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Current Status of your Field?

R. Urtasun (UofT) Deep Structured Models July 31, 2015 2 /113



© Part I: Deep learning
@ Part Il: Deep Structured Models
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Part I: Deep Learning
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Deep Learning

@ Supervised models
@ Unsupervised learning (will not talk about this today)

@ Generative models (will not talk about this today)
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Binary Classification

@ Given inputs x, and outputs t € {—1,1}
@ We want to fit a hyperplane that divides the space into half

v, = sign(w " x, + wo)
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Binary Classification

@ Given inputs x, and outputs t € {—1,1}

@ We want to fit a hyperplane that divides the space into half

R. Urtasun (UofT)

Vi = sign(w " x, + wp)
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SVMs try to maximize the margin
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Non-linear Predictors

How can we make our classifier more powerful?
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Non-linear Predictors

How can we make our classifier more powerful?

@ Compute non-linear functions of the input

Vi = F(xi,w)
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Non-linear Predictors

How can we make our classifier more powerful?

@ Compute non-linear functions of the input
Ve = F(x*7w)

Two types of approaches:
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Non-linear Predictors

How can we make our classifier more powerful?

@ Compute non-linear functions of the input
Ve = F(x*7w)

Two types of approaches:

@ Kernel Trick: Fixed functions and optimize linear parameters on non-linear
mapping
Y. = sign(w " ¢(x..) + wo)
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Non-linear Predictors

How can we make our classifier more powerful?

@ Compute non-linear functions of the input
Ve = F(x*7w)

Two types of approaches:

@ Kernel Trick: Fixed functions and optimize linear parameters on non-linear
mapping
Y. = sign(w " ¢(x..) + wo)

@ Deep Learning: Learn parametric non-linear functions

Ve = F (X4, W)
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Supervised Learning: Examples

Classification

OCR
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Why " Deep" ?

Supervised Deep Learning

Classification

OCR

“2345”

4
Ranzato“

2345
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Neural Networks

@ Deep learning uses composite of simpler functions, e.g., ReLU, sigmoid,
tanh, max
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Neural Networks

@ Deep learning uses composite of simpler functions, e.g., ReLU, sigmoid,
tanh, max

@ Note: a composite of linear functions is linear!
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Neural Networks

@ Deep learning uses composite of simpler functions, e.g., ReLU, sigmoid,
tanh, max

@ Note: a composite of linear functions is linear!

@ Example: 2 layer NNet

1

h h?
x—>[ max(0, W, x) ]—»[ max(0, W, h!) ]—»[ Wy h? ]—»y
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Neural Networks

@ Deep learning uses composite of simpler functions, e.g., ReLU, sigmoid,
tanh, max

@ Note: a composite of linear functions is linear!

@ Example: 2 layer NNet

h? h?
x—>[ max(0, W, x) ]—»[ max(0, W, h!) ]—»[ Wy h? ]—»y

e X is the input
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Neural Networks

@ Deep learning uses composite of simpler functions, e.g., ReLU, sigmoid,
tanh, max

@ Note: a composite of linear functions is linear!

@ Example: 2 layer NNet

h? h?
x—>[ max(0, W, x) ]—»[ max(0, W, h!) ]—»[ Wy h? ]—»y

e X is the input
e y is the output (what we want to predict)
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Neural Networks

@ Deep learning uses composite of simpler functions, e.g., ReLU, sigmoid,
tanh, max

@ Note: a composite of linear functions is linear!

@ Example: 2 layer NNet

h? h?
x—>[ max(0, W, x) ]—»[ max(0, W, h!) ]—»[ Wy h? ]—»y

e X is the input
o y is the output (what we want to predict)
e h' is the i-th hidden layer
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Neural Networks

@ Deep learning uses composite of simpler functions, e.g., ReLU, sigmoid,
tanh, max

@ Note: a composite of linear functions is linear!

@ Example: 2 layer NNet

h? h?
x—>[ max(0, W, x) ]—»[ max(0, W, h!) ]—»[ Wy h? ]—»y

x is the input

y is the output (what we want to predict)
h' is the i-th hidden layer

W' are the parameters of the i-th layer
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Evaluating the Function

@ Forward Propagation: compute the output given the input
2

h
x—»[ max(0, W, x) H max(0, W, h!) ]—v[ W5 h? ]—>y
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Evaluating the Function

@ Forward Propagation: compute the output given the input

h2
x—»[ max(0, W, x) H max(0, W, h!) ]—v[ W5 h? ]—>y

@ Fully connected layer: Each hidden unit takes as input all the units from
the previous layer
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Evaluating the Function

@ Forward Propagation: compute the output given the input
2

h
x—»[ max(0, W, x) H max(0, W, h!) ]—v[ W5 h? ]—>y

@ Fully connected layer: Each hidden unit takes as input all the units from
the previous layer

@ The non-linearity is called a ReLU (rectified linear unit), with x € RP,
b’ € RNi the biases and W' € RNVi*Ni-1 the weights
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Evaluating the Function

@ Forward Propagation: compute the output given the input
2

h
x—»[ max(0, W, x) H max(0, W, h!) ]—v[ W5 h? ]—>y

@ Fully connected layer: Each hidden unit takes as input all the units from
the previous layer

@ The non-linearity is called a ReLU (rectified linear unit), with x € RP,
b’ € RNi the biases and W' € RNVi*Ni-1 the weights

@ Do it in a compositional way,

h! = max(0, W'x + b')
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Evaluating the Function

@ Forward Propagation: compute the output given the input

hl
x—»[ max(0, W;"x) ]—v[ max(0, W, h!) [ W5 h? ]—»Y

@ Fully connected layer: Each hidden unit takes as input all the units from
the previous layer

@ The non-linearity is called a ReLU (rectified linear unit), with x € RP,
b’ € RNi the biases and W' € RNi*Ni—1 the weights

@ Do it in a compositional way

h! = max(0, Wx + b*)
h? = max(0, W?h! + b?)
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Evaluating the Function

@ Forward Propagation: compute the output given the input

h? h?
x—»[ max(0, W;"x) ]—»[ max(0, W, h!) ]—v[ W5 h? ]—».

@ Fully connected layer: Each hidden unit takes as input all the units from
the previous layer

@ The non-linearity is called a ReLU (rectified linear unit), with x € RP,
b" € RN the biases and W' € RN*Ni-1 the weights

@ Do it in a compositional way
h! = max(0, Wx + b*)
h? max(0, W?h! + b?)
y max(0, W3h? + b*)
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Alternative Graphical Representation
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Relu Interpretation

@ Piece-wise linear tiling: mapping is locally linear.

Figure : by M. Ranzato
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Why Hierarchical?

Interpretation

[f100010100001T101...] motorbike

001000010011 0010...] truek

Y T N 4
= 15
Ranzaton
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Why Hierarchical?

Interpretation

prediction Aof class

high-level | 3
parts an oo C10)

= distributed representations

mid-level )
parts = feature sharing
= compositionality
low level EIEERIIAER

= 16
Lee et al. “Convolutional DBN's ...” ICML 2009 Ranzaton
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2

ht h
x—»[ max(0, W;"x) ]—v[ max(0, W, h') ]—v[ Wy h? ]—>y
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2

h! h
X—>[ max(0, W, x) ]—>[ max(0, W, h!) ]—v[ W, h? ]—>y

© We want to estimate the parameters, biases and hyper-parameters (e.g.,
number of layers, number of units) such that we do good predictions
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1 2

h h
X—>[ max(0, W, x) ]—>[ max(0, W, h!) ]—v[ W, h? ]—>y

© We want to estimate the parameters, biases and hyper-parameters (e.g.,
number of layers, number of units) such that we do good predictions

@ Collect a training set of input-output pairs {x, t}
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2

h! h
X—>[ max(0, W, x) ]—>[ max(0, W, h!) ]—v[ W, h? ]—>y

© We want to estimate the parameters, biases and hyper-parameters (e.g.,
number of layers, number of units) such that we do good predictions

@ Collect a training set of input-output pairs {x, t}

@ Encode the output with 1-K encoding t = [0,--- ,1,---,0]
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1 2

h h
X—>[ max(0, W, x) ]—>[ max(0, W, h!) ]—v[ W, h? ]—>y

© We want to estimate the parameters, biases and hyper-parameters (e.g.,
number of layers, number of units) such that we do good predictions

@ Collect a training set of input-output pairs {x, t}
@ Encode the output with 1-K encoding t = [0,--- ,1,---,0]

@ Define a loss per training example and minimize the empirical risk
L(w) = Ze(w x4 R(w)

with N number of examples, R a regularizer, and w contains all parameters
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2

h! h
X—>[ max(0, W, x) ]—>[ max(0, W, h!) ]—»[ W, h? ]—>y

© We want to estimate the parameters, biases and hyper-parameters (e.g.,
number of layers, number of units) such that we do good predictions

@ Collect a training set of input-output pairs {x, t}

Encode the output with 1-K encoding t = [0,--- ,1,---,0]

Define a loss per training example and minimize the empirical risk
L(w) = Ze(w x4 R(w)

with N number of examples, R a regularizer, and w contains all parameters

@ What do we want to use as ¢?
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2

h! h
X—>[ max(0, W, x) ]—>[ max(0, W, h!) ]—»[ W, h? ]—>y

© We want to estimate the parameters, biases and hyper-parameters (e.g.,
number of layers, number of units) such that we do good predictions

@ Collect a training set of input-output pairs {x, t}

Encode the output with 1-K encoding t = [0,--- ,1,---,0]

Define a loss per training example and minimize the empirical risk
L(w) = Ze(w x4 R(w)

with N number of examples, R a regularizer, and w contains all parameters

@ What do we want to use as ¢?

