Three-dimensional matching

Vassos Hadzilacos

The *three-dimensional matching* problem 3DM, also known as *tripartite matching*, is the following decision problem:

Instance: $\langle A, B, C, T \rangle$, where A, B, C are finite sets of the same cardinality, and $T \subseteq A \times B \times C$.

Question: Is there a subset $M \subseteq T$ so that |M| = |A| and the triples in M are disjoint in every component: if (a, b, c) and (a', b', c') are distinct triples in M then $a \neq a'$ and $b \neq b'$ and $c \neq c'$? Such a subset M of T is called a *(tripartite) matching* of (A, B, C, T).

Note that, by definition, for each element $a \in A$ there is exactly one triple in a matching M that contains a; and similarly for each element of B and C. We say that each element of A, B, and C is covered (with no overlap) by M. Conversely, if a set M' contains exactly n triples from $A \times B \times C$ and each element of A, B, and C is contained in one of these triples, then M' is a matching (it cannot contain overlapping triples in any of the three dimensions).

Theorem 9.5 3DM is NP-complete.

PROOF. It is straightforward to show that 3DM \in **NP**: A nondeterministic Turing machine can, in polynomial time, "guess" a list of n triples, where n = |A| = |B| = |C| and then check that (a) all the triples on this list are in T, and (b) for each element of A, B, and C there is a triple on the list that contains it.

We prove that 3DM is **NP**-hard by showing that 3SAT \leq_m^p 3DM. Given a 3-CNF formula F we show how to construct, in polynomial time, an instance (A, B, C, T) of 3DM so that

$$F$$
 is satisfiable if and only if (A, B, C, T) has a matching. $(*)$

First we explain the reduction. Let x_1, x_2, \ldots, x_n be the variables that appear in F, and let F consist of m clauses C_1, C_2, \ldots, C_m , where C_j is the disjunction of three literals ℓ_j^1, ℓ_j^2 , and ℓ_j^3 . So, each literal ℓ_j^t is either x_i (positive literal) or $\overline{x_i}$ (negative literal) for some variable x_i .

The instance (A, B, C, T) of 3DM that we will construct from F has triples that we will put in three groups, each serving a specific purpose:

Group I triples: For each variable x_i and clause C_j we add to T two triples $(a_{ij}, b_{ij}, x_{ij}^1)$ and $(a_{ij\oplus 1}, b_{ij}, x_{ij}^0)$, where $j \oplus 1 = (j \mod m) + 1$ (i.e., increment that "circles back" to 1 after m). Intuitively, if the matching contains the triple $(a_{ij}, b_{ij}, x_{ij}^1)$, then the variable x_i is assigned the value 1 (true); and if it contains $(a_{ij\oplus 1}, b_{ij}, x_{ij}^0)$, then x_i is assigned the value 0 (false). Note that the triples that correspond to variable x_i for different clauses j are joined in a "crown" shape as shown here (pages 1-7) for an example were we have four clauses (m = 4); the shaded triples correspond to variable x_1 being set to 1, and the clear ones correspond to x_1 being set to 0. Because of this pattern of interconnection, a matching must choose either all the shaded or all the clear triples; in this way the variable x_i has a consistent value for all clauses j. For the Group I triples, the a_{ij} s belong to set A, the b_{ij} s belong to set B, and the x_{ij}^1 s and x_{ij}^0 s belong to set C. Inspired by the visualization of how these triples are interconnected we will refer to the third component of each of them as its tip.

Group II triples: Next we define 3m triples, one for each literal appearing in a clause. Consider clause $C_j = \ell_j^1 \vee \ell_j^2 \vee \ell_j^3$. We will define three triples for C_j , one for each literal ℓ_j^t . For these three triples we

introduce two new elements $a_j \in A$ and $b_j \in B$. (These are not to be confused with the a_{ij} s and b_{ij} s defined for the Group I triples.)

- If $\ell_j^t = x_i$, i.e., ℓ_j^t is a positive literal for variable x_i , then we add to T a triple (a_j, b_j, x_{ij}^0) .
- If $\ell_j^t = \overline{x}_i$, i.e., ℓ_j^t is a negative literal for variable x_i , then we add to T a triple (a_j, b_j, x_{ij}^1) .

