
Computer Science C63 Winter 2025
Scarborough Campus University of Toronto

3-CNF Satisfiability
Vassos Hadzilacos

Recall that a propositional formula is in conjunctive normal form (CNF) if it is a conjunction of one
or more clauses, where a clause is a disjunction of one or more literals (and a literal is a propositional
variable or the negation of a propositional variable). You know from CSCB36 that for any propositional
formula F there is a CNF propositional formula F ′ that is logically equivalent to F . There are cases,
however, where going from F to F ′ requires an exponential explosion in the size of the formula. For
example, if F = (x1 ∧ y1)∨ (x2 ∧ y2)∨ . . .∨ (xn ∧ yn), which has size Θ(n), the shortest CNF formula that
is equivalent to F has size Θ(2n).1

There is a special case of CNF formulas, called 3-CNF, where every clause is required to have at
most three literals. The problem of deciding whether a 3-CNF formula is satisfiable is called 3-CNF
satisfiability, abbreviated 3Sat. 3Sat plays an important role in the theory of NP-completeness.

In this document we will prove that Sat, the satisfiability problem for arbitrary propositional formulas,
is polytime mapping-reducible to 3Sat, and therefore 3Sat is NP-complete. (The fact that 3Sat is in NP
is obvious, since it is a special case of Sat, which we have seen is in NP.) We will do so by showing how,
given any propositional formula F , we can construct in polytime a 3-CNF formula F̂ that is satisfiable if
and only if F is satisfiable.

Some preliminaries

Recall that a propositional formula is defined by induction as an expression F that is either (base case) a
propositional variable, or (induction step) an expression of one of the following three forms: ¬F1, (F1∨F2),
and (F1∧F2), where F1 and F2 are themselves propositional formulas. Although we often take advantage of
the commutativity of ∧ and ∨ to avoid writing too many parentheses, we will assume that a propositional
formula is given to us in the above fully-parenthesized form.

We will also assume that in the given formula F negations are applied only to propositional variables
and not to more complex subformulas. We can make this assumption without loss of generality because of
DeMorgan’s laws: ¬(F1∧F2) is logically equivalent to (¬F1∨¬F2) and ¬(F1∨F2) is logically equivalent to
(¬F1∧¬F2). Thus, we can “push” negations deeper into the formula until they apply only to propositional
variables. Doing so increases the size of the formula by only a constant factor; so this transformation,
which preserves the truth value of the formula, can be applied in polynomial time.

We will use expressions such as z ↔ `1 ∧ `2 and z ↔ `1 ∨ `2, where z is a propositional variable and
`1, `2 are literals; intuitively these mean, respectively, that z has the same truth value as `1∧ `2 and `1∨ `2.
For this reason we will call such expressions definition clauses, since they define the truth value of the
variable z, in terms of the truth values of the literals `1 and `2.

Consider the first of these definition clauses, z ↔ `1∧ `2. This double implication is logically equivalent
to the formula (

z → (`1 ∧ `2)
)
∧
(
(`1 ∧ `2)→ z

)
(1)

By recalling that (F1 → F2) is logically equivalent to (¬F1 ∨ F2) we get that (1) is logically equivalent to(
¬z ∨ (`1 ∧ `2)

)
∧
(
¬(`1 ∧ `2) ∨ z

)
. By applying the distributive laws and DeMorgan’a laws, we get that

1This is an interesting but nontrivial exercise. Note that F is in disjunctive normal form (DNF), i.e., it is a disjunction
of one or more terms, where a term is a conjunction of one or more literals.

1



(1) is logically equivalent to
(¬z ∨ `1) ∧ (¬z ∨ `2) ∧ (¬`1 ∨ ¬`2 ∨ z), (2)

which is in 3-CNF. So we will view the definition clause z ↔ `1 ∧ `2 as an abbreviation for the logically
equivalent 3-CNF formula (2).

By similar reasoning, we will view the definition clause z ↔ `1 ∨ `2 as an abbreviation for the logically
equivalent 3-CNF formula

(¬z ∨ `1 ∨ `2) ∧ (¬`1 ∨ z) ∧ (¬`2 ∨ z
)
. (3)

Note that the full expressions (2) and (3) are only a constant factor longer than the corresponding abbre-
viations that use the ↔ connective.

