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Notation

p data dimensionality

q latent dimensionality

n number of data points

Y design matrix containing our data nx p
X matrix of latent variables nxagq

Row vector from matrix A given by a;. column vector a. ; and element
given by a; ;.
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Online Resources

All source code and slides are available online
o Tutorial homepage is

> http:
//ttic.uchicago.edu/~rurtasun/tutorials/GP_tutorial.html.

» Code available at
http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/.
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@ High dimensional data dominates many application domains.

Urtasun & Lawrence () GP tutorial



High Dimensional Data

@ High dimensional data dominates many application domains.
@ Examples include:

a customer in a data base, where the features might include their
purchase history, where they live, their sex, and age;

Urtasun & Lawrence () GP tutorial June 16, 2012 4 /40



High Dimensional Data

@ High dimensional data dominates many application domains.
@ Examples include:

a customer in a data base, where the features might include their
purchase history, where they live, their sex, and age;

a digitized photograph, where the features include the pixel
intensities, time, date, and location of the photograph;

Urtasun & Lawrence () GP tutorial June 16, 2012 4 /40



High Dimensional Data

@ High dimensional data dominates many application domains.

@ Examples include:

a customer in a data base, where the features might include their
purchase history, where they live, their sex, and age;

a digitized photograph, where the features include the pixel
intensities, time, date, and location of the photograph;

human motion capture data for the movie and games industries,
where features consist of a time series of angles at each
Jjoint;

Urtasun & Lawrence () GP tutorial June 16, 2012 4 /40



High Dimensional Data

@ High dimensional data dominates many application domains.

@ Examples include:

a customer in a data base, where the features might include their
purchase history, where they live, their sex, and age;

a digitized photograph, where the features include the pixel
intensities, time, date, and location of the photograph;

human motion capture data for the movie and games industries,
where features consist of a time series of angles at each
joint;

human speech, where the features consist of the energy at different
frequencies (or across the cepstrum) as a time series;

Urtasun & Lawrence () GP tutorial June 16, 2012 4 /40



High Dimensional Data

@ High dimensional data dominates many application domains.

@ Examples include:

a customer in a data base, where the features might include their
purchase history, where they live, their sex, and age;

a digitized photograph, where the features include the pixel
intensities, time, date, and location of the photograph;

human motion capture data for the movie and games industries,
where features consist of a time series of angles at each
joint;

human speech, where the features consist of the energy at different
frequencies (or across the cepstrum) as a time series;

a webpage or other document, features could consist of frequencies
of given words in a set of documents and linkage
information between documents;

Urtasun & Lawrence () GP tutorial June 16, 2012 4 /40



High Dimensional Data

@ High dimensional data dominates many application domains.

@ Examples include:

a customer in a data base, where the features might include their
purchase history, where they live, their sex, and age;

a digitized photograph, where the features include the pixel
intensities, time, date, and location of the photograph;

human motion capture data for the movie and games industries,
where features consist of a time series of angles at each
joint;

human speech, where the features consist of the energy at different
frequencies (or across the cepstrum) as a time series;

a webpage or other document, features could consist of frequencies
of given words in a set of documents and linkage
information between documents;

gene expression data, features consist of the level of expression of
thousands of genes.
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Mixtures of Gaussians
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Mixtures of Gaussians

Figure: Complex structure not a problem for mixtures of Gaussians.
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Thinking in High Dimensions

@ Two dimensional plots of Gaussians can be misleading.

@ Our low dimensional intuitions can fail dramatically.
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Thinking in High Dimensions

Two dimensional plots of Gaussians can be misleading.

Our low dimensional intuitions can fail dramatically.

Two major issues:

© In high dimensions all the data moves to a ‘shell’. There is nothing
near the mean!

@ Distances between points become constant.

© These affects apply to many densities.

