- G = (V, E) undirected graph.
- Independent set of $G: V' \subseteq V$ s.t. there is <u>no</u> edge between <u>any</u> two nodes in V'.
- <u>Clique</u> of $G: V' \subseteq V$ s.t. there is an edge between <u>every</u> two nodes in V'.
- <u>Vertex cover</u> of $G: V' \subseteq V$ s.t. every edge of G has (at least) one endpoint in V'.

Independent Set/Clique/Vertex Cover problem:

Instance: $\langle G, k \rangle$, G is an undirected graph, $k \in \mathbb{Z}^+$. Question: Does G have an independent set/clique/vertex cover of size k?

G = (V, E) undirected graph.

<u>Complement of undirected graph</u> G = (V, E): Undirected graph $\overline{G} = (V, \overline{E})$, where \overline{E} is the set of edges connecting nodes in V that are <u>not</u> in E.

V' is an independent set of $G \iff V - V'$ is a vertex cover of GV' is an independent set of $G \iff V'$ is a clique of \overline{G}

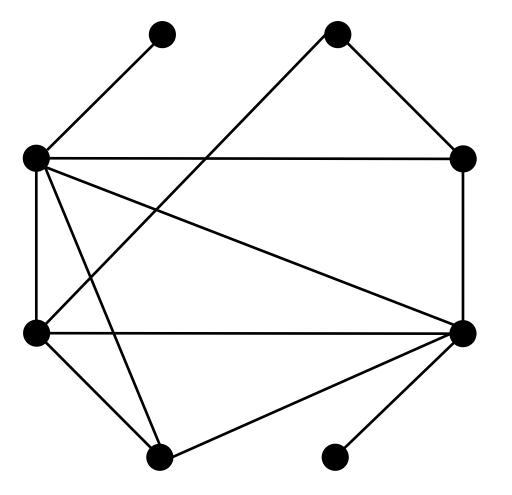
G has an independent set of size k

- \Leftrightarrow G has vertex cover of size |V| k
- $\Leftrightarrow \quad \overline{G} \text{ has an clique of size } k$

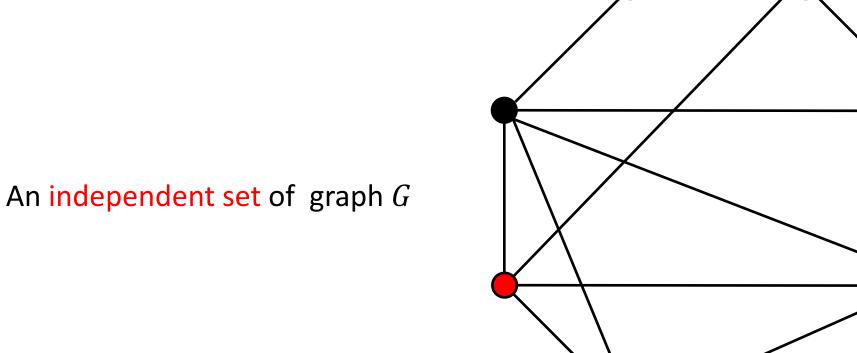
So:

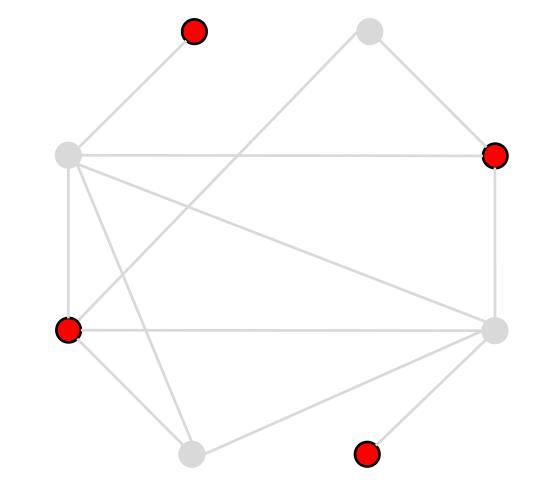
$\mathsf{IS} \leq_m^p \mathsf{CLIQUE}$ and $\mathsf{IS} \leq_m^p \mathsf{VC}$

Since CLIQUE and VC are in NP (easy to show), they are both NP-complete.