Note carefully that a positive literal's triple has x_{ij}^0 as its tip, while the negative literal's triple has x_{ij}^1 as its tip. Thus, each clause C_j contributes three such triples, one for each of its literals, all involving the two elements a_j and b_j and having as their third component one of the tips of Group I triples. For an illustration see here (pages 8-12).

The interpretation of the Group II triples is as follows: Because the three triples that correspond to clause C_j share a_j and b_j , and these are the only triples that contain these elements, a matching must include exactly one of them. We want to think of the corresponding literal of C_j as one that satisfies the clause. Thus, if the triple (a_j, b_j, x_{ij}^1) is selected, which according to the definition means that the corresponding literal is \overline{x}_i , the matching must include the Group I triples with tip x_{ij}^0 (to avoid conflict with the Group I triple with tip x_{ij}^1). And this, according to our interpretation of the Group I triples, means that x_i is assigned 0 and thus satisfies the literal \overline{x}_i . By a similar reasoning, if the triple (a_j, b_j, x_{ij}^0) is selected, x_i is assigned 1 and satisfies the literal x_i .

Group III triples: Group I and II triples involve mn+m elements of A and mn+m elements of B but 2mn elements of C (the tips). Therefore, Group I and II triples can cover all elements of A and B but will leave 2mn-(mn+m)=m(n-1) elements of C uncovered. To make all three sets have the same cardinality we add to A (respectively B) m(n-1) new elements denoted \widehat{a}_k (respectively \widehat{b}_k), for $k \in [1..m(n-1)]$. So to ensure that all elements of C that remain uncovered by triples of Group I and II can be covered, we add to T triples $(\widehat{a}_k, \widehat{b}_k, x_{ij}^1)$ and $(\widehat{a}_k, \widehat{b}_k, x_{ij}^0)$ for every $i \in [1..n]$, $j \in [1..m]$, and $k \in [1..m(n-1)]$.

To recap, the instance (A, B, C, T) of 3DM constructed from the 3-CNF formula F with variables $x_1, x_2, \ldots x_n$ and clauses C_1, C_2, \ldots, C_m , where $C_j = (\ell_j^1 \vee \ell_j^2 \vee \ell_j^3)$ for literals ℓ_j^1, ℓ_j^2 , and ℓ_j^3 is as follows:

```
A = \{a_{ij}: i \in [1..n] \text{ and } j \in [1..m]\} \cup \{a_j: j \in [1..m]\} \cup \{\widehat{a}_k: k \in [1..m(n-1)]\}.
B = \{b_{ij}: i \in [1..n] \text{ and } j \in [1..m]\} \cup \{b_j: j \in [1..m]\} \cup \{\widehat{b}_k: k \in [1..m(n-1)]\}.
C = \{x_{ij}^1, x_{ij}^0: i \in [1..n] \text{ and } j \in [1..m]\}.
T = \{(a_{ij}, b_{ij}, x_{ij}^1), (a_{ij \oplus 1}, b_{ij}, x_{ij}^0): i \in [1..n] \text{ and } j \in [1..m]\}
\cup \{(a_j, b_j, x_{ij}^0): j \in [1..m], i \in [1..n], \text{ and } \ell_j^t = x_i \text{ for some } t \in [1..3]\}
\cup \{(a_j, b_j, x_{ij}^1): j \in [1..m], i \in [1..n], \text{ and } \ell_j^t = \overline{x}_i \text{ for some } t \in [1..3]\}
\cup \{(\widehat{a}_k, \widehat{b}_k, x_{ij}^1), (\widehat{a}_k, \widehat{b}_k, x_{ij}^0): i \in [1..n], j \in [1..m], \text{ and } k \in [1..m(n-1)]\}.
```

The sets A, B, and C have 2mn elements each, and T has $2mn + 3m + mnm(n-1) = O(m^2n^2)$ triples. Therefore the size of (A, B, C, T) is a polynomial of the size of F (m clauses of three variables each, on n variables). So, $\langle A, B, C, T \rangle$ can be computed from $\langle F \rangle$ in polynomial time.