The task loss: how we are going to evaluate at test time
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Loss Functions

L(w) = % 3t x, 1) + R(w)
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Loss Functions

L(w) = % 3t x, 1) + R(w)

@ The task loss is too difficult to compute, so one uses a surrogate that its
typically convex
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Loss Functions

L(w) = % 3t x, 1) + R(w)

@ The task loss is too difficult to compute, so one uses a surrogate that its
typically convex

@ Probability of class k given input (softmax):
ex

Zj:l exp(y))
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Loss Functions

L(w) = % 3t x, 1) + R(w)

@ The task loss is too difficult to compute, so one uses a surrogate that its
typically convex

@ Probability of class k given input (softmax):

p(ch = 1x) = ?XP(Yk)

Ej:l exp(y))
@ Cross entropy is the most used loss function for classification

f(x, t, W) = - Z t(i) |0g p(C,'|X)

i
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Loss Functions

L(w) = % 3t x, 1) + R(w)

@ The task loss is too difficult to compute, so one uses a surrogate that its
typically convex

@ Probability of class k given input (softmax):
ex

Ej:l exp(y))
@ Cross entropy is the most used loss function for classification

f(x, t, W) = - Z t(i) |0g p(C,'|X)

@ Use gradient descent to train the network

.1 G
min Zf(w,x( ), ) + R(w)
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Backpropagation

@ Efficient computation of the gradients by applying the chain rule
2

; g™
x—»[ max(0, W;"x) ]—v[ max(0, W, h!) ]—v[ W5 h? ]<—y
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Backpropagation

@ Efficient computation of the gradients by applying the chain rule

: ey
x—»[ max(0, W;"x) ]—v[ max(0, W, h!) ]—v[ W5 h? ]<—y
ex
plo—1x) = —° P(y«)

> j—1exp(y))
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Backpropagation

@ Efficient computation of the gradients by applying the chain rule

; g™
x—»[ max(0, W;"x) ]—v[ max(0, W, h!) ]—v[ W5 h? ]<—y

exp(y«)
C
> j—1exp(y))
(x, t,w) = —> tWlog p(cilx)

plac=1) =
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Backpropagation

@ Efficient computation of the gradients by applying the chain rule
2

: e
x—»[ max(0, W;"x) ]—v[ max(0, W, h!) ]—v[ W5 h? ]<—y

exp(y«)
C
> j—1exp(y))
(x, t,w) = —> tWlog p(cilx)

plac=1) =

@ Compute the derivative of loss w.r.t. the output

ov
g, Pl -t
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Backpropagation

@ Efficient computation of the gradients by applying the chain rule
2

: e
x—»[ max(0, W;"x) ]—v[ max(0, W, h!) ]—v[ W5 h? ]<—y

exp(y«)
C
> j—1exp(y))
(x, t,w) = —> tWlog p(cilx)

plac=1) =

@ Compute the derivative of loss w.r.t. the output
ot
— =pl(c|x) —t
5 = ple

@ Note that the forward pass is necessary to compute %
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Backpropagation

@ Efficient computation of the gradients by applying the chain rule

h! &
x—»[ max(0, W;"x) ]—v[ max(0, W, h') 4—[ Wy h? ]<—y

@ Compute the derivative of loss w.r.t the output

ol
5y = Pleb) ¢
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Backpropagation

@ Efficient computation of the gradients by applying the chain rule

h! &
x—»[ max(0, W;"x) ]—v[ max(0, W, h') 4—[ Wy h? ]<—y

@ Compute the derivative of loss w.r.t the output

ol
5y = Pleb) ¢

@ Given g—ﬁ if we can compute the Jacobian of each module
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Backpropagation

@ Efficient computation of the gradients by applying the chain rule

h! &
x—»[ max(0, W;"x) ]—v[ max(0, W, h') 4—[ Wy h? ]<—y

@ Compute the derivative of loss w.r.t the output

ol
5y = Pleb) ¢

@ Given g—ﬁ if we can compute the Jacobian of each module

oY

ows
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Backpropagation

@ Efficient computation of the gradients by applying the chain rule

h! &
x—»[ max(0, W;"x) ]—v[ max(0, W, h') 4—[ Wy h? ]<—y

@ Compute the derivative of loss w.r.t the output

ol
5y = Pleb) ¢

@ Given g—ﬁ if we can compute the Jacobian of each module

ot 9 dy
W3 ~ Dy oW3
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Backpropagation

@ Efficient computation of the gradients by applying the chain rule

h! &
x—»[ max(0, W;"x) ]—v[ max(0, W, h') 4—[ Wy h? ]<—y

@ Compute the derivative of loss w.r.t the output

ol
5y = Pleb) ¢

@ Given g—ﬁ if we can compute the Jacobian of each module

or ot oy

37 = 5y i = (Pleb) — )T
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Backpropagation

@ Efficient computation of the gradients by applying the chain rule

h! &
x—»[ max(0, W;"x) ]—v[ max(0, W, h') 4—[ Wy h? ]<—y

@ Compute the derivative of loss w.r.t the output

ol
5y = Pleb) ¢

@ Given g—ﬁ if we can compute the Jacobian of each module

or ol Oy

37 = 5y i = (Pleb) — )T
or

oh2
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Backpropagation

@ Efficient computation of the gradients by applying the chain rule

h! &
x—»[ max(0, W;"x) ]—v[ max(0, W, h') 4—[ Wy h? ]<—y

@ Compute the derivative of loss w.r.t the output

ol
5y = Pleb) ¢

@ Given g—ﬁ if we can compute the Jacobian of each module

or ot Oy

37 = 5y i = (Pleb) — )T
o _ oty _

ohz ~ 9y oh?
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Backpropagation

@ Efficient computation of the gradients by applying the chain rule

h! &
x—»[ max(0, W;"x) ]—v[ max(0, W, h') 4—[ W5 h? ]<—y

@ Compute the derivative of loss w.r.t the output

ol
5y = Pleb) ¢

@ Given g—ﬁ if we can compute the Jacobian of each module

or ol Jdy
37 = 5y i = (Pleb) — )T
o0 Aty

o0 = oy oz = W) (p(eb) — 1
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Backpropagation

@ Efficient computation of the gradients by applying the chain rule

h! &
x—»[ max(0, W;"x) ]—v[ max(0, W, h') 4—[ W5 h? ]<—y

@ Compute the derivative of loss w.r.t the output

ol
5y = Pleb) ¢

@ Given g—ﬁ if we can compute the Jacobian of each module

or ol Oy
37 = 5y i = (Pleb) — )T

o ot dy

o0 = oy oz = W) (p(eb) — 1

@ Need to compute gradient w.r.t. inputs and parameters in each layer
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Backpropagation

@ Efficient computation of the gradients by applying the chain rule

ol o
oh? Oy

max(0, W, h') J Wi h?  |«—y

X —>[ max(0, W x)

o ot dy

o0 = oy oz = W) (p(ebo) — 1

@ Given % if we can compute the Jacobian of each module
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Backpropagation

@ Efficient computation of the gradients by applying the chain rule

ol o
oh? Oy

max(0, W, h') J Wi h?  |«—y

X —>[ max(0, W x)

ot ol dy T
ohe = 5y e = (W (e(eh) — 0
@ Given % if we can compute the Jacobian of each module

or

ow?

R. Urtasun (UofT) Deep Structured Models July 31, 2015 21 /113



Backpropagation

@ Efficient computation of the gradients by applying the chain rule

ol o
oh? Oy

max(0, W, h') J Wi h?  |«—y

X —>[ max(0, W x)

o ot dy

o0 = oy oz = W) (p(ebo) — 1

@ Given % if we can compute the Jacobian of each module

ot ot on?
OW?2 = 9h2 W2
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Backpropagation

@ Efficient computation of the gradients by applying the chain rule

ol o
oh? Oy

max(0, W, h') J Wi h?  |«—y

X —>[ max(0, W x)

ot ol dy T
ohe = 5y e = (W (e(eh) — 0
@ Given % if we can compute the Jacobian of each module

ot ot on?
OW?2 = 9h2 W2

4

ohl —
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Backpropagation

@ Efficient computation of the gradients by applying the chain rule

ol o
oh? Oy

max(0, W, h') J Wi h?  |«—y

X —>[ max(0, W x)

ot ol o
o0t = oy ome = W (pleb) — 1)

@ Given % if we can compute the Jacobian of each module

ot ot on?
OW?2 = 9h2 W2

4 Ol Oh?

Ohl ~ oh2 ohl
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Dealing with Big Data

@ Use gradient descent to train the network

1 o
in — () ()
min NZE(W,X 1) + R(w)
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Dealing with Big Data

@ Use gradient descent to train the network

mm—ZE XD 0) L R(w)

@ Too expensive when having millions of examples
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Dealing with Big Data

@ Use gradient descent to train the network

mln—ZE XD 0) L R(w)

@ Too expensive when having millions of examples

@ Instead approximate the gradient with a mini-batch (a subset of the
examples)

oL
wew—na—w, n € (0,1]
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Dealing with Big Data

@ Use gradient descent to train the network

mln—ZE XD 0) L R(w)

@ Too expensive when having millions of examples

@ Instead approximate the gradient with a mini-batch (a subset of the
examples)

oL
wew—na—w, n € (0,1]

@ We can also use momentum

w — w-—nA

L
A /-iA—Fi
ow
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Dealing with Big Data

@ Use gradient descent to train the network

mln—ZE XD 0) L R(w)

@ Too expensive when having millions of examples

@ Instead approximate the gradient with a mini-batch (a subset of the
examples)

oL
wew—na—w, n € (0,1]