An example

We start with an example to illustrate the reduction and gain some intuition, before proceeding with the
complete description. For convenience we will write the literal ¬x as x. Consider the propositional formula

F =
(
(x1 ∧ x2) ∨ (x1 ∨ x3)

)
∨ (x2 ∧ x4). (4)

It will be useful to think of the formula as a full binary tree, as illustrated below.

z5

x1 x3

x2 x4

x1x2

∧

∧∨

∨

∨

z1 z2

z3 z4

The leaves of this tree correspond to the literals of F , and every internal node to a subformula of F ,
excluding the literals. We associate a new variable with each internal node of the tree, i.e., with every
subformula that is not a literal. For example, we associate z3 with the subformula

(
(x1 ∧ x2) ∨ (x1 ∨ x3)

)
.

The intention is that each of these new variables (which we will call “z-variables”) represents the truth
value of the corresponding subformula, given a truth assignment to the variables of F (the “x-variables”).

For instance, z1 is intended to represent the truth value of the subformula x1 ∧ x2, z3 the truth value
of the subformula (x1 ∧ x2) ∨ (x1 ∨ x3), and z5 the truth value of the entire formula F . We can achieve
this by using definition clauses of the kind described above, each of which involves only three literals. For
example, for z1 we have the definition clause z1 ↔ x1 ∧ x2: this states that z1 is true exactly when both
x1 is true and x2 is false, which is what the subformula x1 ∧ x2 asserts. As noted earlier, the formula
z1 ↔ x1 ∧ x2 is shorthand for a 3-CNF formula (see (2) above). Similarly, for z5 we have the definition
clause z5 ↔ z3 ∨ z4: z5 is true exactly when at least one of z3 and z4 is true; again, this is shorthand for a
3-CNF formula.

We will now create a 3-CNF formula F̂ that is satisfiable if and only if the given formula F is satisfiable
by taking the conjunction of (a) the z-variable that corresponds to the entire formula F — z5 in our
example — and (b) all the definition clauses of the z-variables. Specifically, in our example we have:

F̂ = z5 ∧ (z1 ↔ x1 ∧ x2) ∧ (z2 ↔ x1 ∨ x3) ∧ (z3 ↔ z1 ∨ z2) ∧ (z4 ↔ x2 ∧ x4) ∧ (z5 ↔ z3 ∨ z4).

2



Intuitively, this formula asserts that z5 is true, and that each of the z-variables is true exactly when the
corresponding subformula is true under a truth assignment to the variables of F . If some truth assignment
to the x-variables satisfies F , then by assigning truth values to the z-variables based on their definitions,
the “root” z-variable, in our case z5, is true; and this truth assignment to all the variables of F̂ (the
x-variables as well as the z-variables) satisfies F̂ . If, on the other hand, F is unsatisfiable, there is no
truth assignment that satisfies F̂ : either the “root” z-variable is false, or one (or more) of the z-variable
definition clauses is false, and therefore the entire conjunction that constitutes F̂ is false.

The reduction in detail

Let F be the set of propositional formulas in which negations are applied only to variables, and F ′ be
the set of propositional formulas that are either (1) a single literal or (2) a conjunction of one or more
definition clauses.

We now define by induction a function that maps each F ∈ F to an F ′ ∈ F ′ and, at the same time,
a subset zvar(F ′) of the variables of F ′, called the z-variables of F ′, and root(F ′), a literal of F or an
element of zvar(F ′), called the root of F ′.

Definition 1

Case 1: F is a literal. Then F ′ = F ; zvar(F ′) = ∅, and root(F ′) is the literal F itself.

Case 2a: F = `1 ∧ `2, where `1 and `2 are literals. Then F ′ = (z ↔ `1 ∧ `2), where z is a new variable that
does not appear in `1 or `2; zvar(F ) = {z} and root(F ′) = z.

Case 2b: F = F1 ∧ `2, where F1 is a formula that is not a literal and `2 is a literal. Suppose, by induction,
that F1 is mapped to F ′

1; and z1 = root(F ′
1). Then F ′ = (z ↔ z1 ∧ `2)∧F ′

1, where z is a new variable
that does not appear in F ′

1 or `2; zvar(F
′) = {z} ∪ zvar(F ′

1) and root(F ′) = z.

