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Which detec

Window-based

2

=\

Boosting + face
detection

NN + scene Gist SVM + person
classification detection

Viola & Jones
e.g., Hays & Efros e.g., Dalal & Triggs

BOW, pyramids ISM: voting deformable parts poselets
e.g., [Grauman et al.] e.g., [Leibe & Shiele] e.g., [Felzenszwalb et al.]  [Bourdev et al.]
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Models of local features

@ How is spatial information encoded for models with bad of features?

@ See [Carneiro et al. 06] for a comprehensive study of all possibilities.

T XL

a) Constellation [13] b) Star shape [9,14] c) k fan (k = 2) [9] d) Tree [12]
& O § O ®
® & ® Pe
@ © @1 ®
@ ® ©
k=1 k=2
e) Bag of features [10,21] f) Hierarchy [4] g) Sparse flexible model
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Constellation Model
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Abstract

We present a method to learn and recognize object class
models from unlabeled and unsegmented cluttered scenes
in a scale invariant manner. Objects are modeled as flexi-
ble c I of parts. A probabilistic repr ion is
used for all aspects of the object: shape, appearance, occlu-
sion and relative scale. An entropy-based feature detector
is used to select regions and their scale within the image. In
learnine the narameters of the scale-imvariant ahieet madel

Visual Recognition

P. Perona’

A. Zisserman'

2 Dept. of Electrical Engineering
California Institute of Technology
MC 136-93, Pasadena
CA91125,USA.

perona@vision.caltech.edu

in the background of the object, scale normalization of the
training sample) should be reduced to a minimum or elimi-
nated.

The problem of describing and recognizing categories,
as opposed to specific objects (e.g. [6, 9, 11]), has re-
cently gained some attention in the machine vision litera-
ture [1, 2, 3, 4, 13, 14, 19] with an emphasis on the de-
tection of faces [12, 15, 16]. There is broad agreement
on the issue of representation: object categories are rep-
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Main idea

@ An object model consists of a number of parts.
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@ An object model consists of a number of parts.
@ Each part has an appearance, relative scale and can be occluded or not.

@ Shape is represented by the mutual position of the parts.
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and occlusion are all modeled by pdf, i.e., Gaussians.
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@ An object model consists of a number of parts.
@ Each part has an appearance, relative scale and can be occluded or not.
@ Shape is represented by the mutual position of the parts.

@ The entire model is generative and probabilistic, so appearance, scale, shape
and occlusion are all modeled by pdf, i.e., Gaussians.

@ Learning: first detecting regions and their scales, and then estimating the
parameters of the above densities from these regions using max. likelihood.

@ Recognition by first detecting regions and their scales, and then evaluating
the regions in a Bayesian manner, using the model parameters estimated in
the learning.

@ In this setting we do not know where the object of interest is in the image.
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Detecting Feature Points

@ Kadir & Brady saliency region detector
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Constellation Model

i * Use salient region operator
(Kadir & Brady 01)

Location

(x,y) coords. of region centre

Scale

Radius of region (pixels)

Projection onto
PCA basis

Gives representation of appearance in low-dimensional vector space Cy:
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Generative probabilistic model

@ We have identified N image features, with locations X, scales S and
appearances A.
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Generative probabilistic model

@ We have identified N image features, with locations X, scales S and
appearances A.

@ We define a generative model with P parts and parameters 6 as

p(X,S,Al6) = > p(X,S,Ah|6)

heH
heH —

appearance shape Rel.scale

with h an indexing variable, called hypothesis.

Raquel Urtasun (TTI-C) Visual Recognition Feb 14, 2012 8 /73



Generative probabilistic model

@ We have identified N image features, with locations X, scales S and
appearances A.

@ We define a generative model with P parts and parameters 6 as

p(X,S,Al6) = > p(X,S,Ah|6)

heH
heH —

appearance shape Rel.scale
with h an indexing variable, called hypothesis.

@ h is a vector of length P where each entry is between 0 and N (0 is
occlusion).

Raquel Urtasun (TTI-C) Visual Recognition Feb 14, 2012 8 /73



Generative probabilistic model

@ We have identified N image features, with locations X, scales S and
appearances A.

@ We define a generative model with P parts and parameters 6 as

p(X,S,Al6) = > p(X,S,Ah|6)

heH
heH —

appearance shape Rel.scale
with h an indexing variable, called hypothesis.