@ We can also use momentum
w — w-—nA
oL
A «— RA+ —
ow
@ Many other variants exist
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Toy Code (Matlab): Neural Net Trainer

% F—-PROP
for i =1 : nr_layers -1
[h{i} Jac{i}] = nonlinearity(W{i} * h{i-1} + b{i});
end
h{nr_layers-1} = W{nr_layers-1} * h{nr_layers-2} + b{nr_layers-1};
prediction = softmax(h{l-1});

% CROSS ENTROPY LOSS

loss = - sum(sum(log(prediction) .* target)) / batch_size;
% B—-PROP
dh{l-1} = prediction - target;
for i = nr_layers - 1 : -1 : 1
Wgrad{i} dh{i} * h{i-1}"';

bgrad{i} sum(dh{i}, 2);
dh{i-1} = (W{i}' * dh{i}) .* Jjac{i-1};
end
% UPDATE
for i =1 : nr_layers - 1
W{i} = W{i} - (lr / batch_size) * Wgrad{i};
b{i} = b{i} - (lr / batch_size) * bgrad{i};
end

28
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How to deal with large Input Spaces

@ Images can have millions of pixels, i.e., x is very high dimensional

R. Urtasun (UofT) Deep Structured Models July 31, 2015 24 /113



How to deal with large Input Spaces

@ Images can have millions of pixels, i.e., x is very high dimensional

@ Prohibitive to have fully-connected layer

R. Urtasun (UofT) Deep Structured Models July 31, 2015 24 /113



How to deal with large Input Spaces

@ Images can have millions of pixels, i.e., x is very high dimensional
@ Prohibitive to have fully-connected layer

@ We can use a locally connected layer
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How to deal with large Input Spaces

@ Images can have millions of pixels, i.e., x is very high dimensional
@ Prohibitive to have fully-connected layer
@ We can use a locally connected layer

@ This is good when the input is registered
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Locally Connected Layer

Example: 200x200 image
40K hidden units
Filter size: 10x10
4M parameters

Note: This parameterization is good
‘ when input image is registered (e.g., “
face recognition). Ranzatoll3
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Locally Connected Layer

STATIONARITY? Statistics is similar at
different locations

Example: 200x200 image
40K hidden units
Filter size: 10x10
4M parameters

Note: This parameterization is good
when input image is registered (e.g., .
face recognition). ranzatolld
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Convolutional Neural Net

@ ldea: statistics are similar at different locations (Lecun 1998)

@ Connect each hidden unit to a small input patch and share the weight across

space

@ This is called a convolution layer and the network is a convolutional
network

Share the same parameters across
different locations (assuming input is
stationary):

Convolutions with learned kernels

36
Hanzaton
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Convolutional Layer
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Convolutional Layer

E.g.: 200x200 image
100 Filters
Filter size: 10x10
10K parameters

54
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Pooling Layer

By “pooling” (e.g., taking max) filter

responses at different locations we gain
robustness to the exact spatial location
of features.

61
Ranzaton
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Pooling Options

@ Max Pooling: return the maximal argument
@ Average Pooling: return the average of the arguments

@ Other types of pooling exist: L, pooling
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Pooling Layer: Receptive Field Size

hn+l

hn—l hn
Conv. Pool.
layer layer

If convolutional filters have size KxK and stride 1, and pooling layer
has pools of size PxP, then each unit in the pooling layer depends
upon a patch (at the input of the preceding conv. layer) of size:
(P+K-1)x(P+K-1)

67
Ranzaton
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Now let's make this very deep
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Convolutional Neural Networks (CNN)

@ Remember from your image processing / computer vision course about
filtering?

Input “image” Filter
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Convolutional Neural Networks (CNN)

@ If our filter was [—1, 1], we got a vertical edge detector

Input “image” Filter

-1 1
-11

Output map fub
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Convolutional Neural Networks (CNN)

@ Now imagine we want to have many filters (e.g., vertical, horizontal, corners,
one for dots). We will use a filterbank.

Filter bank

Input “image”
AN
3 channels
(R,G,B)
Output map

Output has many
<==== ‘‘channels”, one for

each filter

[Slide Credit: Sanja Fidler, Pic adopted from: A. Krizhevsky]
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Convolutional Neural Networks (CNN)

@ So applying a filterbank to an image yields a cube-like output, a 3D matrix
in which each slice is an output of convolution with one filter.

image (3 channels: R, G, B)

- N

Each slice in this cube is the output of
convolution of the image and a filter
(in this example an 11x11 filter)

In this example there are 96 filters

In this example our network will
always expect a 224x224x3 image.

[Slide Credit: Sanja Fidler, Pic adopted from: A. Krizhevsky]
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Convolutional Neural Networks (CNN)

@ So applying a filterbank to an image yields a cube-like output, a 3D matrix
in which each slice is an output of convolution with one filter.

image (3 channels: R, G, B)

Each slice in this cube is the output of
convolution of the image and a filter.

In this example the filter size is
11x11x3.

" We don’t do convolution in every pixel, but in
every 4t pixel (in x and y direction)

[Slide Credit: Sanja Fidler, Pic adopted from: A. Krizhevsky]
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Convolutional Neural Networks (CNN)

@ Do some additional tricks. A popular one is called max pooling. Any idea
why you would do this?

O(i,j) = O(k, 1
(i,7) pe X (k1)
le{j—1,j,j+1}

Take each slice in the output cube,
and in each pixel compute a max over
a small patch around it. This is called
max pooling.

[Slide Credit: Sanja Fidler, Pic adopted from: A. Krizhevsky]
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Convolutional Neural Networks (CNN)

@ Do some additional tricks. A popular one is called max pooling. Any idea
why you would do this? To get invariance to small shifts in position.

O(i,j) = O(k, 1
(2,5 pe X (k. 1)
le{j—1,j,j+1}

Take each slice in the output cube,
and in each pixel compute a max over
a small patch around it. This is called
max pooling.

[Slide Credit: Sanja Fidler, Pic adopted from: A. Krizhevsky]
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Convolutional Neural Networks (CNN)

@ Now add another “layer” of filters. For each filter again do convolution, but
this time with the output cube of the previous layer.

27

Max
pooling

27

256

Add one more layer of filters

These filters are convolved with the
output of the previous layer. The
results of each convolution is again a
slice in the cube on the right.

What is the dimension of each of
these filters?

[Slide Credit: Sanja Fidler, Pic adopted from: A. Krizhevsky]
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Convolutional Neural Networks (CNN)

@ Keep adding a few layers. Any idea what's the purpose of more layers? Why
can't we just have a full bunch of filters in one layer?

27
13 13 13

gt - a\ Folh

- = 13 ~ 13 - 7 13
~ 27 ﬁ: + 3 3. =~

384 384 256
256 Max.

Max Max pooling
pooling pooling

Do it recursively

Have multiple ““layers”
[Slide Credit: Sanja Fidler, Pic adopted from: A. Krizhevsky]
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Convolutional Neural Networks (CNN)

@ In the end add one or two fully (or densely) connected layers. In this layer,
we don't do convolution we just do a dot-product between the “filter” and
the output of the previous layer.

In the top, most networks add a “"densely”” connected layer. You

can think of this as a filter, and the output value is a dot product
between the filter and the output cube of the previous layer.

What are the dimensions of this filter in this example? How many :
such filters are on this layer? H

55
27
A 13 13 13
1
5|\ — == ~ - "} -
1 R - by 3 r =% |13 ﬁ:/‘ 13 3}y — g% 3
224 5 = N T N -~
55 384 384 256
Max
256 .
Max Max pooling 409 4096
stride\| o4 | P0°ling pooling
224\ || of 4

edit: .|. idle Pic adop d A ‘I‘ K
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Convolutional Neural Networks (CNN)

@ Add one final layer: a classification layer. Each dimension of this vector
tells us the probability of the input image being of a certain class.

v i
Y \ 1] H
27
13 13 13
— N s\ -
- el T\ 3y 3% e
- 27 ﬁ: 4 N7 L
384 384 256 100(
Max
256 ;
Max Max pooling 4096 4096
pooling pooling

Add a classification “layer”.

For an input image, the value in a particular
dimension of this vector tells you the
probability of the corresponding object class.

[Slide Credit: Sanja Fidler, Pic adopted from: A. Krizhevsky]
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Convolutional Neural Networks (CNN)

@ The trick is to not hand-fix the weights, but to train them. Train them such
that when the network sees a picture of a dog, the last layer will say “dog”.

27

train the we|ghts of ﬁlters

Max

27

e -

13 13

Max
pooling

[Slide Credit: Sanja Fidler, Pic adopted from: A. Krizhevsky]
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Convolutional Neural Networks (CNN)

@ Or when the network sees a picture of a cat, the last layer will say “cat”.

B B

train the welghts of ﬁlters “cat”

55 V V
27
13 13
5 g J el E] Nl ——
s\L|~ N Az -
55 384 384
256 s
Max Max pooling 4096 4096
stride\| g, | P00ling pooling

[Slide Credit: Sanja Fidler, Pic adopted from: A. Krizhevsky]
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Convolutional Neural Networks (CNN)

@ Or when the network sees a picture of a boat, the last layer will say
“boat”... The more pictures the network sees, the better.

®®\®

train the welghts of ﬁlters “boat”

V

27
13 13

384 384

Max Max
Stride pooling pooling
of 4

3

224

Trainon lOtS of examples. Millions. Tens of millions. Wait a week for training to finish.

Share your network (the weights) with others who are not fortunate enough with GPU power.

[Slide Credit: Sanja Fidler, Pic adopted from: A. Krizhevsky]
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Classification

@ Once trained we feed in an image or a crop, run through the network, and
read out the class with the highest probability in the last (classif) layer.