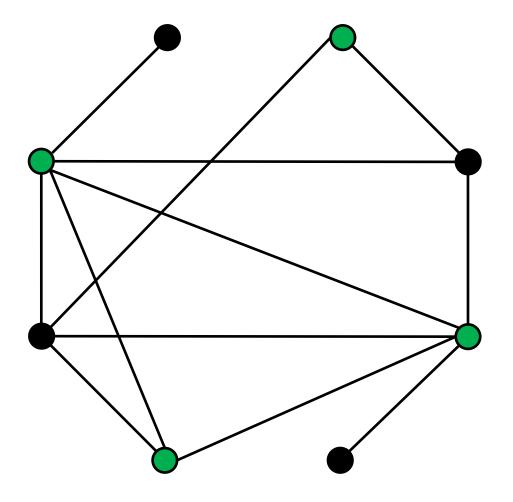
A graph G



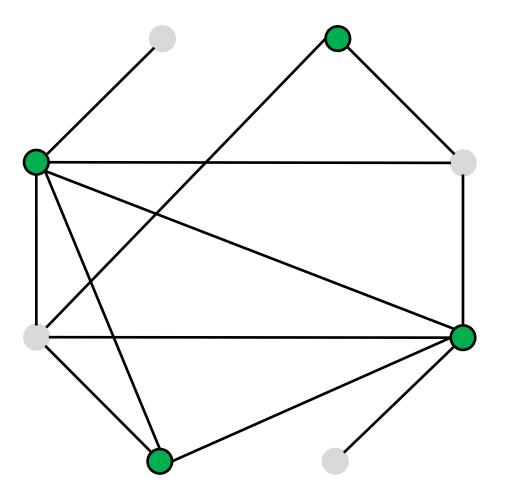


An independent set of graph *G*

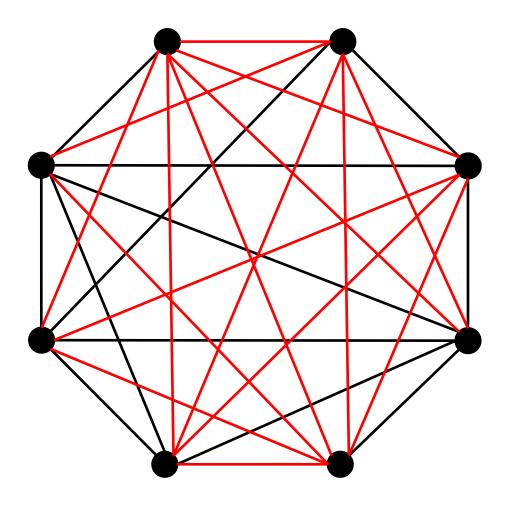
A vertex cover of graph G



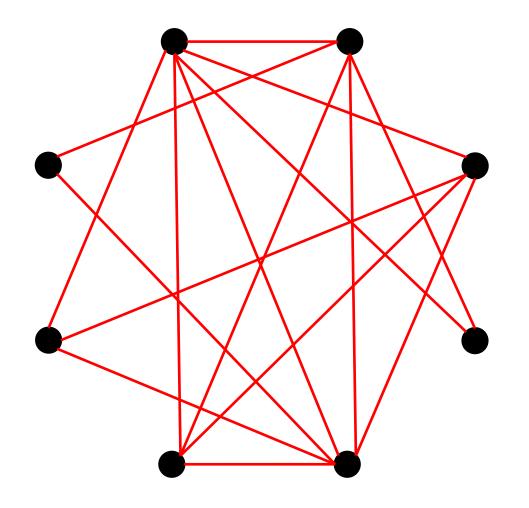
A vertex cover of graph G



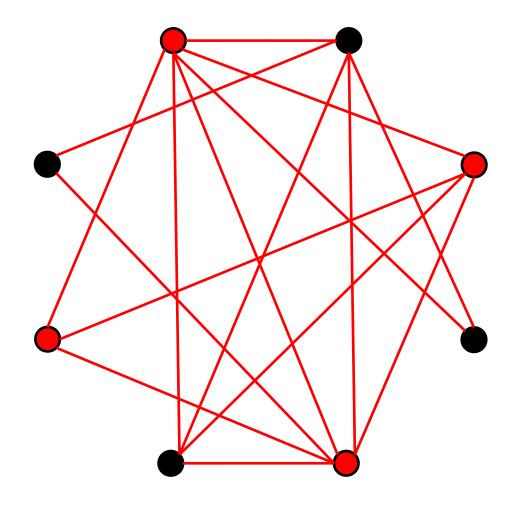
G and its complement \overline{G}



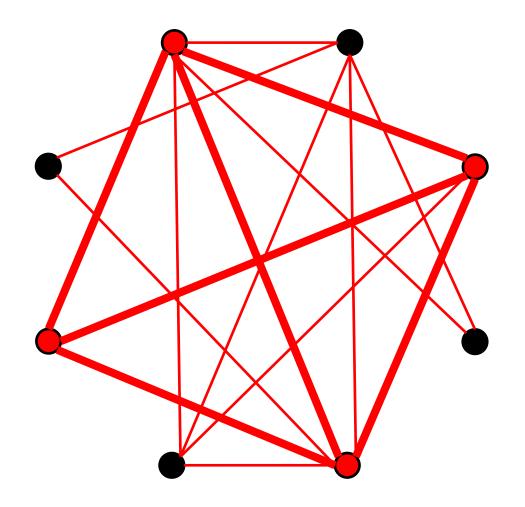
The complement \bar{G}



A clique in the complement \overline{G}



A clique in the complement \overline{G}



I bet she's thinking about another guy

How the heck do you prove that 3D matching is NP-complete?

3-dimensional matching

$$A = \{a, b, c, d\}$$

$$B = \{w, x, y, z\}$$

$$C = \{1, 2, 3, 4\}$$

$$T = \{(a, x, 1), (a, z, 4), \\ (b, x, 2), (b, x, 3), \\ (c, w, 3), (c, x, 3), \\ (d, y, 1), (d, x, 2)\}$$

Tripartite matching

$$A = \{a, b, c, d\}$$

$$B = \{w, x, y, z\}$$

$$C = \{1, 2, 3, 4\}$$

$$T = \{(a, x, 1), (a, z, 4), \\ (b, x, 2), (b, x, 3), \\ (c, w, 3), (c, x, 3), \\ (d, y, 1), (d, x, 2)\}$$