Let's consider a Gaussian ‘“egg".
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The Gaussian Egg

Volumes: [ 29.4%

Figure: One dimensional Gaussian density.
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The Gaussian Egg

Volumes: [BIRSZ 33.2%

Figure: Two dimensional Gaussian density.
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The Gaussian Egg

Volumes: 56.1% 34.7%

Figure: Three dimensional Gaussian density.
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Mathematics

What is the density of probability mass?

yik ~ N (0,07)

2 2.2

Square of sample from Gaussian is scaled chi-squared density
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Mathematics

What is the density of probability mass?

ik ~N (0,0°)

1 1
=~ (332)

Chi squared density is a variant of the gamma density With shape

parameter a = 1, rate parameter b = 5 51y, G (x|a, b) = a) a—le=bx,
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Mathematics

What is the density of probability mass?

Yik ~ N (0,07)

2 1
= yi1 ‘H’i%z”g(i;@)

Addition of gamma random variables with the same rate is gamma with
sum of shape parameters (y; xs are independent)
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Mathematics

What is the density of probability mass?

P p 1

2 — PR
D Yk g(2’20—2)
k=1

P
_ <zy,-%k> _ p?
k=1

Addition of gamma random variables with the same rate is gamma with
sum of shape parameters (y; xs are independent)
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Mathematics

What is the density of probability mass?

1 & p p
- 2 rF_F
pkzzzly”k Q<2,202> Yia

1 P
= <—Zy,-2,k> =0’
pk:l

Scaling of gamma density scales the rate parameter
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Where is the Mass?

@ Squared distances are gamma distributed.

1
0.75
0.5
0.25
0
1 4 16 64 256 1024
dimension

Urtasun & Lawrence () GP tutorial



Looking at Gaussian Samples
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Interpoint Distances

@ The other effect in high dimensions is all points become equidistant.
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Interpoint Distances

@ The other effect in high dimensions is all points become equidistant.
@ Can show this for Gaussians with a similar proof to the above,

Yik ~ N (0,0%) Yik ~ N (0,0%)
Yik = Yjk ~N (0,20%)

1 1
ik —Yix) ~G ( )

s, —
2 4oy
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Interpoint Distances

@ The other effect in high dimensions is all points become equidistant.
@ Can show this for Gaussians with a similar proof to the above,

Yik ~N(0,0%) Yik ~ N (0,0%)
Yik — Yk ~N (0, 20%)

1 1
ik —Yix) ~G ( )

S,
2 4oy

For spherical Gaussian, ai = g2

2 p 1
(Yi,k - yj,k) ~G (27 402>

=1
1& > p p
; ; ()/:,k - _yj,k) ~G <§a @)

Dimension normalized distance between points is drawn from a

. . . 2
gamma. Mean is 202, Variance is 8%.

p

k
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Central Limit Theorem and Non-Gaussian Case

@ We can compute the density of squared distance analytically for
spherical, independent Gaussian data.
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Central Limit Theorem and Non-Gaussian Case

@ We can compute the density of squared distance analytically for
spherical, independent Gaussian data.

@ More generally, for independent data, the central limit theorem
applies.

» The mean squared distance in high dimensional space is the mean of
the variances.
» The variance about the mean scales as p~!.

Urtasun & Lawrence () GP tutorial June 16, 2012 12 / 40



Summary until now

@ In high dimensions if individual dimensions are independent the
distributions behave counter intuitively.

o All data sits at one standard deviation from the mean.

@ The densities of squared distances can be analytically calculated for
the Gaussian case.

@ For non-Gaussian independent systems we can invoke the central limit
theorem.