What's the class of this object?

27

13 13 13
it N 3\l - _
- [o% (s -\ s 3}y —Z% s
flll L] anEn WemuABsmssssnnnnsiunnns AuNEANEEEEES
384 384 256
Max
256 §
Max Max pooling 4035 4096
pooling pooling
224

[Slide Credit: Sanja Fidler]
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Classification Performance

@ Imagenet, main challenge for object classification: http://image-net.org/

@ 1000 classes, 1.2M training images, 150K for test
~Eu@»Evtiilllﬂﬂmanu;i%§“$ 2§.605l00l$0n
L

SPGB - -
Eﬁ)ﬁcﬂtﬂfﬂlﬂtﬂﬂﬂ'l;
eiflecBazINFEN & 4" 7
Y=o T £ 7-'-,,
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http://image-net.org/

Architecture for Classification

input
Krizhevsky et al. “ImageNet Classification wlltlﬂpéjeep CNNs” NIPS 2012
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category
*prediction

LINEAR

FULLY CONNECTED

FULLY CONNECTED

MAX POOLING

CONV

CONV

CONV

MAX POOLING

LOCAL CON'I-'RAST NORM

CONV

MAX POOLING

LOCAL CONTRAST NORM

CONV

Deep Structured Models

95
Ranzaton

July 31, 2015

42 / 113



Architecture for Classification
Total nr. flops: 832M

Total nr. params: 60M
4M

16M
37M

442K

1.3M
884K

307K

35K

input
Krizhevsky et al. “ImageNet Classification wlltlﬂpéjeep CNNs” NIPS 2012
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category
* prediction

LINEAR

FULLY CONNECTED

FULLY CONNECTED

MAX POOLING

CONV

CONV

CONV

MAX POOLING

LOCAL CON'I-'RAST NORM

CONV

MAX POOLING

LOCAL CONTRAST NORM

CONV
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16M
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224M
149M
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The 2012 Computer Vision Crisis

Error (5 predictions) Error (5 predictions)

(Classification) (Detection)

R. Urtasun (UofT) Deep Structured Models July 31, 2015 44 /



The Era Post-Alex Net: PASCAL VOC detection

R-CNN: Regions with CNN features
d ? no.
EE Wél?el fegwn

-—Tl n= :
= = ]
- CNN;\ 5
1. Input 2. Extract region 3. Compute 4. Classify
image proposals (~2k) CNN features regions

@ Extract object proposals with bottom up grouping

@ and then classify them using your big net
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Detection Performance

(] PASCAL VOC Cha"enge: http://pascallin.ecs.soton.ac.uk/challenges/V0C/.

Figure : PASCAL has 20 object classes, 10K images for training, 10K for test
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Detection Performance a Year Ago: 40.4%

A year ago, no networks:

@ Results on the main recognition benchmark, the PASCAL VOC challenge.

mean aero bicycle bird boat bottle bus ear cat chair cow dining dog horse motor person potted sheep sofa train W/  submission
plane table bike plant monitor  date
v Y Vv VvV VVVVYVVYYIVYYVY VY VYvYVY v 4 < v v v A4 v

segoPm 404 614 534 256 252 355 SL7 506 S0.8 193 338 268 404 483 544 471 148 387 350 528 431 24-Feb-2014
Boasted HOG-LEP and multi-context (LG, EGC, HLC) 7] 368 533 553 192 210 300 545 467 412 200 315 208 303 486 553 465 102 344 266 503 403 29-Aug-2010
MITUCLA_Hierarchy 1 360 543 485 157 192 202 556 435 417 169 285 267 309 483 550 417 97 358 308 472 408 30-Aug-2010
HOGLBP_context_classification_rescore_v2 [ 342 491 524 17.8 120 306 535 328 373 177 306 277 295 519 563 442 96 148 279 495 384 30-Aug-2010
LSVM-MDPM 71 337 524 543 130 156 351 542 491 318 155 262 135 215 454 516 475 01 351 194 466 380 26-Aug-2010
vOCTTI_LSVM_MDPM I 334 492 538 131 153 355 534 497 270 172 288 147 178 464 512 477 108 342 207 438 383 21-May-2012
Detection Monkey 1) 329 567 398 168 122 138 449 369 477 121 269 265 372 421 519 257 121 378 330 4LS 417 30-Aug-2010
RMazC 11 328 498 506 151 155 2685 SL1 422 305 173 283 124 260 456 SL8  4L4 126 304 261 440 376 29-0a-2013
UOCTTILSYM_MDPM [ 322 482 522 14.8 138 267 532 449 260 184 244 137 231 458 505 437 98 311 215 444 357 11-May-2012
Grouploc 319 584 396 180 133 1Ll 464 378 439 103 275 208 360 394 485 229 130 369 305 412 419 30-Aug-2010
VOCTTILSVM_MDPM [T 206 456 490 1.0 116 272 505 431 236 172 232 107 205 425 445 4l3 87 200 187 400 345 21-May-2012
Bonn_FGT_Segm ! 261 527 337 132 110 142 432 319 356 58 254 144 206 381 417 250 58 263 181 376 281 30-Aug-2010
HOG-LBP + DHOG bag of words, svM 7} 235 404 347 27 84 260 431 338 172 112 143 145 149 318 373 300 64 252 116 300 357 30-Aug-2010
Svr-Segm (1 234 505 245 171 133 109 395 329 365 56 160 66 223 249 290 298 67 284 133 321  27.2 30-Aug-2010
HOG-LBP Linear SVM ) 221 379 337 27 65 253 375 330 155 109 123 125 137 297 345 338 72 229 99 289 341 29-Aug-2010
HOG +LBP4+LTP4 PLS2ROOTS [7) 175 327 297 08 11 199 394 275 86 45 &1 63 110 229 341 246 31 240 20 235 270 31-Aug-2010
RandomParts I 42 238 317 12 34 111 297 195 142 08 111 70 47 164 315 160 11 156 102 147 210 25-Aug-2010
SIFT-GMM-MKL2 1] 83 200 145 38 12 05 176 81 285 01 29 31125 72 188 33 08B 29 63 76 11 30-Aug-2010
UC3M_Generative_Discriminative ) 63 158 55 56 23 03 102 54 126 05 56 45 77 13 126 53 15 20 59 91 32 30-Aug-2010
SIFT-GMM-MKL [ 23 106 16 12 09 01 28 16 67 01 20 04 30 20 44 20 03 11 12 21 19 30-Aug-2010

Figure : Leading method segDPM (ours). Those were the good times...

S. Fidler, R. Mottaghi, A. Yuille, R. Urtasun, Bottom-up Segmentation for Top-down Detection, CVPR'13
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The Era Post-Alex Net: PASCAL VOC detection

R. Urtasun (UofT)

R-CNN [

BERKELEY POSELETS 71
poselets [*]

= UCI_LSVM-MDPM-10X ** []

Head-Detect-Segment [*]

Deep Structured Models
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http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=6&compid=4

So Neural Networks are Great

@ So networks turn out to be great.

Everything is deep, even if it's shallow!

@ Companies leading the competitions: ImageNet, KITTI, but not yet PASCAL

At this point Google, Facebook, Microsoft, Baidu “steal” most neural
network professors from academia.
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So Neural Networks are Great

@ But to train the networks you need quite a bit of computational power. So
what do you do?
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So Neural Networks are Great

@ Buy even more.
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So Neural Networks are Great

@ And train more layers. 16 instead of 7 before. 144 million parameters.

add more layers

Max
pooling

55 7,
27
Q 13 13 13
1
1
224

. 5 L B N e 3&:‘—“’ K~ =
|2 - - [\Ips 13 A - 13 sﬁ::/ 13

r

5
55 384 384 256
Max
Max 256 Hiax pooling 4096 4096
2 S;ride g6 | Pooling pooling [Slide Credit: Sanja Fidler, Pic adopted from: A. Krizhevsky]
of 4

Figure : K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image
Recognition. arXiv 2014
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The Era Post-Alex

R. Urtasun (UofT)

VI V|V |V|V|IVIVIVIV IV VVIV Y

Net: PASCAL VOC detection

Fast R-CNN + YOLO 7
Fast R-CNN VGG16 extra data 7]
segDeepM [
BabyLearning [?

R-CNN (bbox reg) 71
R-CNN 7]

Feature Edit [?]

YOLO [7)

R-CNN (bbox reg) [
R-CNN [7)

poselets [7]
Head-Detect-Segment [7]
BERKELEY POSELETS ]

== |JC|_LSVM-MDPM-10X *=* [?]

Deep Structured Models
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63.8

62.9

39.8

56.4
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What if we Want Semantic Segmentation?
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What if we Want Semantic Segmentation?

@ Every layer, even fully connected can be treated as a convolutional layer, and
then we can deal with arbitrary dimensions of the input
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What if we Want Semantic Segmentation?

@ Every layer, even fully connected can be treated as a convolutional layer, and
then we can deal with arbitrary dimensions of the input

@ The network can work on super pixels, or can directly operate in pixels
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What if we Want Semantic Segmentation?

@ Every layer, even fully connected can be treated as a convolutional layer, and
then we can deal with arbitrary dimensions of the input

@ The network can work on super pixels, or can directly operate in pixels

@ Due to pooling, the output is typically lower dimensional than the input, use
interpolation.
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What if we Want Semantic Segmentation?

@ Every layer, even fully connected can be treated as a convolutional layer, and
then we can deal with arbitrary dimensions of the input

@ The network can work on super pixels, or can directly operate in pixels

@ Due to pooling, the output is typically lower dimensional than the input, use
interpolation.