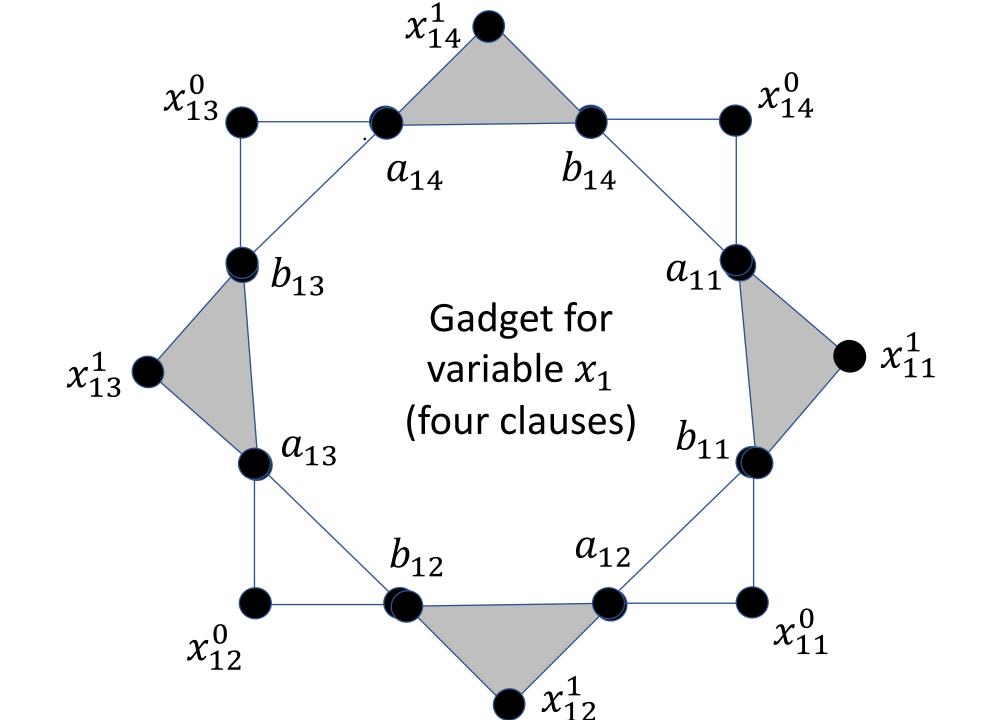
Matching M

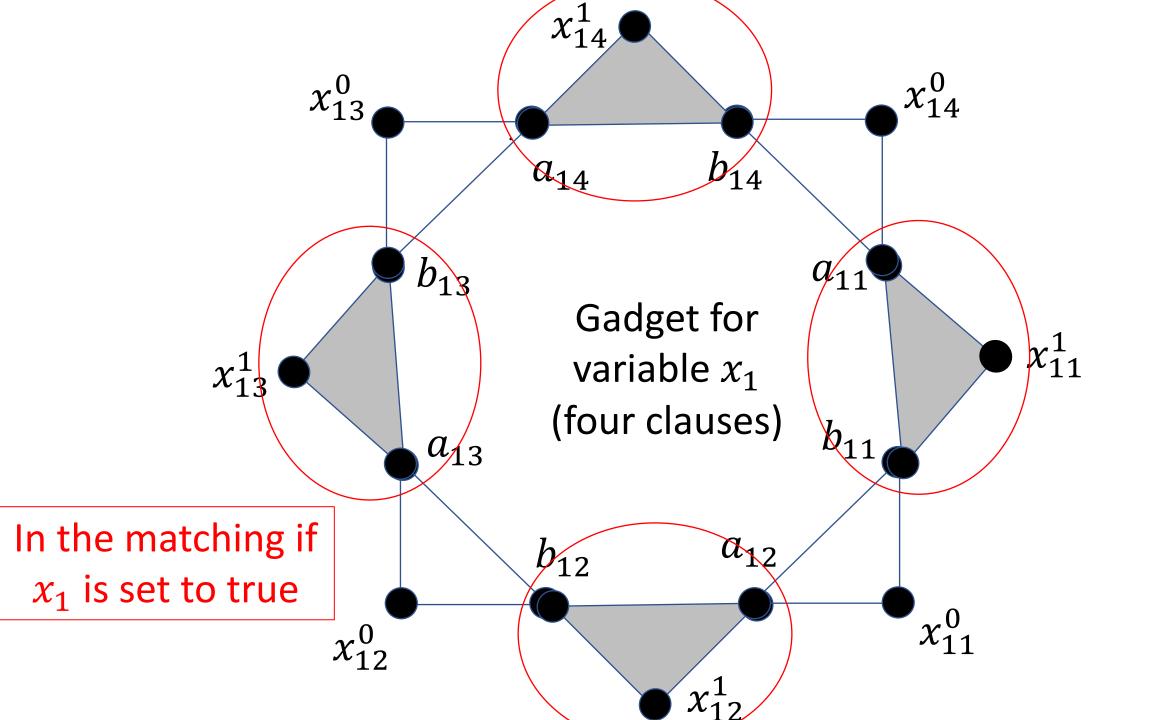
Tripartite matching

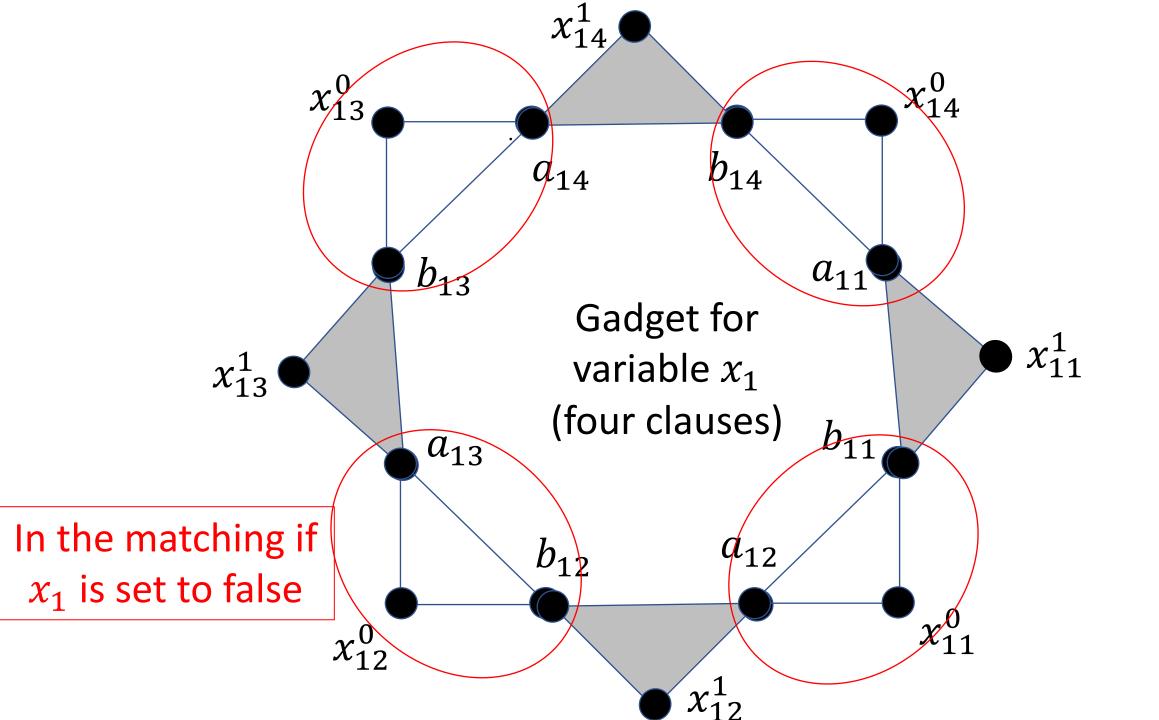
$$A = \{a, b, c, d\} \\ B = \{w, x, y, z\} \\ C = \{1, 2, 3, 4\}$$