@ h is a vector of length P where each entry is between 0 and N (0 is
occlusion).

@ The set H has complexity O(NP).

Raquel Urtasun (TTI-C) Visual Recognition Feb 14, 2012



Generative probabilistic model

@ We have identified N image features, with locations X, scales S and
appearances A.

@ We define a generative model with P parts and parameters 6 as

p(X,S,Al6) = > p(X,S,Ah|6)

heH
heH —

appearance shape Rel.scale
with h an indexing variable, called hypothesis.

@ h is a vector of length P where each entry is between 0 and N (0 is
occlusion).

@ The set H has complexity O(NP).
@ Decision made base on the ratio
p(X,S, A|f)p(object)
p(X, S, A|fps) p(No-object)

@ Learning using EM
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More explicitly ...

@ The generative model is defined as

p(X,S,Al0) = > p(AIX.S,h,0) p(X|S,h,0) p(S|h,0) p(h|0)
heH —

appearance shape Rel.scale
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More explicitly ...

@ The generative model is defined as

p(X,S,Al0) = > p(AIX.S,h,0) p(X|S,h,0) p(S|h,0) p(h|0)
heH —

appearance shape Rel.scale

@ Let d = sign(h) tells which parts are background, n the number of
background features, and f the number of foreground features.
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More explicitly ...

@ The generative model is defined as

p(X,S,Al0) = > p(AIX.S,h,0) p(X|S,h,0) p(S|h,0) p(h|0)
heH —

appearance shape Rel.scale

@ Let d = sign(h) tells which parts are background, n the number of
background features, and f the number of foreground features.

@ Appearance is represented with a Gaussian with diagonal covariance

p(AX,S.h,0) H ( N(A(hy)lcp, V,) )"p
p(A|X757h79bg) N(A(hp)|cbgavbg)

@ Shape is represented by a joint Gaussian density (full covariance) of the
locations of features within a hypothesis in scale-invariant space
P(X|S, h,0)

(XIS b8y — VX, D)o
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More explicitly ...
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More explicitly ...

@ The generative model is defined as

p(X,S,Al0) = > p(AIX.S,h,0) p(X|S,h,0) p(S|h,0) p(h|0)
hE’H A,—/

appearance shape Rel.scale

@ Let d = sign(h) tells which parts are background, n the number of
background features, and f the number of foreground features.

@ Relative Scale: The scale of each part p relative to a reference frame is
modeled by a Gaussian density, where the parts are assumed to be
independent of one another. Background is uniform.

p(SIh,0) H
N |tP7 U )
(S\h ebg p=1
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More explicitly ...

@ The generative model is defined as

p(X,S,Al0) = > p(AIX.S,h,0) p(X|S,h,0) p(S|h,0) p(h|0)
hE’H A,—/

appearance shape Rel.scale

@ Let d = sign(h) tells which parts are background, n the number of
background features, and f the number of foreground features.

@ Relative Scale: The scale of each part p relative to a reference frame is
modeled by a Gaussian density, where the parts are assumed to be
independent of one another. Background is uniform.

p(SIh,0)
p(s‘h ebg EN |tP7U)

@ p(h|f) modeled using a Poisson distribution, book-keeping and a prob. table
for all possible occlusion patters.
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Generative probabilistic model

based on Burl, Weber et al. [ECCV "398, '00]

Foreground model

Gaussian shape pdf

Clutter model

Gaussian part appearance pdf

Gaussian
relative scale pdf

log(scale
Prob. of detection

Uniform shape pdf

Gaussian background
appearance pdf

Uniform
relalive scale pdf

.
H H
>

log(scale) e

Poission pdf on #
detections
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@ Simple datasets in 2003

Recall-Precision

Our algorithm

[ Dataset || Ours | Others | Ref. | o

Motorbikes 925 84 [17] = \,\ et mloyritie
Faces 064 oF [19] -1y ” )

Airplanes 902 68 [17] o4

Cars(Side) 385 79 1] N

W o1 02 03 04 05 06 07 08 03 1
1 - Precision
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Model examples
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Model examples
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Model examples
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Model examples
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Extensions

@ Complexity of the costellation mdoel is too high, i.e., O(NF)

@ Use a star model to reduce this to O(N?P)

P(X|Sv h, 9) = P(XL|hL) H p(XJ'|XL7 St hja 01)
J#L

with L the anchor point.