@ PASCAL VOC, 65% IOU
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What if we Want Semantic Segmentation?

@ Every layer, even fully connected can be treated as a convolutional layer, and
then we can deal with arbitrary dimensions of the input

@ The network can work on super pixels, or can directly operate in pixels

@ Due to pooling, the output is typically lower dimensional than the input, use
interpolation.

@ PASCAL VOC, 65% IOU

@ More to come in Part Il
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Part Il: Deep Structured Learning
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Your current Status?
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What's next?
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ructure!

@ Many Vision Problems are complex and involve predicting many random
variables that are statistically related

Scene understanding Tag prediction Segmentation

X = image X = image X = image

y : room layout y : tag "combo” y : segmentation
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Deep Learning

@ Complex mapping F(x,y,w) to predict output y given input x through a
series of matrix multiplications, non-linearities and pooling operations

' Jo7s \dense

2048 2048

128 Max
Max 128 Max pooling
pooling pooling

Figure : Imagenet CNN [Krizhevsky et al. 13]
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Deep Learning

@ Complex mapping F(x,y,w) to predict output y given input x through a
series of matrix multiplications, non-linearities and pooling operations

' Jo7s \dense

2048 2048

128 Max
Max 128 Max pooling
pooling pooling

Figure : Imagenet CNN [Krizhevsky et al. 13]

@ We typically train the network to predict one random variable (e.g.,
ImageNet) by minimizing cross-entropy
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Deep Learning

@ Complex mapping F(x,y,w) to predict output y given input x through a
series of matrix multiplications, non-linearities and pooling operations

' Jo7s \dense

2048 2048

128 Max
Max 128 Max pooling
pooling pooling

Figure : Imagenet CNN [Krizhevsky et al. 13]

@ We typically train the network to predict one random variable (e.g.,
ImageNet) by minimizing cross-entropy

@ Multi-task extensions: sum the loss of each task, and share part of the
features (e.g., segmentation)
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Deep Learning

@ Complex mapping F(x,y,w) to predict output y given input x through a
series of matrix multiplications, non-linearities and pooling operations

i

2048 2048

048 \dense

128 Max
Max 128 Max pooling
pooling pooling

Figure : Imagenet CNN [Krizhevsky et al. 13]

@ We typically train the network to predict one random variable (e.g.,
ImageNet) by minimizing cross-entropy

@ Multi-task extensions: sum the loss of each task, and share part of the
features (e.g., segmentation)

@ Use an MRF as a post processing step
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PROBLEM: How can we take into account complex dependencies when
predicting multiple variables?
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PROBLEM: How can we take into account complex dependencies when
predicting multiple variables?

SOLUTION: Graphical models
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Graphical Models

@ Convenient tool to illustrate dependencies among random variables

E(y) = =2 fiv) = > fliy) = > fal¥a)
i ijeE @

unaries pairwise high—order

Pairwise
Potential

@ Widespread usage among different fields: vision, NLP, comp. bio, - --
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Compact Notation

@ In Computer Vision we usually express

Ely) = = 2_fil) = > Fliy) = D falya)

ijeE
—_—
unaries pairwise high—order
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Compact Notation

@ In Computer Vision we usually express

Ely) = = 2_fil) = > Fliy) = D falya)

ijeE
—_—
unaries pairwise high—order

@ For the purpose of this talk we are going to use a more compact notation

E(y,w) == filyr,w)

rer
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Compact Notation

@ In Computer Vision we usually express

Ely) = = 2_fil) = > Fliy) = D falya)

ijeE
—_—
unaries pairwise high—order

@ For the purpose of this talk we are going to use a more compact notation
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@ For the purpose of this talk we are going to use a more compact notation

E(y,w) == filyr,w)
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Compact Notation

@ In Computer Vision we usually express

Ely) = = 2_fil) = > Fliy) = D falya)

ijeE
—_—
unaries pairwise high—order

For the purpose of this talk we are going to use a more compact notation

E(y,w) == filyr,w)

rer

@ ris a region and R is the set of all regions

y, is of any order

The functions f, are a function of parameters w
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Continuous vs Discrete MRFs

E(y,W) == Z f;’(th)

reR

@ Discrete MRFs: @ Continuous MRFs:
yi€{l,---, G} YieYCR

@ Hybrid MRFs with continuous and discrete variables
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Continuous vs Discrete MRFs

E(y,W) == Z f;’(th)

reR

@ Discrete MRFs: @ Continuous MRFs:
yi€{l,---, G} YieYCR

@ Hybrid MRFs with continuous and discrete variables

@ Today's talk: only discrete MRFs
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Probabilistic Interpretation

@ The energy is defined as

E(Y7w) = *F(y,W) = - Z fr(yraw)

rerR
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Probabilistic Interpretation

@ The energy is defined as

E(Y7W) = *F(y,W) = - Z fr(yraw)

rerR

@ We can construct a probability distribution over the outputs

plyiw) = 5 &xp (Z fr(yr,w)>

reR

with Z(w) = 37 exp (3=, fr(yr, w)) the partition function
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Probabilistic Interpretation

@ The energy is defined as

E(Y7W) = *F(y,W) = - Z fr(yraw)

rerR

@ We can construct a probability distribution over the outputs
p(y;w) = —exp (Zf Yr, W )
reR

with Z(w) = 37 exp (3=, fr(yr, w)) the partition function
@ CRFs vs MRFs

plylx; w) =

j e (Zf X, Yr, W )

rer

with Z(x,w) = > exp (3,er fr(x, yr,w)) the partition function
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nce Tasks

@ MAP: maximum a posteriori estimate, or minimum energy configuration

= fr r
y' =argmaxy_ f(y,,w)
reR
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nce Tasks

@ MAP: maximum a posteriori estimate, or minimum energy configuration

= fr r
y' =argmaxy_ f(y,,w)
reR

@ Probabilistic Inference: We might want to compute p(y,) for any possible
subset of variables r, or p(y,|y,) for any subset r and p
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@ MAP: maximum a posteriori estimate, or minimum energy configuration

= fr r
y' =argmaxy_ f(y,,w)
reR

@ Probabilistic Inference: We might want to compute p(y,) for any possible

subset of variables r, or p(y,|y,) for any subset r and p

@ M-best configurations (e.g., top-k)
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Inference Tasks

@ MAP: maximum a posteriori estimate, or minimum energy configuration

= ﬂ' r
y' =argmaxy_ f(y,,w)
reR

@ Probabilistic Inference: We might want to compute p(y,) for any possible

subset of variables r, or p(y,|y,) for any subset r and p

@ M-best configurations (e.g., top-k)

Very difficult tasks in general (i.e., NP-hard). Some exceptions, e.g., low-tree
width models and binary MRFs with sub-modular energies
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Learning in CRF

@ Given a training set of N pairs (x,y) € D, we want to estimate the functions
fr(x,yr, W)

@ As these functions are parametric, this is equivalent to estimating w
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Learning in CRF

@ Given a training set of N pairs (x,y) € D, we want to estimate the functions
fr(X, Yrs W)
@ As these functions are parametric, this is equivalent to estimating w
@ We would like to do this by minimizing the empirical loss
mm N Z Etask X Y, W )

(7y )ED

where f;45 is the loss that we'll be evaluated on
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Learning in CRFs

@ Given a training set of N pairs (x,y) € D, we want to estimate the functions
fr(x,yr, W)

@ As these functions are parametric, this is equivalent to estimating w

@ We would like to do this by minimizing the empirical loss

mm* Z gtaskxy, )

(7y )ED

where f;45 is the loss that we'll be evaluated on

@ Very difficult, instead we minimize the sum of a surrogate (typically convex)
loss and a regularizer

m|n R(w) + Z (x,y,w

(xy )eED
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More on Learning in CRFs

@ Given a training set of N pairs (x,y) € D, we want to estimate the functions
fr(y, x, w)
@ Minimize a surrogate (typically convex) loss and a regularizer

m|n R(w —1—— Z I(x,y,w)
(7yeD

R. Urtasun (UofT) Deep Structured Models July 31, 2015 64 / 113



More on Learning in CRFs

@ Given a training set of N pairs (x,y) € D, we want to estimate the functions
fr(y, x, w)
@ Minimize a surrogate (typically convex) loss and a regularizer

m|n R(w —1—— Zﬁxy,
(7yeD

@ The surrogate loss 7: hinge-loss, log-loss
ZIog(xv y, W) =—In Px,y(y; W)'
Chinge(x,y, w) = max {£(y,§) —w O(x,§) +w O(x,y)}
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More on Learning in CRFs

@ Given a training set of N pairs (x,y) € D, we want to estimate the functions
fr(y, x, w)
@ Minimize a surrogate (typically convex) loss and a regularizer

m|n R(w —1—— Zﬁxy,
(JED

@ The surrogate loss 7: hinge-loss, log-loss
ZIog(xv y, W) =—In Px,y(y; W)'
Chinge(x,y, w) = max {£(y,§) —w O(x,§) +w O(x,y)}

@ The assumption is that the model is log-linear
E(X, y, W) = —F(X, y, W) = _WT(b(x? y)
and the features decompose in a graph
wio(x,y) =Y w/é(x.y)

reR
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PROBLEM: How can we remove the log-linear restriction?
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PROBLEM: How can we remove the log-linear restriction?