@ Next we will consider example data sets and see how their interpoint
distances are distributed.
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Sanity Check

Data sampled from independent Gaussian distribution
o If dimensions are independent, we expect low variance, Gaussian
behavior for the distribution of squared distances.
Distance distribution for a Gaussian with p = 1000, n = 1000

0 1 2 3 4 5 6

squared distance

SO = N W b~ o
I
|

Figure: A good match betwen theory and the samples for a 1000 dimensional
Gaussian distribution.
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Sanity Check

Same data generation, but fewer data points.
o If dimensions are independent, we expect low variance, Gaussian
behaviour for the distribution of squared distances.
Distance distribution for a Gaussian with p = 1000, n = 100

0 1 2 3 4 5 6

squared distance

SO = N W b~ o
I
|

Figure: A good match betwen theory and the samples for a 1000 dimensional
Gaussian distribution.
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Oil Data

Homogeneous

@ Simulated measurements from an

oil pipeline (Bishop 93)
@ Pipeline contains oil, water and gas. N
@ Three phases of flow in Stratified

pipeline—homogeneous, stratified

and annular.

Annular
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Oil Data

@ Simulated measurements from an

oil pipeline (Bishop 93)

@ Pipeline contains oil, water and gas.

@ Three phases of flow in

pipeline—homogeneous, stratified

and annular.

@ Gamma densitometry sensors

arranged in a configuration around

pipeline.

Urtasun & Lawrence ()
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Oil Data

@ 12 simulated measurements of oil flow in a pipe.

@ Nature of flow is dependent on relative proportion of oil, water and
gas.

0 1 2 3 4 5 6
squared distance

Figure: Interpoint squared distance distribution for oil data with p = 12 (variance
of squared distances is 1.98 vs predicted 0.667).
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Stick Man Data

Changing

@ n = 55 frames of motion capture.

@ xyz locations of 34 points on the
body.

@ p = 102 dimensional data.

@ "“Run 1" available from http: Angle
//accad.osu.edu/research/
mocap/mocap_data.htm.

of Run
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Stick Man

@ Motion capture data inter point distance histogram.

0 1 2 3 4 5 6
squared distance

Figure: Interpoint squared distance distribution for stick man data with p = 102
(variance of squared distances is 1.09 vs predicted 0.0784).
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Microarray Data

. Yeast
@ Gene expression measurements
reflecting the cell cycle in yeast
(Spellman 98)
@ p=06,178 Genes measured for
n = 77 experiments
o Data available from Cell
http://genome-www.stanford.
edu/cellcycle/data/rawdata/
individual.htm.
Cycle
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Microarray Data

@ Spellman yeast cell cycle.

12
10 - s

o N B O
I
|

0 1 2 3 4 5 6
squared distance

Figure: Interpoint squared distance distribution for Spellman microarray data with
p = 6178 (variance of squared distances is 0.694 vs predicted 0.00129).
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Where does practice depart from our theory?

@ The situation for real data does not reflect what we expect.
@ Real data exhibits greater variances on interpoint distances.

» Somehow the real data seems to have a smaller effective dimension.

@ Let's look at another p = 1000.
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1000-D Gaussian

Distance distribution for a different Gaussian with p = 1000
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1000-D Gaussian

Distance distribution for a different Gaussian with p = 1000

o I ‘ | |
o 1 2 3 4 5 6

squared distance

@ Gaussian has a specific low rank covariance matrix C = WW T + 21,
@ Take 02 = le — 2 and sample W € R1900%2 from A/ (0,1).

Urtasun & Lawrence () GP tutorial June 16, 2012 23 / 40



1000-D Gaussian

Distance distribution for a different Gaussian with p = 1000

0.5

0.4
0.3
0.2
0.1

0
o 1 2 3 4 5 6

squared distance

@ Gaussian has a specific low rank covariance matrix C = WW T + ¢2I.
@ Take 02 = le — 2 and sample W € R1900%2 from A/ (0,1).
© Theoretical curve taken assuming dimensionality of 2.
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Linear Probabilistic Dimensionality Reduction

Where does this Low Rank Covariance Matrix Come From?

@ It arises from a low dimensional approximation for the data set.
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@ It arises from a low dimensional approximation for the data set.
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Linear Probabilistic Dimensionality Reduction

Where does this Low Rank Covariance Matrix Come From?
@ It arises from a low dimensional approximation for the data set.
e Probabilistic PCA (Tipping 99, Roweis 97)

» Linear Mapping from g-dimensional latent space to p-dimensional data
space.