Case 2c: F = `1 ∧F2, where `1 is a literal and F2 is a formula that is not a literal. Suppose, by induction,
that F2 is mapped to F ′

2; and z2 = root(F ′
2). Then F ′ = (z ↔ `1 ∧ z2)∧F ′

2, where z is a new variable
that does not appear in `1 or F ′

2; zvar(F
′) = {z} ∪ zvar(F ′

2) and root(F ′) = z.

Case 2d: F = F1 ∧ F2, where F1 and F2 are formulas that are not literals. Suppose, by induction, that F1

is mapped to F ′
1, F2 is mapped to F ′

2, z1 = root(F ′
1), and z2 = root(F ′

2); we assume, without loss of
generality, that zvar(F ′

1) ∩ zvar(F ′
2) = ∅ — we can enforce this by renaming common z-variables, if

necessary. Then F ′ = (z ↔ z1 ∧ z2) ∧ F ′
1 ∧ F ′

2, where z is a new variable that does not appear in F ′
1

or F ′
2; zvar(F

′) = {z} ∪ zvar(F ′
1) ∪ zvar(F ′

2) and root(F ′) = z.

Case 3a: F = `1 ∨ `2, where `1 and `2 are literals. Then F ′ = (z ↔ `1 ∨ `2), where z is a new variable that
does not appear in `1 or `2; zvar(F ) = {z} and root(F ′) = z.

Case 3b: F = F1 ∨ `2, where F1 is a formula that is not a literal and `2 is a literal. Suppose, by induction,
that F1 is mapped to F ′

1; and z1 = root(F ′
1). Then F ′ = (z ↔ z1 ∨ `2)∧F ′

1, where z is a new variable
that does not appear in F ′

1 or `2; zvar(F
′) = {z} ∪ zvar(F ′

1) and root(F ′) = z.

Case 3c: F = `1 ∨F2, where `1 is a literal and F2 is a formula that is not a literal. Suppose, by induction,
that F2 is mapped to F ′

2; and z2 = root(F ′
2). Then F ′ = (z ↔ `1 ∨ z2)∧F ′

2, where z is a new variable
that does not appear in `1 or F ′

2; zvar(F
′) = {z} ∪ zvar(F ′

2) and root(F ′) = z.

Case 3d: F = F1 ∨ F2, where F1 and F2 are formulas that are not literals. Suppose, by induction, that
F1 is mapped to F ′

1, F2 is mapped to F ′
2, z1 = root(F ′

1), and z2 = root(F ′
2); we assume, without loss

of generality, that zvar(F ′
1) ∩ zvar(F ′

2) = ∅. Then F ′ = (z ↔ z1 ∨ z2) ∧ F ′
1 ∧ F ′

2, where z is a new
variable that does not appear in F ′

1 or F ′
2; zvar(F

′) = {z} ∪ zvar(F ′
1) ∪ zvar(F ′

2) and root(F ′) = z.

3



If F ∈ F is a formula, we denote with var(F ) the set of variables of F , and with F ′ the formula to which
F is mapped under Definition 1. It is easy to see (and prove by a straightforward structural induction) that
var(F ′) = var(F ) ∪ zvar(F ′). We say that a truth assignment τ ′ to var(F ′) extends a truth assignment τ
to var(F ), written τ ′ � τ , if for every variable x ∈ var(F ), τ ′(x) = τ(x); in other words, τ ′ agrees with τ
on the variables common to both truth assignments.

Lemma 2 For every F ∈ F and every truth assignment τ to var(F ):
(a) There is a truth assignment τ ′ � τ that satisfies F ′; furthermore, if τ satisfies F then τ ′

(
root(F ′)

)
= 1.

(b) If τ ′ � τ is a truth assignment to var(F ′) that satisfies F ′ and τ ′
(
root(F ′)

)
= 1 then τ satisfies F .

Proof. (a) By structural induction on F . The base case (Case 1) is trivial by taking τ ′ = τ . For the
induction step (Cases 2a-3d), we show only Case 3d; the other cases are similar.