SOLUTION: Deep Structured Models
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With Pictures ;)
@ Standard CNN

CNN
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With Pictures ;)
@ Standard CNN

CNN

@ Deep Structured Models

CNN; CNN; CNN3
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Probability of a configuration y:
p(y | x;w) = _1 exp F(x,y,w)
y ! Z( , ) ’y’

Z(x,w) = 3 exp F(x, §,w)
yey
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Probability of a configuration y:
(y ] x;w) = ;ex F(x,y,w)
p y ! - Z(X, W) p 7y?
Z(x,w) =) _exp F(x,9,w)
yey
Maximize the likelihood of training data via

w* = argmax H p(y|x; w)
(x,y)eD

= argmax Z F(x,y,w)—InZexp F(x,y,w)
¥ (yen jey
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Probability of a configuration y:

p(y | x;w) = exp F(x,y,w)

_1
Z(x,w)
Z(x,w) =) _exp F(x,9,w)
yey
Maximize the likelihood of training data via

*

w* = argmax H p(y|x; w)
(x,y)eD

= argmax Z F(x,y,w)—InZexp F(x,y,w)
¥ (yen jey

Maximum likelihood is equivalent to maximizing cross-entropy when the target
distribution p(xy)tg(¥) = 6(y =y)
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Gradient Ascent on Cross Entropy

Program of interest:

max > Ply.(§)Inp(d | xw)

(x,y)€D.§

Optimize via gradient ascent

a G A
ow Z Pixy)te(¥) Inp(Y | x; w)

- Z (P(x,y) w(9) = p(Y | x; W)) %F(y,x,w)

([ Fg.xw)| = B | o FOx )]

moment matching

@ Compute predicted distribution p(§ | x; w)

@ Use chain rule to pass back difference between prediction and observation
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Deep Structured Learning (algo 1)

[Peng et al. NIPS'09]

Repeat until stopping criteria

© Forward pass to compute F(y, x,w)
@ Compute p(y | x,w)

© Backward pass via chain rule to obtain gradient

@ Update parameters w
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Deep Structured Learning (algo 1)

[Peng et al. NIPS'09]

Repeat until stopping criteria

© Forward pass to compute F(y, x,w)
@ Compute p(y | x,w)

© Backward pass via chain rule to obtain gradient

@ Update parameters w

What is the PROBLEM?
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Deep Structured Learning (algo 1)

[Peng et al. NIPS'09]

Repeat until stopping criteria

© Forward pass to compute F(y, x,w)
@ Compute p(y | x,w)

© Backward pass via chain rule to obtain gradient

@ Update parameters w

What is the PROBLEM?

@ How do we even represent F(y,x,w) if ) is large?

@ How do we compute p(y | x,w)?
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Use the Graphical Model Structure

@ Use the graphical model F(y,x,w) =>"_f(y,, x,w)

6 G A
ow Z Px.y)te(¥) In p(¥ | x; w)
(x,y)ED.§
0 R 9 X
= Z (EP(X'Y)’r'tg |:8VV fr(yr, X, W):| - IEF‘(X,y),r |:6VV fr(y” X7 W):| )
(x,y)€D,r
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Use the Graphical Model Structure

@ Use the graphical model F(y,x,w) =>"_f(y,, x,w)
0

ow Z Px.y)te(¥) In p(¥ | x; w)
(x,y)ED.§
0 R 9 X
= Z (EP(X'Y)’r'tg |:8VV fr(yr, X, W):| B IEF‘(X,y),r |:6VV fr(y” X, W):| )
(x,y)€D,r

@ Approximate marginals p,(¥,|x,w) via beliefs b.(y,|x,w) computed by:

e Sampling methods
e Variational methods
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Deep Structured Learning (algo 2)

[Schwing & Urtasun Arxiv'15, Zheng et al. Arxiv'15]

Repeat until stopping criteria

@ Forward pass to compute the 7 (y,, x,w)

@ Compute the b,(y, | x,w) by running
approximated inference

© Backward pass via chain rule to obtain gradient

© Update parameters w
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Deep Structured Learning (algo 2)

[Schwing & Urtasun Arxiv'15, Zheng et al. Arxiv'15]

Repeat until stopping criteria

@ Forward pass to compute the 7 (y,, x,w)

@ Compute the b,(y, | x,w) by running
approximated inference

© Backward pass via chain rule to obtain gradient

© Update parameters w

PROBLEM: We have to run inference in the graphical model every time we want
to update the weights
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How to deal with Big Data

Dealing with large number |D| of training examples:
@ Parallelized across samples (any number of machines and GPUs)

@ Usage of mini batches
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How to deal with Big Data

Dealing with large number |D| of training examples:
@ Parallelized across samples (any number of machines and GPUs)

@ Usage of mini batches

Dealing with large output spaces ):
@ Variational approximations

@ Blending of learning and inference
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Approximated Deep Structured Learning

[Schwing & Urtasun Arxiv'15]

Sample parallel implementation:

Partition data D onto compute nodes
Repeat until stopping criteria

© Each compute node uses GPU for CNN Forward pass to
compute f,(y,, X, w)

@ Each compute node estimates beliefs b.(y, | x,w) for assigned
samples

© Backpropagation of difference using GPU to obtain machine
local gradient

@ Synchronize gradient across all machines using MPI

© Update parameters w
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Better Option: Interleaving Learning and Inference

@ Use LP relaxation instead

mvjn Z ( max {bey A (X, ¥ W )+ZeC,H(b(XYy)’,)}—F(x,y;w))

(x,y)ED (X Y)EC(X )
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Better Option: Interleaving Learning and Inference

@ Use LP relaxation instead

mvjn Z ( max {bey A (X, ¥ W )+ZGCrH(b(X,y),,)}—F(X,y;W))

(x,y)ED (X Y)EC(X )

@ More efficient algorithm by blending min. w.r.t. w and max. of the beliefs b
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Better Option: Interleaving Learning and Inference

@ Use LP relaxation instead

min (( = {Zb(x,y),r(yr)ﬂ(xvyf;w)+Z6CVH(b(x,y),r)}_F(xvy;w))
5 :

(x y)ED

@ More efficient algorithm by blending min. w.r.t. w and max. of the beliefs b

@ After introducing Lagrange multipliers A, the dual becomes

fr(x,§riw) + > A(x,y),c%r(yc) > )‘ (x,y), rﬂp(yf)
min Z €c InZex cect) PEP() — F(w)
w, A ’ = P '
X,y

ecr

with F(w) = > (xy)ep F(x,y; w) the sum of empirical function observations
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Better Option: Interleaving Learning and Inference

@ Use LP relaxation instead

min (( = {Zb(x,y),r(yr)ﬂ(xvyf;w)+Z6CVH(b(x,y),r)}_F(xvy;w))
5 :

(x y)ED

@ More efficient algorithm by blending min. w.r.t. w and max. of the beliefs b
@ After introducing Lagrange multipliers A, the dual becomes

fr(x,§riw) + > A(x,y),c%r(yc) > )‘ (x,y), rﬂp(yf)
min Z €c InZex cect) PEP() — F(w)
w, A ’ = P '
)Y

ecr

with F(w) = > (xy)ep F(x,y; w) the sum of empirical function observations

@ We can then do block coordinate descent to solve the minimization problem,
and we get the following algorithm - - -
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Deep Structured Learning (algo 3)

[Chen & Schwing & Yuille & Urtasun ICML’15]

Repeat until stopping criteria

@ Forward pass to compute the f,(y,, X, w)
@ Update (some) messages A

© Backward pass via chain rule to obtain gradient

© Update parameters w
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Deep Structured Learning (algo 4)

[Chen & Schwing & Yuille & Urtasun ICML’15]

Sample parallel implementation:

Partition data D onto compute nodes
Repeat until stopping criteria

@ Each compute node uses GPU for CNN Forward pass to
compute f,(y,, X, w)

@ Each compute node updates (some) messages A

© Backpropagation of difference using GPU to obtain machine
local gradient

@ Synchronize gradient across all machines using MPI

© Update parameters w
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Application 1: Character Recognition

@ Task: Word Recognition from a fixed vocabulary of 50 words, 28 x 28 sized
image patches

@ Characters have complex backgrounds and suffer many different distortions

@ Training, validation and test set sizes are 10k, 2k and 2k variations of words

R FeLs

banal julep resty
@7 ¢ Sin Oy
drein yojan mothy

1 Ly e

S @A 9T Az

snack feize porer
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Results

@ Graphical model has 5 nodes, MLP for each unary and non-parametric
pairwise potentials

@ Joint training, structured, deep and more capacity helps

[Grap [MLP | Method | Hi=128 | Hi1=256 | Hi =512 | Hi =768 | Hi=1024 |
Unary only | 8.60 / 61.32 | 10.80 / 64.41 | 12.50 / 65.69 | 12.95 / 66.66 | 13.40 / 67.02
JointTrain__| 16.80 / 65.28 | 25.20 / 70.75 | 31.80 / 74.90 | 33.05 / 76.42 | 34.30 / 77.02

PwTrain__| 12.70 / 64.35 | 18.00 / 68.27 | 22.80 / 71.29 | 23.25 / 72.62 | 26.30 / 73.96

PreTrainJoint | 20.65 / 67.42 | 25.70 / 71.65 | 31.70 / 75.56 | 34.50 / 77.14 | 35.85 / 78.05
JointTrain | 25.50 / 67.13 | 34.60 / 73.19 | 45.55 / 79.60 | 51.55 / 82.37 | 54.05 / 83.57

2nd | llay | Pwlrain | 10.05 / 58.90 | 14.10 / 63.44 | 18.10 / 67.31 | 20.40 / 70.14 | 22.20 / 71.25

PreTrainJoint | 28.15 / 69.07 | 36.85 / 75.21 | 45.75 / 80.09 | 50.10 / 82.30 | 52.25 / 83.39
Hy =512 Hp = 32 Hp = 64 H, = 128 Hy = 256 Hy = 512
Unary only | 15.25 / 69.04 | 18.15 / 70.66 | 19.00 / 71.43 | 19.20 / 72.06 | 20.40 / 72.51
JointTrain_| 35.95 / 76.92 | 43.80 / 81.64 | 44.75 / 82.22 | 46.00 / 82.96 | 47.70 / 83.64