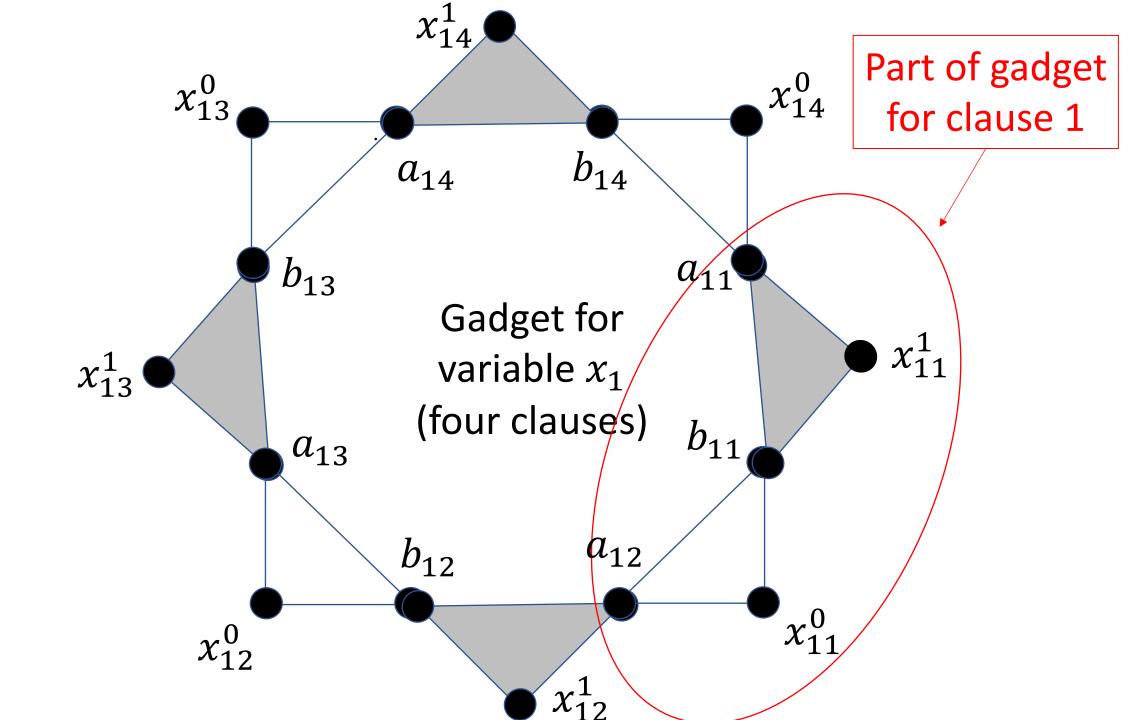
$$T' = \{(a, x, 1), (a, z, 4), \\ (b, x, 2), (b, x, 3), \\ (c, w, 1), (c, x, 3), \\ (d, y, 1), (d, x, 2)\}$$

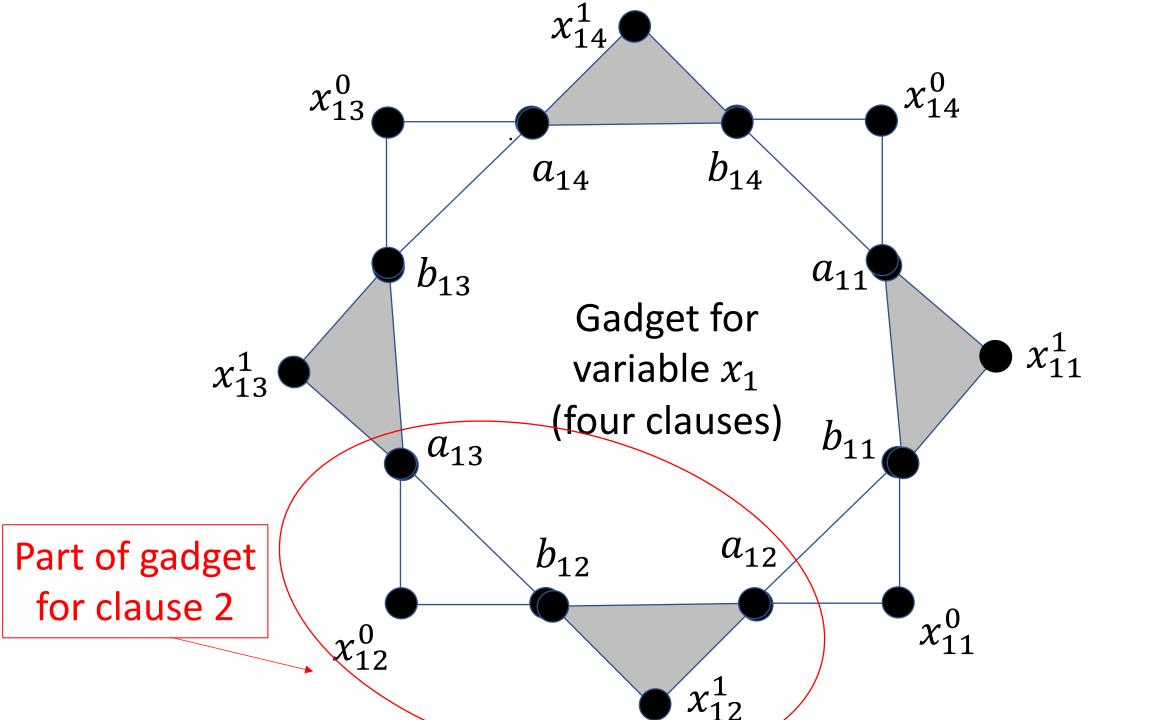
No matching!