» Corrupt the mapping by independent Gaussian noise.

» Marginalise latent variables using Gaussian prior.
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A bit more Notation

g— dimension of latent/embedded space
p— dimension of data space
n— number of data points

data, Y = [y1,,.. .,yn,:]T =[y.1,...,¥.p] € R"*P
centred data, ¥ = [§1.,. ... ¥n ]| = [§:1,- -, 0] € R™P, i = yi: — 1t
latent variables, X =[xy, ... 7x,,7;]T =[x.1,...,%X.q] € R™

mapping matrix, W € RP*9

a; . is a vector from the ith row of a given matrix A
a.; is a vector from the jth row of a given matrix A
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Reading Notation

X and Y are design matrices

<>

o Data covariance given by %YT

o Inner product matrix given by YY T

K=(kij)i;» kij= YiYi.
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Linear Dimensionality Reduction

e Find a lower dimensional plane embedded in a higher dimensional
space.
@ The plane is described by the matrix W € RP*9.

X2

X1

Figure: Mapping a two dimensional plane to a higher dimensional space in a
linear way. Data are generated by corrupting points on the plane with noise.
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Linear Latent Variable Model

Probabilistic PCA

@ Linear-Gaussian
relationship between
latent variables and data,
Yi: = Wxi,: +p+ ni..-

p(Y|X,W) = HN (yi,:|Wxi,: +u, U2|)
i=1
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Linear Latent Variable Model

Probabilistic PCA
@ Linear-Gaussian
relationship between
latent variables and data,
Vi, = Wx;. +p+m;..
@ X are ‘nuisance’ variables.

p(Y|X,W) = HN (yi,:|Wxi,: +u, 0'2')
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Linear Latent Variable Model

Probabilistic PCA

@ Linear-Gaussian
relationship between
latent variables and data,
Yi: = Wxi,: +p+ ni..-

@ X are ‘nuisance’ variables.

@ Latent variable model
approach:

p(Y|X,W) = HN (yi,:|Wxi,: +u, ‘72')
i=1
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Linear Latent Variable Model

Probabilistic PCA

@ Linear-Gaussian
relationship between
latent variables and data,
Yi: = Wxi,: +p+ ni..-

@ X are ‘nuisance’ variables.

@ Latent variable model n
approach: p(YIX, W) = [NV (i, [Wxi,. + g, 071)
i=1
@ Define Gaussian prior
over latent space, X.

p(X) = HN (Xi,:m’ I)
i=1
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Linear Latent Variable Model

Probabilistic PCA

@ Linear-Gaussian
relationship between
latent variables and data,

Yi. = Wxi,: +p+ ni.- 0

@ X are ‘nuisance’ variables.

@ Latent variable model p (Y%, W) = [ (yr.|Wxi. + s, 021)
approach: i1

@ Define Gaussian prior n
over latent space, X. p(X) =[N (xi:[0,1)
@ Integrate out nuisance =1

latent variables. n
POYIW, ) = TTA (yilie, WWT + 01)
i=1
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Linear Latent Variable Model

Probabilistic PCA

@ Linear-Gaussian

relationship between

latent variables and data,

Vi, =Wx;. +p+mn;..
@ X are ‘nuisance’ variables.

@ Latent variable model 0
approach:

@ Define Gaussian prior n
over latent space, X. p(YIW,p) =[]V (y"u‘“’WWT + ‘72'>
. i=1
@ Integrate out nuisance l
latent variables.
© Optimize likelihood wrt
W, u.
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Linear Latent Variable Model

Probabilistic PCA

@ Linear-Gaussian

relationship between

latent variables and data,

Vi, =Wx;. +p+mn;..
@ X are ‘nuisance’ variables.