Fully connected model “Star” model

@ This can be further improve using distance transform to O(NP)
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What now?

@ We are done with part-based models.
@ Let's see something on how to compute multiple sources of information...

@ ... and how to learn good representations
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Combining information

@ We have a lot of different descriptors focusing on, e.g., shape, gradients,
texture.
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Combining information

@ We have a lot of different descriptors focusing on, e.g., shape, gradients,
texture.

We have multiple ways to computer similarity (distance) between images
(bounding boxes), e.g., histograms, intersection kernels, pyramids.

@ Which one should we use?

In general there is not a single one that it's always best.

Even if it was, maybe we can perform better by unifying forces ;)
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Combining information

Multiple ways to combine information

@ Stack the feature vectors
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@ Stack the feature vectors
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@ Boosting inherently incorporates multiple features
@ Use NN with sum of distances or something more clever
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feature types

@ Multiple kernel learning
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Combining information

Multiple ways to combine information

Stack the feature vectors

Information fusion

Boosting inherently incorporates multiple features

Use NN with sum of distances or something more clever

Voting via generalized hough transform, with votes coming from different
feature types

Multiple kernel learning

Random forest

Let's look into some of this strategies.

Raquel Urtasun (TTI-C) Visual Recognition Feb 14, 2012 20 /73



Combining information

Multiple ways to combine information
@ Stack the feature vectors
@ Information fusion
@ Boosting inherently incorporates multiple features
@ Use NN with sum of distances or something more clever

@ Voting via generalized hough transform, with votes coming from different
feature types

@ Multiple kernel learning
@ Random forest

@ etc

Let's look into some of this strategies.
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Simple combinations: stacking

@ Let ng) be example t of feature type f.
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@ Typically normalize them to have mean 0 and variance 1 before stacking
them.
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Simple combinations: stacking

@ Let ng) be example t of feature type f.

@ We can combine this information by creating a new feature representation
Xt = [xgl), e ,ng)] for F feature types.

@ Problem: features can be of very different mean and variance.

@ Typically normalize them to have mean 0 and variance 1 before stacking
them.

@ Problem: Dimensionality increases with the number of features.
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Ad-hoc Information fusion

@ Train a classifier for each feature type (using kernels if wanted)
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Ad-hoc Information fusion

@ Train a classifier for each feature type (using kernels if wanted)

@ Fuse their responses typically by summing the responses

F
1 o
f(x) = F E £ (x()y
i=1

with f the i-th classifier, which takes as input the i-th feature type.
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Ad-hoc Information fusion

@ Train a classifier for each feature type (using kernels if wanted)

@ Fuse their responses typically by summing the responses

F
1 o
f(x) = F E £ (x()y
i=1

with f the i-th classifier, which takes as input the i-th feature type.
@ Typically done in the probabilistic setting f()(x) = p(y|x()).

@ Advantage: We can use any classifier we want.
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Ad-hoc Information fusion

@ Train a classifier for each feature type (using kernels if wanted)
@ Fuse their responses typically by summing the responses

F

F(x) = % S0 0)

i=1
with f the i-th classifier, which takes as input the i-th feature type.
@ Typically done in the probabilistic setting £()(x) = p(y|x()).
@ Advantage: We can use any classifier we want.

@ Disadvantage: We do not exploit correlation between features and the
outputs are typically not in the same scale.
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Ad-hoc Information fusion

@ Train a classifier for each feature type (using kernels if wanted)
@ Fuse their responses typically by summing the responses

F

F(x) = % S0 0)

i=1
with f the i-th classifier, which takes as input the i-th feature type.

@ Typically done in the probabilistic setting £()(x) = p(y|x()).

@ Advantage: We can use any classifier we want.

@ Disadvantage: We do not exploit correlation between features and the
outputs are typically not in the same scale.

@ Some times, people train a classifier (logistic) on the output of individual
classifiers.
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@ Inherently combines features, via combination of learners.

@ Our weak-learners can be using each a subset of the features.

Greedy algorithm: for m=1,... M
| @ Pick a weak classifier h,

- @ Adjust weights: misclassified
examples get “heavier”

[ ] @ «, set according to weighted error
[ | of hy,
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Boosting

@ Inherently combines features, via combination of learners.