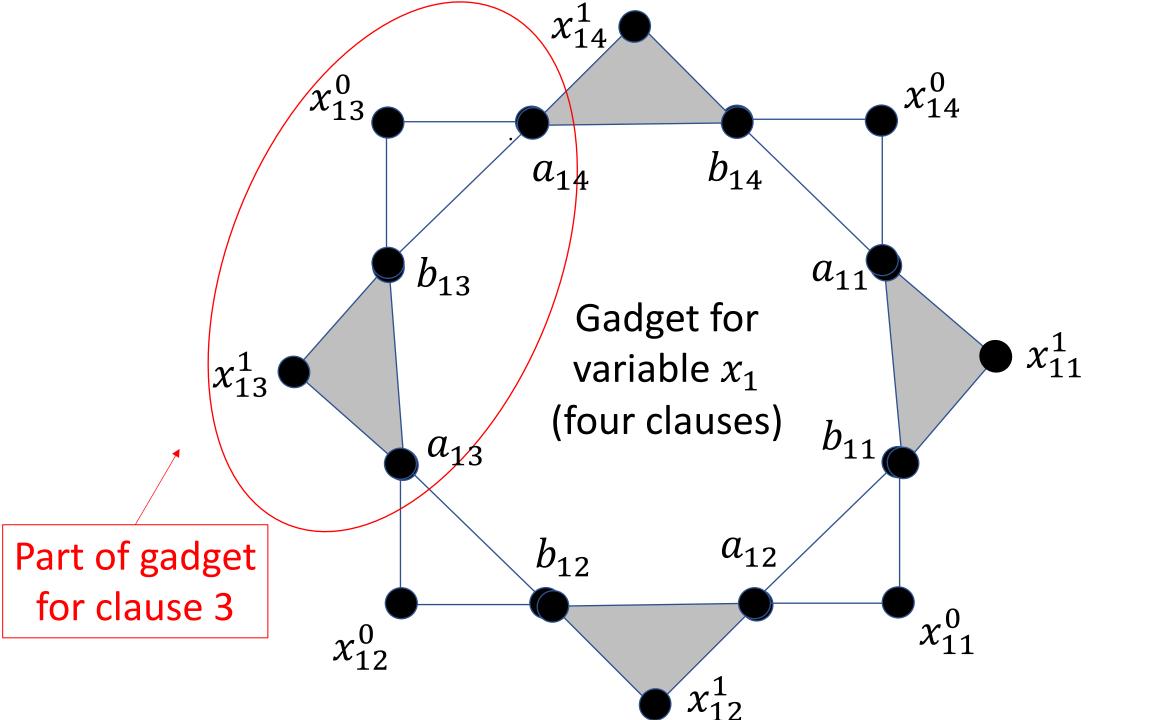


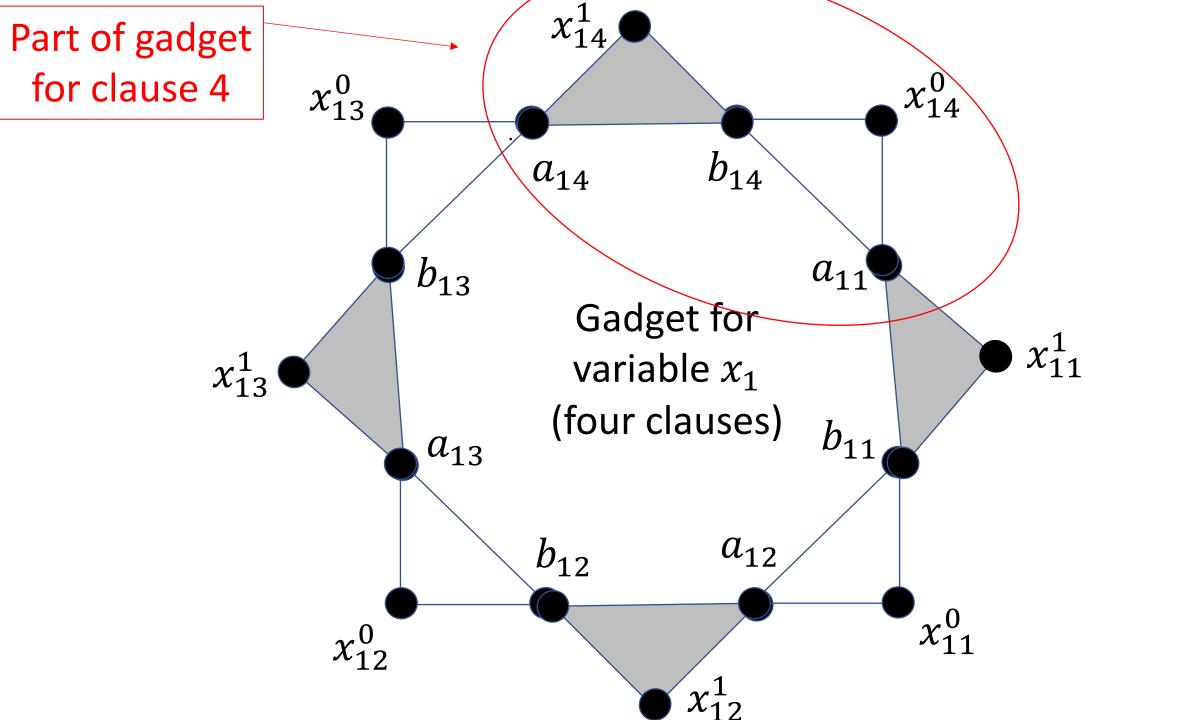


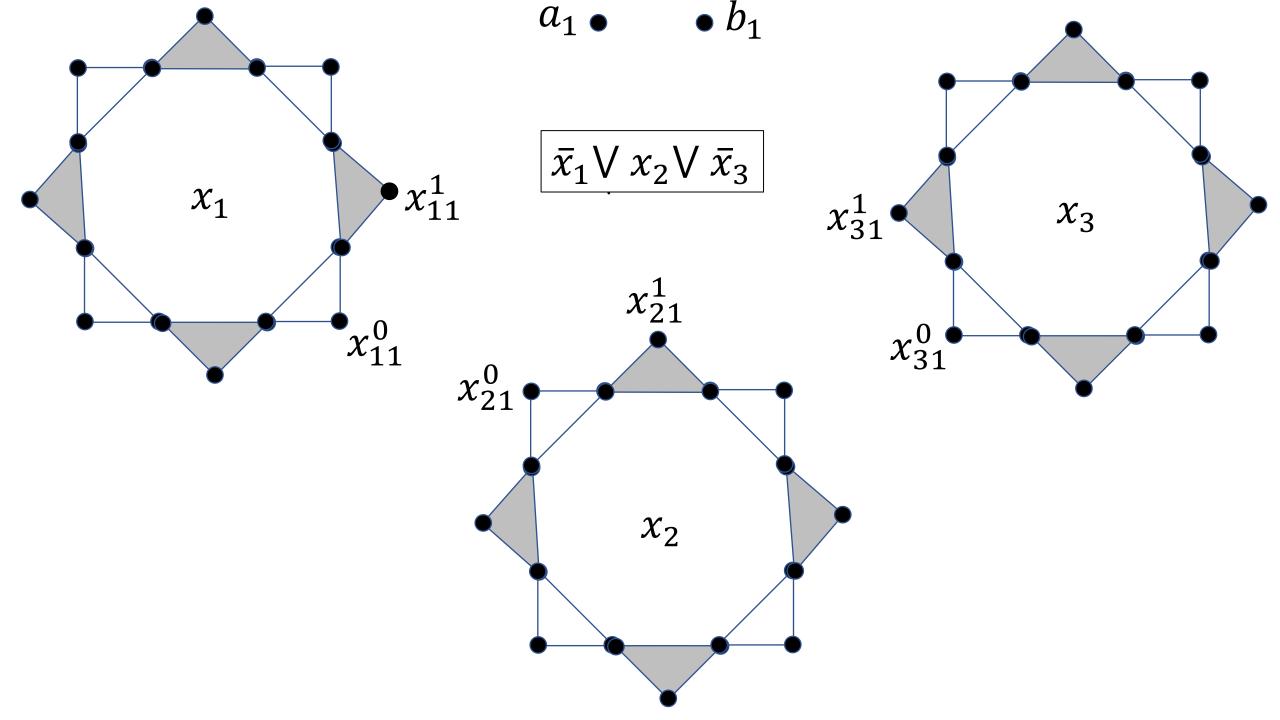


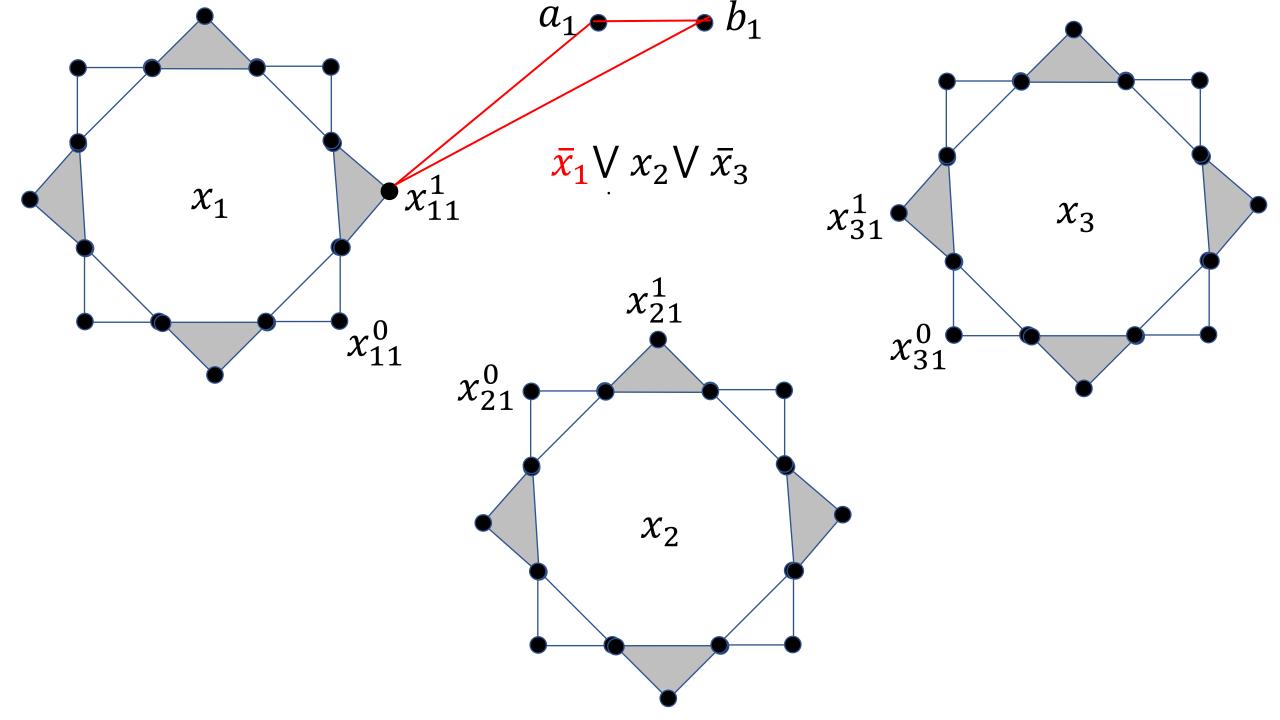