@ Latent variable model

approach:
@ Define Gaussian prior . n A T,
over latent space, X. P <Y|W) = HN(V"*lo’WW te I)
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@ Integrate out nuisance
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Probabilistic PCA Solution

Probabilistic PCA Max. Likelihood Soln (Tipping 99)

P (?|w) =TI~ (9,-,;\0,wa n 0'2|)

i=1
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Probabilistic PCA Solution
Probabilistic PCA Max. Likelihood Soln (Tipping 99)

P
p (?|w) - 1‘{/\/(9,-,40, ), c=ww' 152
i

log p (?|W) = —g log |C| — %tr (C’IVT?) + const.
If Uq are first g principal eigenvectors of n~1YTY and the corresponding eigenvalues are Ag,
W=UJLR", L= (As— UZI)%
where R is an arbitrary rotation matrix.
=D
e I D g



PCA on Stick Man

@ First two principal components of stick man data.
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Figure: Stick man data projected onto their first two principal components.

demStickPpcal.
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PCA on Oil Data

@ First two principal components of oil data.

1.5f
1r
0.5r
ot

0.5f

2.5k ‘ ‘ ‘ ‘ ‘ ‘
-3 -2 -1 0 1 2 3

Figure: Oil data projected onto their first two principal components.
demOilPpcal.
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PCA on Microarray

@ First two principal components of gene expression data.

oF
1.5¢
1

L + +
05 + @%ﬁl—+ +

[o]3 o &F5

.+
X

a
+

+

0.5f + omof
1t o

1.5¢
_2t
2.5- o + +

-3 -2 -1 0 1 2

Figure: Microarray data projected onto their first two principal components.
demSpellmanPpcal. Different symbols show different experiment groups
(separate time series).
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Why Probabilistic PCA?

@ What is the point in probabilistic methods?
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temporal models).
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Why Probabilistic PCA?

@ What is the point in probabilistic methods?
@ Could we not just project with regular PCA?

> Integration within other models (e.g. mixtures of PCA (Tipping 97),
temporal models).

» Model selection through Bayesian treatment of parameters (Bishop 98)

» Marginalisation of missing data (Tipping 99)
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Oil and Missing Data

-3 . . . . . _3 . . . . .
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

Figure: Projection of the oil data set on to g = 2 latent dimensions. Left: full
data set with no missing data. Right: data set with 10% values missing at
random.
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Oil and Missing Data

-3 . . . . . _3 . . . . .
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2

Figure: Projection of the oil data set on to g = 2 latent dimensions. Left: full

data set with no missing data. Right: data set with 20% values missing at
random.
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Oil and Missing Data

-3 . . . . . _3 . . . . .
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2

Figure: Projection of the oil data set on to g = 2 latent dimensions. Left: full

data set with no missing data. Right: data set with 30% values missing at
random.
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Oil and Missing Data

-3 . . . . . _3 . . . . .
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2

Figure: Projection of the oil data set on to g = 2 latent dimensions. Left: full

data set with no missing data. Right: data set with 50% values missing at
random.
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Is (P)PCA Used in Computer Vision?

It's difficult not to find a paper that doesn't use it!

@ EigenFaces: y is an image of a face (Sirovich & Kirby 87, Turk & Pentland
91)

Figure: Yale faces: Image from C. de CORO
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Is (P)PCA Used in Computer Vision?

It's difficult not to find a paper that doesn't use it!

@ EigenFaces: y is an image of a face (Sirovich & Kirby 87, Turk & Pentland
91)

@ Morphable Model for the Synthesis of 3D Faces (Blanz & Vetter 99)
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Is (P)PCA Used in Computer Vision?

It's difficult not to find a paper that doesn't use it!

@ EigenFaces: y is an image of a face (Sirovich & Kirby 87, Turk & Pentland

91)
@ Morphable Model for the Synthesis of 3D Faces (Blanz & Vetter 99)

@ Tracking where y is the full motion (e.g., all poses for a full golf swing)
(Siddenbladh et al. 02, Urtasun et al. 05)

8 8
L 6
g 4
2 _ 2
1 g

s
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Is (P)PCA Used in Computer Vision?