PwTrain | 34.85 / 79.11 | 38.95 / 80.93 | 42.75 / 82.38 | 45.10 / 83.67 | 45.75 / 83.88

PreTrainJoint | 42.25 / 81.10 | 44.85 / 82.96 | 46.85 / 83.50 | 47.95 / 84.21 | 47.05 / 84.08
JointTrain_| 54.65 / 83.98 | 61.80 / 87.30 | 66.15 / 89.09 | 64.85 / 88.93 | 68.00 / 89.96

2nd | 2lay [ PwTrain | 39.05 / 81.14 | 48.25 / 84.45 | 52.65 / 86.24 | 57.10 / 87.61 | 62.90 / 89.49

PreTrainJoint | 62.60 / 88.03 | 65.80 / 89.32 | 68.75 / 90.47 | 68.60 / 90.42 | 60.35 / 90.75

1st llay

Ist 2lay
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Learned Weights

N<XE<C 0 ~QTO033 _x__ Q. DQOTH

N<XE<C0~00033_=x__FQ_.0200D

abcdefghijkIimnopqrstuvwxyz

Unary weights distance-1 edges distance-2 edges

abcdefghijkImnopgrstuvwxyz
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Example 2: Image Tagging

[Chen & Schwing & Yuille & Urtasun’15]

@ Flickr dataset: 38 possible tags, || = 2%
@ 10k training, 10k test examples

’ Training method [ Prediction error [%] |
Unary only 9.36
Piecewise 7.70
Joint (with pre-training) 7.25
5
10X 10 10000
—w/o blend —w/o blend
8 8 —w blend 8000 —w blend
o —
£ S
L6 @ 6000
- j=2}
& £
g4 £ 4000
. =
g2 2000
0 ‘ ‘ 0
0 5000 10000 0 5000 10000
Time [s] Time [s]
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Visual results

female/indoor/portrait  sky/plant life/tree  water/animals/sea
female/indoor/portrait  sky/plant life/tree  water/animals/sky

animals/dog/indoor  indoor/flower/plant life
animals/dog
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Learned class correlations
female .00 NeXi:m 0.04 [Ll2: -0.01 -0.05 0.07 -0.01 0.01
people [JN:Jm 0.00 0.06 FekicM -0.05 -0.12 JoNfM -0.04 -0.03

indoor 0.04 006 000 007 -0.35 -0.34/0.02 -0.15 -0.21
portrait o_oo -0.02 -0.01 0.02
sky -0.01 -0.05 -0.35 -0.02 0.00
plant life -0.05 -0.12 -0.34 -0.01
male 0.07 NNz 0.02

clouds -0.01 -0.04 -0.15

-0.07 \ 0.09
0.00 0.00 -0.02

0.00 0.00 m

0.02

tree 0.01 -0.03 -0.21 0.05 -0.02 011 0.00
3 O % N Sz <. > <. S
o % A S 9 %

% % o ’«}9/) o,% 6

Only part of the correlations are shown for clarity
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Example 3: Semantic Segmentation

[Chen et al. ICLR'15; Krahenbiihl & Koltun NIPS'11,ICML’13; Zhen et al. Arxiv'15;
Schwing & Urtasun Arxiv'15 ]

@ |V| = 21350500~ 10k training, ~ 1500 test examples
@ Oxford-net pre trained on PASCAL, predicts 40 x 40 + upsampling
@ The graphical model is a fully connected CRF with Gaussian potentials

@ Inference using (algo2), with mean-field as approx. inference

1 .
Interpolation|
I Layer .

> ™

Pooling & Fully
Subsampling Connected CRF
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Pascal VOC 2012 dataset

[Chen et al. ICLR'15; Krahenbiihl & Koltun NIPS'11,ICML’13; Zhen et al. Arxiv'l5;
Schwing & Urtasun Arxiv'15 ]

|V| = 21350500 ~ 10k training, ~ 1500 test examples

Oxford-net pre trained on PASCAL, predicts 40 x 40 + upsampling

The graphical model is a fully connected CRF with Gaussian potentials

Inference using (algo2), with mean-field as approx. inference

| Training method [| Mean loU [%] |

Unary only 61.476
Joint 64.060
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Pascal VOC 2012 dataset

[Chen et al. ICLR'15; Krahenbiihl & Koltun NIPS'11,ICML’13; Zhen et al. Arxiv'l5;
Schwing & Urtasun Arxiv'15 ]

|V| = 21350500 ~ 10k training, ~ 1500 test examples

Oxford-net pre trained on PASCAL, predicts 40 x 40 + upsampling

The graphical model is a fully connected CRF with Gaussian potentials

Inference using (algo2), with mean-field as approx. inference

| Training method [| Mean loU [%] |

Unary only 61.476
Joint 64.060

@ Disclaimer: Much better results now with a few tricks. Zheng et al. 15 is
now at 74.7%!
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Visual results
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Example 4: 3D Object Proposals for Detection

@ Use structured prediction to learn to propose object candidates (i.e.,
grouping)

(image) (stereo) | (depth-feat) (prior)

@ Use deep learning to do final detection: OxfordNet

@ Only 1.2s to generate proposals
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KITTI Detection

[ X. Chen, K. Kundu and S. Fidler and R. Urtasun, On Arxiv soon]

Cars Pedestrians Cyclists
Easy | Moderate | Hard Easy | Moderate | Hard Easy | Moderate | Hard
LSVM-MDPM-sv || 68.02 56.48 44.18 || 47.74 39.36 35.95 || 35.04 27.50 26.21
Squares|CF - - - 57.33 44.42 40.08 - - -
DPM-C8B1 74.33 60.99 47.16 || 38.96 29.03 25.61 || 43.49 29.04 26.20
MDPM-un-BB 71.19 62.16 48.43 - - - - - -
DPM-VOC+VP 74.95 64.71 48.76 || 59.48 44.86 40.37 || 42.43 31.08 28.23
OC-DPM 74.94 65.95 53.86 - - - - - -
AOG 84.36 71.88 59.27 - - - - - -
SubCat 84.14 75.46 59.71 54.67 42.34 37.95 - - -
DA-DPM - - - 56.36 45.51 41.08 - - -
Fusion-DPM - - - 59.51 46.67 42.05 - - -
R-CNN - - - 61.61 50.13 44.79 - - -
FilteredICF - - - 61.14 53.98 49.29 - - -
pAUCEnsT - - - 65.26 54.49 48.60 || 51.62 38.03 33.38
MV-RGBD-RF - - - 70.21 54.56 51.25 || 54.02 39.72 34.82
3DVP 87.46 75.77 65.38 - - - - - -
Regionlets 84.75 76.45 59.70 || 73.14 61.15 55.21 || 70.41 58.72 51.83
Ours 88.33 87.14 76.11 [[ 70.16 59.35 52.76 || 77.94 67.35 59.49

Table : Average Precision (AP) (in %) on the test set of the KITTI Object
Detection Benchmark.
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KITTI Detection Results

[ X. Chen, K. Kundu and S. Fidler and R. Urtasun, On Arxiv soon]

Cars Pedestrians Cyclists
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard
AOG 43.81 38.21 31.53 - - - - - -
DPM-C8B1 59.51 50.32 39.22 31.08 23.37 20.72 27.25 19.25 17.95
LSVM-MDPM-sv 67.27 55.77 43.59 43.58 35.49 32.42 27.54 22.07 21.45
DPM-VOC+VP 72.28 61.84 46.54 53.55 39.83 35.73 / 30.52 23.17 21.58
OC-DPM 73.50 64.42 52.40 - - - - - -
SubCat 83.41 74.42 58.83 44.32 34.18 30.76 - - -
3DVP 86.92 74.59 64.11 - - - - - -
Ours 83.03 | 80.21 69.60 48.58 | 40.56 36.08 57.72 48.21 42.72

Table : AOS scores on the KITTI Object Detection and Orientation Benchmark
(test set).
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Car Results

. Chen, K. Kundu, Y. Zhu, S. Fidler and R. Urtasun, On Arxiv soon]
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Pedestrian Results

. Chen, K. Kundu, Y. Zhu, S. Fidler and R. Urtasun, On Arxiv soon]
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Cyclist Results

[ X. Chen, K. Kundu, Y. Zhu, S. Fidler and R. Urtasun, On Arxiv soon]
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Example 5: re Precise Grouping

@ Given a single image, we want to infer Instance-level Segmentation and
Depth Ordering

image

patch-level
prediction

instance pred. &
depth ordering

@ Use deep convolutional nets to do both tasks simultaneously
@ Trick: Encode both tasks with a single parameterization

Run the conv. net at multiple resolutions

@ Use MRF to form a single coherent explanation across all the image
combining the conv nets at multiple resolutions

@ Important: we do not use a single pixel-wise training example!
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Results on KITTI

[Z. Zhang, A. Schwing, S. Fidler and R. Urtasun, Arxiv 2015]
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More Results (including failures/difficulties)

[Z. Zhang, A. Schwing, S. Fidler and R. Urtasun, Arxiv 2015]
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Example 6: Enhancing freely-available maps

[G. Matthyus, S. Wang, S. Fidler and R. Urtasun, On Arxiv soon]

Kyoto: Kinkakuji Sydney At Harbour bridge Monte Carlo: Casino

Enhancing OpenStreetMaps
Can be trained on a single image and test on the whole world
Trick: Not to reason at the pixel level

Very efficient: 0.1s/km of road

Preserves topology and is state-of-the-art
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Example 7: Fashion

[E. Simo-Serra, S. Fidler, F. Moreno, R. Urtasun, CVPR15]

LOS ANGELES, CA NOVEMBER 10, 2014

466 FANS GARMENTS
288 VOTES White Cheap Monday Boots
62 FAVOURITES Chilli Beans Sunglasses
TAGS Missguided Romper
CHIC Daniel Wellington Watch
EVERDAY COMMENTS
FALL Nicel!
COLOURS Love the top!