It remains to show that the construction satisfies (*).

[Only IF] Suppose F is satisfiable and let τ be a truth assignment that satisfies it. Then collect triples from T into a set M (that will become a matching) as follows:

- (1) For all $i \in [1..n]$,
 - if $\tau(x_i) = 1$ then add to M the triples $(a_{ij}, b_{ij}, x_{ij}^1)$ for all $j \in [1..m]$;
 - if $\tau(x_i) = 0$ then add to M the triples $(a_{ij \oplus 1}, b_{ij}, x_{ij}^0)$ for all $j \in [1..m]$.

These are Group I triples that cover all a_{ij} s and b_{ij} s, and mn of the x_{ij}^1 s and x_{ij}^0 s.

- (2) For each $j \in [1..m]$, let $t_j \in [1..3]$ be such that $\tau(\ell_j^{t_j}) = 1$. Such a t_j must exist for every j, since τ satisfies every clause C_j of F. If there are multiple such ts for some j, pick any one of them. Then add to M the following triples from T:
 - if $\ell_j^{t_j} = x_i$ then add (a_j, b_j, x_{ij}^0) to M• if $\ell_j^{t_j} = \overline{x}_i$ then add (a_j, b_j, x_{ij}^1) to M.

These are Group II triples that cover all a_j s and b_j s, and m of the x_{ij}^0 s and x_{ij}^1 s.

(3) For each $k \in [1..m(n-1)]$, add to M a triple $(\widehat{a}_k, \widehat{b}_k, x_{ij}^b)$, where $b \in [0..1]$, for one of the m(n-1) x_{ij}^b s that are not covered by triples added to M in (1) or (2).

By construction, M has the correct number of triples 2mn, and every element of A, B, and C is included in some triple of M, so M is a matching.

[IF] Suppose M is a matching of (A, B, C, T). We will show that there is a truth assignment τ that satisfies F.

First consider the Group I triples associated with variable x_i , i.e., triples of the form $(a_{ij}, b_{ij}, x_{ij}^b)$ for $j \in [1..m]$ and $b \in \{0,1\}$. Since M is a matching, exactly one of the following is the case: either

- (1) M contains $(a_{ij}, b_{ij}, x_{ij}^1)$ for all $j \in [1..m]$, or
- (2) M contains $(a_{ij\oplus 1}, b_{ij}, x_{ij}^0)$ for all $j \in [1..m]$. Accordingly define

$$\tau(x_i) = \begin{cases} 1, & \text{if } (1) \text{ is the case} \\ 0, & \text{if } (2) \text{ is the case.} \end{cases}$$

Next consider the Group II triples associated with clause C_j , $j \in [1..m]$, i.e., triples of the form (a_j, b_j, x_{ij}^b) , for some $i \in [1..n]$ and $b \in \{0, 1\}$. There are three such triples and exactly one of them is in M (because they all share a_j and b_j and no other triple has these elements). Let (a_j, b_j, x_{ij}^b) be the triple of this form that is in M. There are two cases:

Case 1. b = 1. Then, by definition of T, for some $t \in [1..3]$, $\ell_j^t = \overline{x}_i$. Since M contains (a_j, b_j, x_{ij}^1) , it cannot contain $(a_{ij}, b_{ij}, x_{ij}^1)$ (otherwise two triples would have the same third component, contradicting that M is a matching); so M must contain $(a_{ij\oplus 1},b_{ij},x_{ij}^0)$ (because these are the only two triples that contain b_{ij}). Then, by the above definition of τ , $\tau(x_i) = 0$ and so $\tau(\overline{x}_i) = 1$. Since $\ell_j^t = \overline{x}_i$, τ satisfies one of the literals of clause C_j and therefore the entire clause.

Case 2. b = 0. By similar reasoning, τ satisfies clause C_i .

We have proved that τ satisfies every clause C_i ; therefore F is satisfiable.

The two-dimensional counterpart of 3DM is known as bipartite matching and is solvable in polynomial time by reduction to the maximum flow problem.