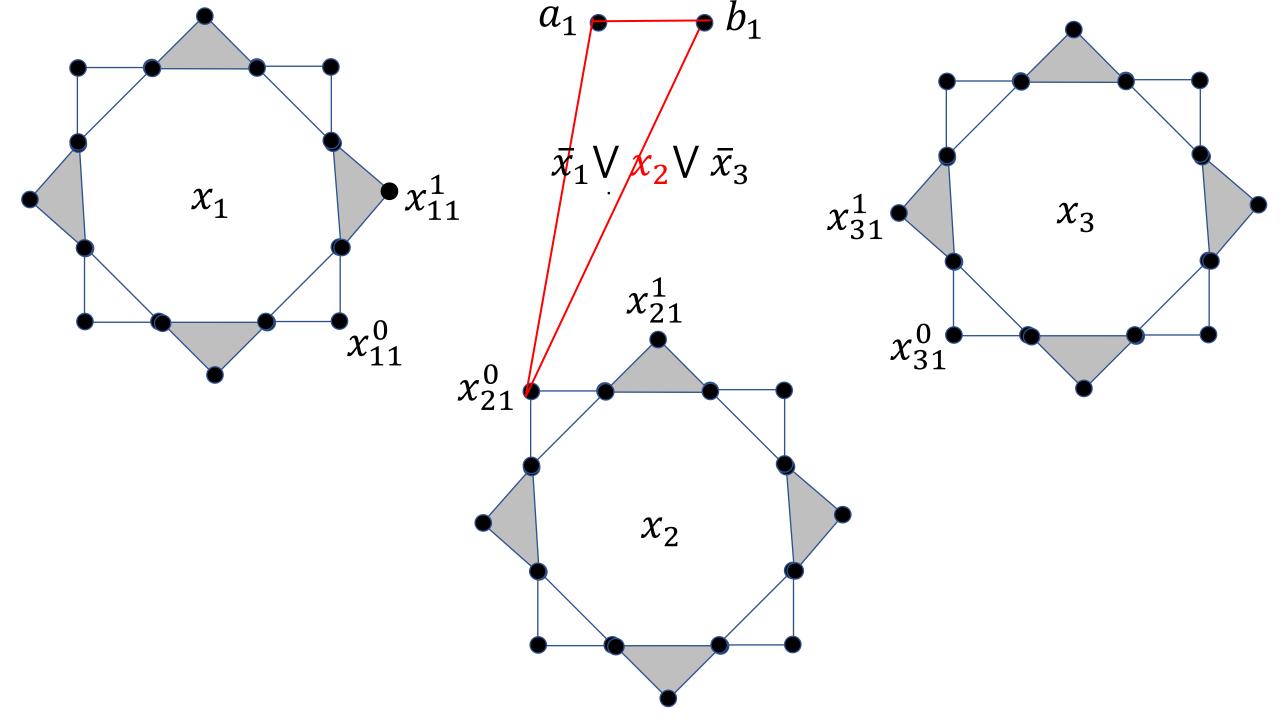


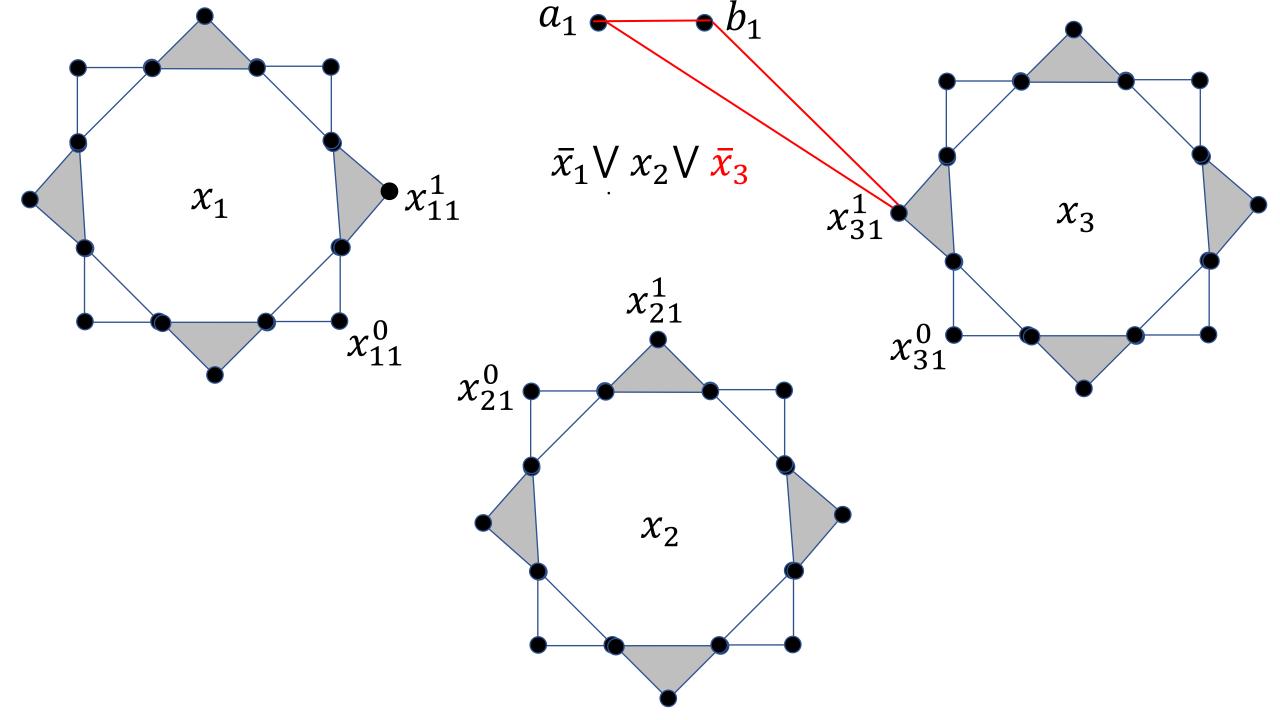


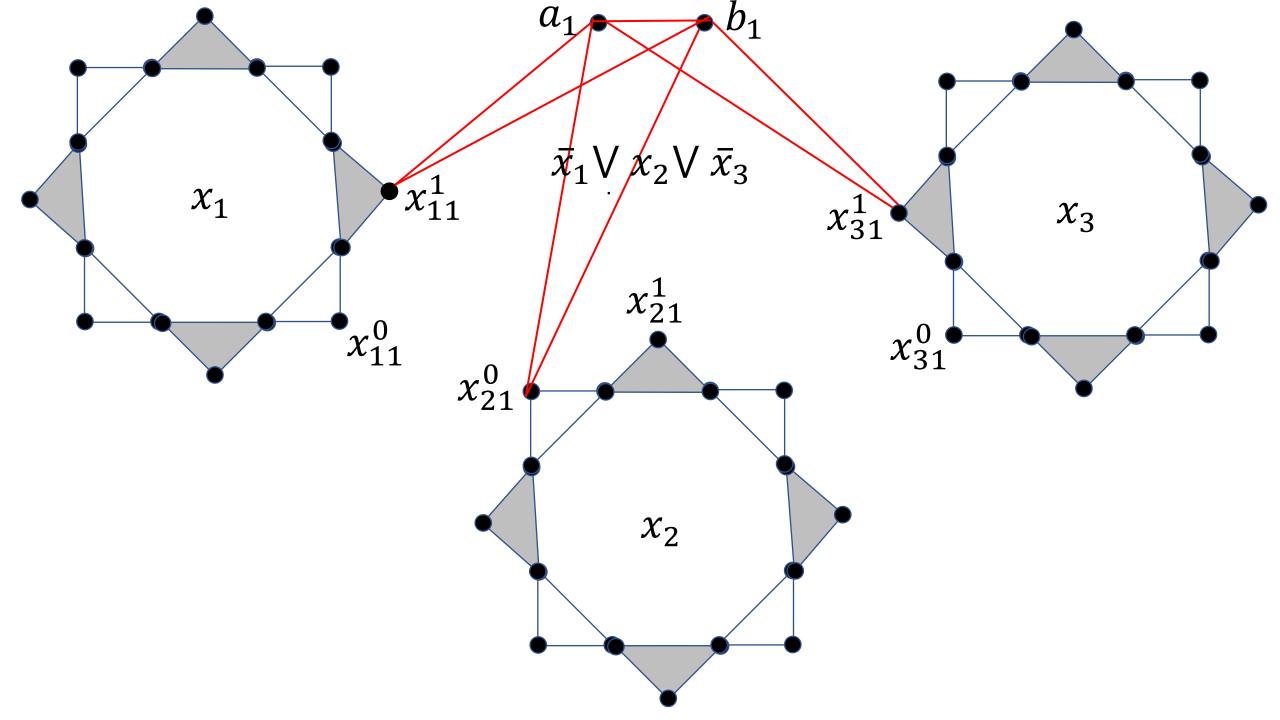




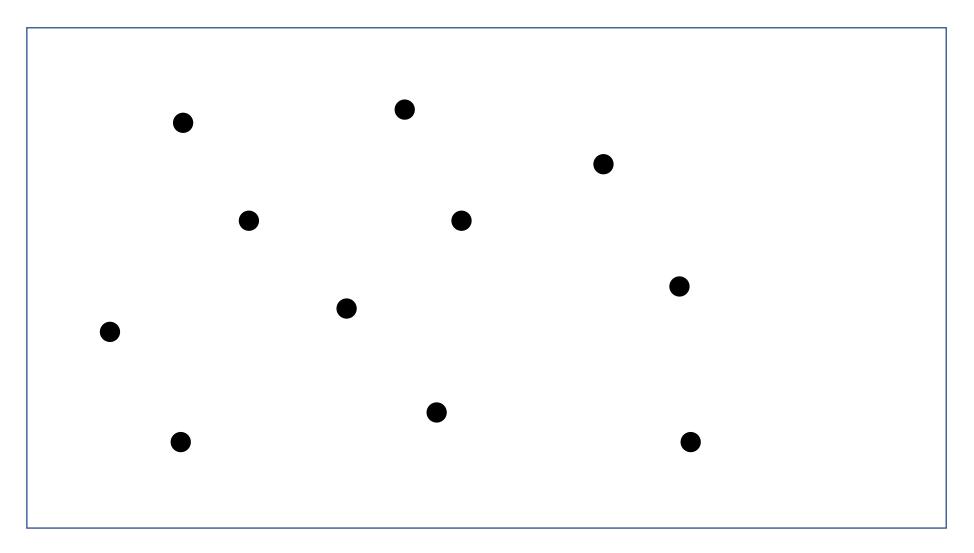