Suppose F = F1 ∨ F2, where F1 and F2 are formulas in F that are not literals. Let τ1 and τ2 be the
restrictions of τ to the variables of F1 and F2, respectively. By Definition 1, F ′ = (z ↔ z1 ∨ z2) ∧ F ′

1 ∧ F ′
2,

where z is a new z-variable (not in var(F ′
1) or var(F ′

2)), z1 and z2 are the roots of F ′
1 and F ′

2, and the
z-variables of F ′

1 and F ′
2 are disjoint. By the induction hypothesis, there are truth assignments τ ′1 � τ1

and τ ′2 � τ2 that satisfy F ′
1 and F ′

2, respectively. Furthermore, if τ1 satisfies F1 then τ ′1(z1) = 1; and if τ2
satisfies F2 then τ ′2(z2) = 1.

Define the truth assignment τ ′ to var(F ′) as follows:

τ ′(y) =



τ(y), if y ∈ var(F ) — i.e., y /∈ zvar(F ′)

τ ′1(y), if y ∈ zvar(F ′
1)

τ ′2(y), if y ∈ zvar(F ′
2)

1, if y = z and at least one of τ ′1(z1), τ
′
2(z2) is 1

0, otherwise — i.e., y = z and both τ ′1(z1), τ
′
2(z2) are 0

By this definition, τ ′ extends both τ ′1 and τ ′2, and so, by the induction hypothesis, it satisfies both F ′
1

and F ′
2, and by the last two clauses in the definition it also satisfies z ↔ z1 ∨ z2; so it satisfies F ′ =

(z ↔ z1 ∨ z2) ∧ F ′
1 ∧ F ′

2.
Finally, suppose that τ satisfies F . Since F = F1∨F2, this implies that τ1 satisfies F1 or τ2 satisfies F2.

Then, by the induction hypothesis, τ ′1(z1) = 1 or τ ′2(z2) = 1 and therefore τ ′(z) = 1 by the penultimate
clause in the definition of τ ′. This completes the induction step (for Case 3d).

(b) This is also proved using structural induction on F . The base case (Case 1) is again trivial since in
this case τ ′ = τ . For the induction step (Cases 2a-3d), we show only Case 3d; the other cases are similar.

Let F = F1 ∨ F2, where F1 and F2 are formulas in F that are not literals. Since F = F1 ∨ F2,
F ′ = (z ↔ z1 ∨ z2) ∧ F ′

1 ∧ F ′
2, where z = root(F ′), z1 = root(F ′

1), and z2 = root(F ′
2). Suppose τ ′ � τ

satisfies F ′ and τ ′(z) = 1; we must show that τ satisfies F . Indeed, since τ ′ satisfies F ′, it must satisfy
all of z ↔ z1 ∨ z2, F ′

1, and F ′
2. Since it satisfies z ↔ z1 ∨ z2 and τ ′(z) = 1, it follows that τ ′(z1) = 1 or

τ ′(z2) = 1. Since τ ′ satisfies F ′
1 and F ′

2, it follows that either τ ′ satisfies F ′
1 and τ ′(z1) = 1 or τ ′ satisfies

F ′
2 and τ ′(z2) = 1. Thus, by the induction hypothesis, τ satisfies one of F1 or F2 and therefore it satisfies
F1 ∨ F2 = F , as wanted.

For any F ∈ F , let F̂ = F ′ ∧ root(F ′). Intuitively, F̂ asserts that the definitions of all the z-variables
of F ′ are true and, furthermore, the root of F ′, which intuitively represents the truth value of F , is also
true. Note that F̂ , like F ′, is in 3-CNF.

Theorem 3 Let F ∈ F . A truth assignment τ to var(F ) satisfies F if and only if there is a truth
assignment τ ′ � τ that satisfies F̂ .

4



Proof. Since F̂ = F ′ ∧ root(F ′), the only-if direction follows immediately from Lemma 2(a), and the if
direction from Lemma 2(b).

Corollary 4 F ∈ F is satisfiable if and only if F̂ is satisfiable.

Since F̂ is in 3-CNF and can be constructed from F in polytime, we have:

Corollary 5 3Sat is NP-complete.

What if we further restrict CNF formulas so that each clause has at most two literals? The satisfiability
problem for such formulas, called 2Sat, turns out to be solvable in polynomial time!

CNF-Sat is the problem of determining whether a propositional formula in CNF is satisfiable. Since
3Sat is a special case of CNF-Sat, by Corollary 5 we also have:

Corollary 6 CNF-Sat is NP-complete.

5