" < i WHITE-BOOTS cute
[ mﬁ%

Figure : An example of a post on http://www.chictopia.com. We crawled the
site for 180K posts.
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http://www.chictopia.com

How Fashionable Are You?

Post Density

Fashionability

&

Figure 3: Visualization of the density of posts and fashionability by country.
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How Fashionable Are

City Name Posts | Fashionability
Manila 4269 6.627
Los Angeles | 8275 6.265
Melbourne 1092 6.176
Montreal 1129 6.144
Paris 2118 6.070
Amsterdam 1111 6.059
Barcelona 1292 5.845
Toronto 1471 5.765
Bucharest 1385 5.667
New York 4984 5.514
London 3655 5.444
San Francisco | 2880 5.392
Madrid 1747 5.371
Vancouver 1468 5.266
Jakarta 1156 4.398

Table 2: Fashionability of cities with at least 1000 posts.
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How Fashionable Are You?

Mean Beauty

Figure : We ran a face detector that predicts also beauty of the face, age,

ethnicity, mood.
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How Fashionable Are You?

@ Face detector + attributes

http://www.rekognition.com

R. Urtasun (UofT) Deep Structured Models

3P sHARE ON TWITTER

confidence : true (value : 1)

pose :roll(0.9) ,yaw(3.59) ,pitch(8.63)
race : white(0.28)

emotioin : calm:68%,happy:28%
age : 29.52 (value : 29.52 )

smile : true (value : 0.65)

glasses : no glass (value: 0)
sunglasses : false (value : 0)
eye_closed : open (value: 0)
mouth_open_wide : 3% (value : 0.03)
beauty : 99.42 (value : 0.99422)

gender : female (value : 0)
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http://www.rekognition.com

How Fashionable Are You?

@ Face detector + attributes

n‘%’i-".

, SHARE ON TWITTER

confidence : true (value : 1)

pose :roll(-6.26) ,yaw(-6.81) ,pitch(1.66)
race : white(0.99)

emotioin : happy:92%,confused:1%
age : 60.9 (value : 60.9)

smile : true (value : 0.87)

glasses : no glass (value : 0.01)
sunglasses : false (value : 0)
eye_closed : open (value: 0)
mouth_open_wide : 3% ( value : 0.03)

gender : male (value: 1)

http://www.rekognition.com
R. Urtasun (UofT) Deep Structured Models July 31, 2015 102 / 113


http://www.rekognition.com

How Fashionable Are You?

@ Face detector + attributes

3 sHARE ON TWITTER

confidence : true (value : 1)

pose :roll(4.3) ,yaw(10.36) ,pitch(-5.4)
race : white(0.73)

emotioin : happy:99%,calm:3%

age :29.12 (value : 29.12)

smile : true ( value : 0.86)

glasses : no glass (value : 0)
sunglasses : false (value : 0)
eye_closed : open (value: 0)
mouth_open_wide : 0% (value : 0)

http://www.rekognition.com
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How Fashionable Are You?

Fans Location
Personal \ Scene
U S
AT Colours
Comments Singles
Style 0 / Garments
Tags

Figure : Our model is a Conditional Random Field that uses many visual and
textual features, as well as meta-data features such as where the user is from.
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How Fashlonable Are Yo

True Positives

Ise Positives

Figure : We predict fashionability of users.

Blue with Scarf  Black with Bag/Glasses

Black Heavy Pastel Shirts/Skirts Shoes and Blue Dress Pink/Black Misc. Heels Black Casual Pink Outfit Shirts and Jeans
i i l

Outfits

Figure : We predict what kind of outfit the person wears.
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How Fashionable Can You Become?

Current Outfit:
Pink Outfit (3)

& Current Ouftfit:
Pink/Blue Shoes/Dress Shorts (3)

Current Ouffit:
Pink/Black Misc. (5)
Recommendations: *». Recommendations:

Heels (8) 1 Black/Gray Tights/Sweater (5)
Pastel Shirts/Skirts (8) P | ez Black Casual (5)

Black/Gray Tights/Sweater (5) © 8~ Black Boots/Tights (5)

Recommendations:
Pastel Dress (8)
Black/Blue Going out (8)
Black Casual (8)

Current Outfit:
Formal Blue/Brown (5)

Recommendations:
u Black Casual (7)

[24 Black Heavy (3)
Navy and Bags (3)

Recommendations:
R Pastel Shirts/Skirts (9)
| Pastel Shirts/Skirts (8) Black/Blue Going out (8)

Black Casual (8)

Figure : Examples of recommendations provided by our model. The parenthesis
we show the fashionability scores.
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Not a big deal... but

@ Appear all over the Tech and News

News and Tech websites

EEEEl QUARTZ 'TMES Wk R} D K RISl Mashable
New Scientist Quartz Tech Times Wired, UK Mashable
- THE HUEFINGTON POST HUFFPOST STYLE ”msn Protein
AOL News (video) Huffington Post, UK (video)  Huffington Post, Canada MSN, Canada Protein
= ScienceDaily MailOnline Ex P thestar.com ¢
Yahoo, Canada Science Daily Daily Mail, UK PSFK Toronto Star
gizmag T iDigitalTimes
Gizmag TheRecord.com iDigitalTimes
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Not a big deal... but

@ Appear all over the Tech and News

@ All over the Fashion press

Fashion Magazines (Online)

R. Urtasun (UofT)

B \[ \\ H marieclaire

Harper's Bazaar Marie Claire

GLAMOUR  YAHOO!
Glamour Yahoo Style

The Pool (UK) FashionNotes

Deep Structured Models

ELLE

Elle Red Magazine
(UK)
cosoromy EASHION
Cosmopolitan Fashion
Magazine
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Not a big deal... but

@ Appear all over the Tech and News

@ All over the Fashion press

@ International News and TV (Fox, BBC, SkypeNews, RTVE, etc)

International News

VOGUE

Vogue (ES)

5 NaukawPolsce
Nauka (PL)

Amsterdam
Fashion (NL}

IT NEWS

IT News (SK)

LabazzettadelloSport
e O o

La Gazzetta
dello Sport (IT)

R. Urtasun (UofT)

Wired (DE)
STYLEBOOK

Stylebook (DE)

ANSA:

Ansa (IT)
PopSugar (AU)

Woman (ES)

jetztde

Stageussche Teinmg

Jetzt (DE)

marieclaire
Marie Claire
(FR)

Pluska

Pluska (SK)

@mnaﬂum-,

CenérioMT (BR}

csic

csic (ES)

Deep Structured Models

_sinembargo.x

SinEmbargo
(MX)

FASHION POLICENg

Fashion Police

(NG)

ELLE
)

Elle (NL,

ssmpressetext

Pressetext (AT)

EFE (ES)
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Best Quote Award

Cosmopolitan (UK): The technology scores your facial
attributes (this just keeps getting better, doesn't it) from
your looks, to your age, and the emotion you're showing,
before combining all the information using an equation
S50 complex we won't begin to go into it.
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But the Most Important Impact
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@ Use the hinge loss to optimize the unaries only which are neural nets (Li and
Zemel 14). Correlations between variables are not used for learning
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@ If inference is tractable, Conditional Neural Fields (Peng et al. 09) use
back-propagation on the log-loss
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@ Decision Tree Fields (Nowozin et al. 11), use complex region potentials
(decision trees), but given the tree, it is still linear in the parameters.
Trained using pseudo likelihood.
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Decision Tree Fields (Nowozin et al. 11), use complex region potentials
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particular architecture so that inference is tractable via sampling
(Salakhutdinov 07). Problems with partition function.
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@ Use the hinge loss to optimize the unaries only which are neural nets (Li and
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back-propagation on the log-loss

@ Decision Tree Fields (Nowozin et al. 11), use complex region potentials
(decision trees), but given the tree, it is still linear in the parameters.
Trained using pseudo likelihood.

Restricted Bolzmann Machines (RBMs): Generative model that has a very
particular architecture so that inference is tractable via sampling
(Salakhutdinov 07). Problems with partition function.

@ (Domke 13) treat the problem as learning a set of logistic regressors

@ Fields of experts (Roth et al. 05), not deep, use CD training
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@ Use the hinge loss to optimize the unaries only which are neural nets (Li and
Zemel 14). Correlations between variables are not used for learning

If inference is tractable, Conditional Neural Fields (Peng et al. 09) use
back-propagation on the log-loss

@ Decision Tree Fields (Nowozin et al. 11), use complex region potentials
(decision trees), but given the tree, it is still linear in the parameters.
Trained using pseudo likelihood.

Restricted Bolzmann Machines (RBMs): Generative model that has a very
particular architecture so that inference is tractable via sampling
(Salakhutdinov 07). Problems with partition function.

(Domke 13) treat the problem as learning a set of logistic regressors

Fields of experts (Roth et al. 05), not deep, use CD training

Many ideas go back to (Boutou 91)
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Conclusions and Future Work

Conclusions:

@ Modeling of correlations between variables

@ Non-linear dependence on parameters

@ Joint training of many convolutional neural networks

@ Parallel implementation

@ Wide range of applications: Word recognition, Tagging, Segmentation
Future work:

@ Latent Variables

@ More applications
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