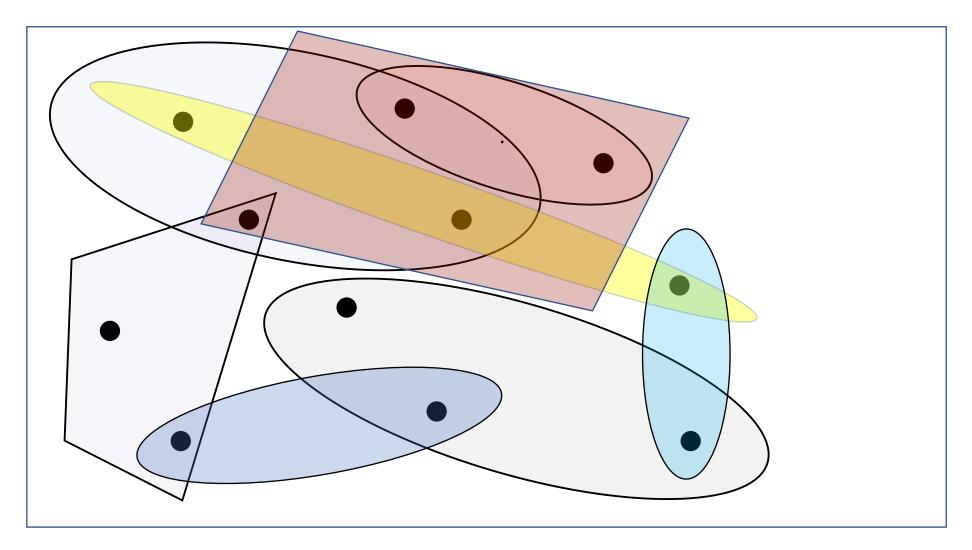




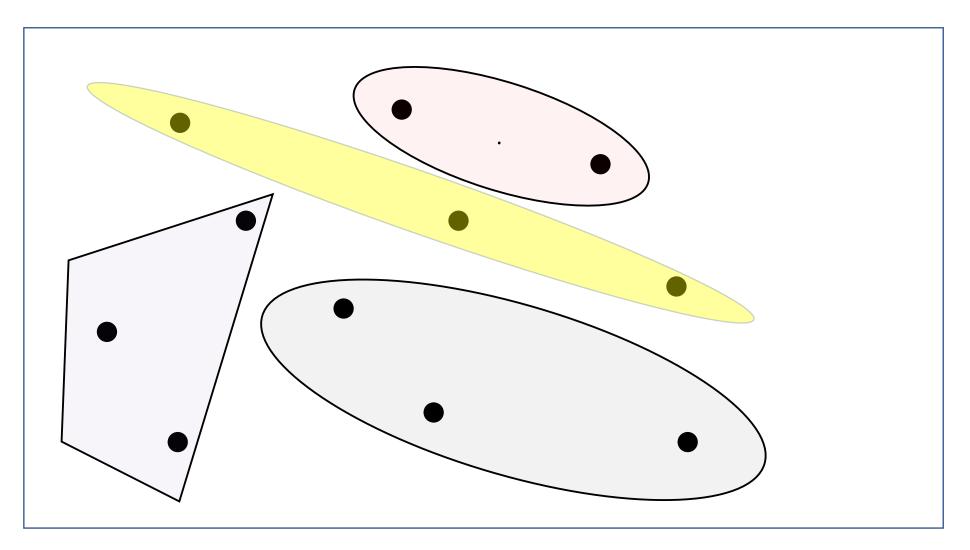
The Universe of elements U



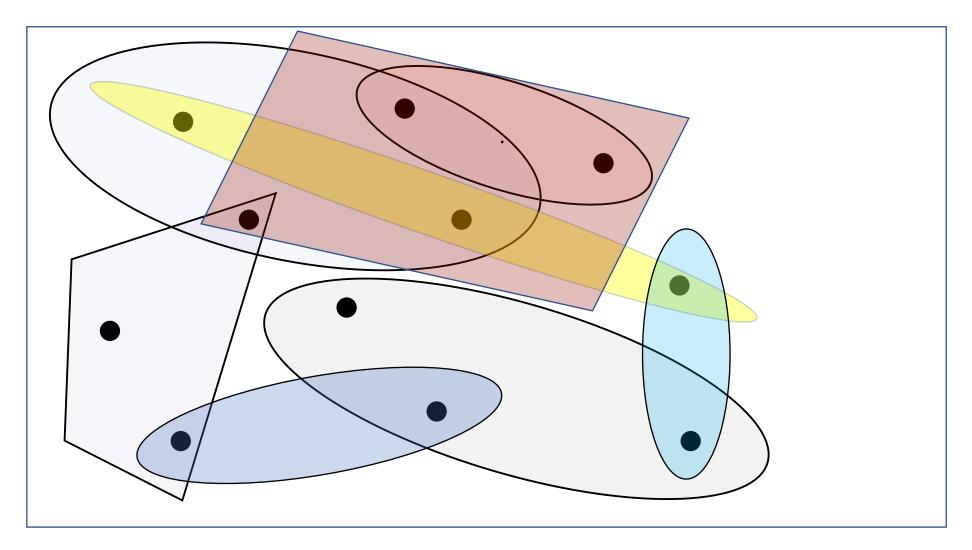
A set $\boldsymbol{\delta}$ of subsets of U



An exact cover of $\boldsymbol{\delta}$



A set $\boldsymbol{\delta}$ of subsets of U



A set \mathcal{S}' of subsets of U with no exact cover

