s T -predicate, H(M,x, c) is decidable. So, we can
represent Undec by the following predicate

∀〈M ′〉∀x∀c1∀c2∃c3∃c4∃y∀c5(((
¬T (M,x, c1) ∧ ¬T (M ′, x, c2)

)
∨
(
T (M,x, c3) ∧ T (M ′, x, c4)

))︸ ︷︷ ︸
M and M ′ are equivalent: for every x, both don’t accept it or both accept it

→ ¬H(M ′, y, c5)

)
.

7An example of an unreasonable encoding would be one that includes rules such as “a state of the FSA is an accepting
state if and only if it is encoded by a string that also represents a Turing machine that halts on empty tape”. These are
logically sound rules, but a Turing machine cannot use them to simulate the operation of the FSA.

17

It states that every Turing machine M ′ that is equivalent to M (every string is either rejected by both or
accepted by both) fails to halt on some input y — i.e., M ′ is not a decider. This places Undec in Π3.

Complete languages

Recall our example of Equiv, which one formula placed in Π2 and another in Π3. As we explained, the
first formula gives us more accurate information about the actual “degree of unsolvability” of this language
than the second. But this raises the question: can we know when the predicate that represents a language
gives us the most accurate information? In terms of Theorem 22 this means expressing it with the fewest
quantifier alternations. How do we know, for example, that there is no way of representing Equiv with
just one kind of quantifier (all existential or all universal), placing it in level 1?

One way of doing this is by using the concept of complete languages, which we introduced earlier to
prove that every level of the arithmetic hierarchy contains new languages, inherently “more undecidable”
than those in lower levels. For example, if we show that Equiv is a complete language for Π2, which as
you will recall intuitively means that Equiv is one of the “hardest” languages in Π2, then Equiv cannot
also be in Π1.

To see why this is the case, we first note the following:

Theorem 26 Let L,L′ be languages such that L ≤m L′, and A be any language.

(a) If L′ is recognizable using oracle A then so is L; equivalently, if L is not recognizable using A then
neither is L′.

(b) If L′ is decidadable using oracle A then so is L; equivalently, if L is not decidadable using A then
neither is L′.

This generalizes facts we have already seen in relation to regular (non-oracle) Turing machines, and is
proved in a very similar way (left as an exercise to remind you the proofs of these earlier results).

Theorem 27 For all i > j ≥ 1, if L is Σi-complete (respectively, Πi-complete) then L /∈ Σj (respec-
tively, Πj).

Proof. We will show the proof for Σ; the proof for Π is similar.
Suppose, for contradiction, that L is a Σi-complete language, yet L ∈ Σj for some j < i. Since L is

Σi-complete and H i ∈ Σi, we have H i ≤m L. Since L ∈ Σj and Hj is Σj-complete, we also have L ≤m Σj .
So, by transitivity of ≤m, H i ≤m Hj . Since Hj ∈ Σj , H

j is recognized by an OTM using some oracle in
Σj−1; and since H i ≤m Hj , by Theorem 26(a), H i is recognized by an OTM using some oracle in Σj−1, so
H i ∈ Σj , contradicting Theorem 15 (recall that H i is in Σi and not in lower levels).

As an application, consider the language Fin. We have already seen that this language is in Σ2 — in
fact we have proved this in two different ways, (a) by showing a recognizer for Fin that uses a Σ1 oracle (see
proof of Theorem 20) and (b) by representing the language with a formula of the appropriate form based
on Theorem 22. We will prove that Fin is Σ2-complete; so, by Theorem 27, level 2 is the lowest to which
Fin belongs: it cannot be represented by a formula that involves fewer than two quantifier alternations.

Theorem 28 Fin is Σ2-complete.

Proof. By Theorem 20, Fin ∈ Σ2. It remains to prove that for each L ∈ Σ2, L ≤m Fin. Since L ∈ Σ2,
there is a decidable predicate P (x, y, z) such that

x ∈ L ⇔ ∃y∀zP (x, y.z). (10)

Let MP be a Turing machine that decides P . We will show a computable function f : x 7→ 〈M〉 so that

18

(a) if x ∈ L then L(M) is finite, and

(b) if x /∈ L then L(M) is infinite.

Given x, the computable function f produces the code 〈M〉 of the following Turing machine:

1 M := on input w:
2 for each y that precedes w in shortlex order do
3 for each z in shortlex order do
4 run MP on 〈x, y, z〉
5 If MP rejects (i.e., P (x, y, z) is false) then break # continue with next y
6 accept

• If x ∈ L, by (10), there exists some y such that for all z, P (x, y, z) is true. Let y0 be the first such y in
shortlex order. Consider the computation of M on any input w that is after y0 in lexicographic order.
By the choice of y0, for every y preceding y0 is lexicographic order there is some z such that P (x, y, z)
is false, so all iterations of the outer for-loop for y preceding y0 will terminate by the conditional
in line 5. When the outer for-loop is executed for y0, the inner for-loop will not terminate, because
MP will accept input 〈x, y0, z〉, for every z (since P (x, y0, z) is true for all z). Therefore M does not
accept any string w that is after y0 in shortlex order, and so L(M) is finite, as wanted for (a).

• If x /∈ L, by (10), for every y there is some x such that P (x, y, z) is false. Consider the computation
of M on any input w. For each y considered in the outer for-loop, eventually the inner for-loop will
be executed for some z such that P (x, y, z) is false, and so the inner for-loop will terminate by the
conditional in line 5. So, after being executed for all y that precede w in shortlex order, the outer
for-loop will also terminate and M accepts w in line 6. Therefore, in this case M accepts every input
w and so L(M) is infinite, as wanted for (b).

Since Fin is complete for Σ2, it is straightforward to argue that its complement, Infin, is likewise
complete for Π2. It turns out that All is complete for Π2 and therefore All is complete for Σ2, and that
Cofin, and Reg are complete for Σ3 (and so their complements complete for Π3), and that Undec is
complete for Π3 (and so its complement Dec is complete for Σ3). The proofs of these results are beyond
the scope of this document.

19

	Definition and basic properties
	Alternative characterization of the arithmetic hierarchy
	Predicates as languages
	Characterization of level 1
	Characterization of higher levels of the hierarchy
	Placing some languages in the hierarchy