It's difficult not to find a paper that doesn't use it!

@ EigenFaces: y is an image of a face (Sirovich & Kirby 87, Turk & Pentland
91)

@ Morphable Model for the Synthesis of 3D Faces (Blanz & Vetter 99)

@ Tracking where y is the full motion (e.g., all poses for a full golf swing)
(Siddenbladh et al. 02, Urtasun et al. 05)

@ Object recognition: PCA-SIFT (Ke et al. 04)
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Is (P)PCA Used in Computer Vision?

It's difficult not to find a paper that doesn't use it!

@ EigenFaces: y is an image of a face (Sirovich & Kirby 87, Turk & Pentland
91)

Morphable Model for the Synthesis of 3D Faces (Blanz & Vetter 99)

Tracking where y is the full motion (e.g., all poses for a full golf swing)
(Siddenbladh et al. 02, Urtasun et al. 05)

Object recognition: PCA-SIFT (Ke et al. 04)

Object detection: Deformable part-based models (Felzenbwald et al. 10)
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Is (P)PCA Used in Computer Vision?

It's difficult not to find a paper that doesn't use it!

@ EigenFaces: y is an image of a face (Sirovich & Kirby 87, Turk & Pentland
91)

Morphable Model for the Synthesis of 3D Faces (Blanz & Vetter 99)

Tracking where y is the full motion (e.g., all poses for a full golf swing)
(Siddenbladh et al. 02, Urtasun et al. 05)

@ Object recognition: PCA-SIFT (Ke et al. 04)

@ Object detection: Deformable part-based models (Felzenbwald et al. 10)
o -
@ You probably have used it too! (Audience et al. )
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Let's see what Neil has to say ...
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Maximum Likelihood Solution

Probabilistic PCA Max. Likelihood Soln (Tipping 99)

p(YIW,p) =[N (y,-,;lu,wwT + a2|)
i=1

Gradient of log likelihood
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Maximum Likelihood Solution

Probabilistic PCA Max. Likelihood Soln (Tipping 99)

p (?|w) =TI~ (9,-,:\0,wa +01)

i=1

Gradient of log likelihood

d * _ _Ne— 19 o1
dWIogp<Y|W)——2C W >CYTYCw
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Maximum Likelihood Solution

Probabilistic PCA Max. Likelihood Soln (Tipping 99)

p (?|w) - 1‘{/\/(9,-,40, C), C=ww' 102
ph

Gradient of log likelihood
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Maximum Likelihood Solution

Probabilistic PCA Max. Likelihood Soln (Tipping 99)

p (?|w) - 1‘{/\/(9,-,40, ), c=ww' 152
pl

log p (?|W) = —g log |C| — %tr (C’I?T?) + const.

Gradient of log likelihood
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Optimization
Seek fixed points

1 nm
0= —gc—lw +sCTYTYC W
pre-multiply by 2C o
0=—-nW+Y'YC'W

%\?T?c—lw =W
Substitute W with singular value decomposition
W = ULR"T
which implies
C=WW' +°
=ULu" +42
Using matrix inversion lemma
C'W=UL(c>+L%) 'RT
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Solution given by
1
n
which is recognised as an eigenvalue problem.

Y'YU=U (0% +1?)

@ This implies that the columns of U are the eigenvectors of %?T? and
that 02 4 L? are the eigenvalues of %?T?
o /; = +\/\j — 02 where )\, is the ith eigenvalue of %?T?.

@ Further manipulation shows that if we constrain W € :P*9 then the
solution is given by the largest g eigenvalues.
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Probabilistic PCA Solution

o If U, are first g principal eigenvectors of n~1YTY and the
corresponding eigenvalues are A,

W =U,LR", L= (A;- azl)%

where R is an arbitrary rotation matrix.

@ Some further work shows that the principal eigenvectors need to be
retained.

@ The maximum likelihood value for o2 is given by the average of the
discarded eigenvalues.
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