@ Our weak-learners can be using each a subset of the features.

o
P o
... Greedy algorithm: for m=1,..., M
[ IR @ Pick a weak classifier hy,

| el @

L - s @ Adjust weights: misclassified
examples get “heavier”
[ | @ «, set according to weighted error
[ | ® of h,,
®
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@ Inherently combines features, via combination of learners.

@ Our weak-learners can be using each a subset of the features.

e
° G
Seell Greedy algorithm: for m=1,... M
u Tl @ Pick a weak classifier h,
. Ll . . . .
- "= @ Adjust weights: misclassified
examples get “heavier”

[ @ «p, set according to weighted error

[ ] . . of hp,
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Boosting

@ Inherently combines features, via combination of learners.

@ Our weak-learners can be using each a subset of the features.

]
.
LY L] L
LY
' Greedy algorithm: for m=1,..., M
A
[ ] ' @ Pick a weak classifier h,,
. * . . . . . i
* @ Adjust weights: misclassified
' = examples get “heavier”
A3
m ' @ «,, set according to weighted error

- : . o
L)
¥ .
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Boosting

@ Inherently combines features, via combination of learners.

@ Our weak-learners can be using each a subset of the features.

% Greedy algorithm: for m=1,..., M
' @ Pick a weak classifier h,

" . . : @ Adjust weights: misclassified

examples get “heavier”

' @ «,, set according to weighted error
¥ of hm

Raquel Urtasun (TTI-C) Visual Recognition Feb 14, 2012



@ Inherently combines features, via combination of learners.

@ Our weak-learners can be using each a subset of the features.

Greedy algorithm: for m=1,..., M

@ Pick a weak classifier h,

° @ Adjust weights: misclassified
examples get “heavier”

@ «, set according to weighted error
of h,,
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@ Inherently combines features, via combination of learners.

@ Our weak-learners can be using each a subset of the features.

1

]

' Greedy algorithm: for m=1,..., M
: @ Pick a weak classifier h,

: . @ Adjust weights: misclassified

: examples get “heavier”

1

. @ «, set according to weighted error
. of hp,

]

:
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Combining Kernels

@ An alternative to information fusion a posteriori is to combine information a
priori.
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Combining Kernels

@ An alternative to information fusion a posteriori is to combine information a
priori.

@ We can combine the kernels by summing or multiplying them to have an
AND or OR effect

F

KR(xix) = > KO, x")
f=1
F

KAND(XI_,XJ_) _ HK(f)(x(f) xj(f))
f=1

with element-wise sum and product.
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Combining Kernels

@ An alternative to information fusion a posteriori is to combine information a
priori.

@ We can combine the kernels by summing or multiplying them to have an
AND or OR effect

KOR(xix) = > KO, x{")

F
=1

-

F
KA(xix) = [IKO". %)
f=1

with element-wise sum and product.

@ Sums and products of mercer kernels are still mercer.
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Combining Kernels

@ An alternative to information fusion a posteriori is to combine information a
priori.

@ We can combine the kernels by summing or multiplying them to have an
AND or OR effect

KOR(xix) = > KO, x{")

F
=1

-

F
KA(xix) = [IKO". %)
f=1

with element-wise sum and product.
@ Sums and products of mercer kernels are still mercer.

@ It will be great if we could learn the importance of each kernel in the OR
setting.
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Multiple Kernel Learning

@ Introduce to the vision community by [Varma & Ray, 07]

@ Recall the SVM formulation the primal is

N
1
min §||W||2 + C;{i.
subject to yi(w'¢(x;)+b)—1+& >0, i=1,...,N.

and the dual

N N
1
max ZOJ,‘ — 5 Z a,-ajy,-yjK(x,-,xj)
i=1 ij=1
N
subject to Y _aiy; =0, 0< oy < Cforall i=1,...,N.

i=1
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Multiple Kernel Learning

@ Varma & Ray introduced the following primal formulation

m|n f||w||2 + CZ{, +o'd
i=1
subject to y,-(ngb(x,-) +b)—14+& >0,
£E>0,d>0,Ad>p

where ¢ ( de(bk ok (%))

@ New: ¢; regularization on the weights d to discover a minimal set

@ Most of the weights will be 0 depending on o which encode prior preferences
for descriptors

@ Two additional constraints have been incorporated

e d > 0 ensures interpretable weights
e Ad > p encodes prior knowledge about the problem
o Last equation encodes Kopr = >, diKy

@ Minimization is carried out in the dual
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Regularization for multiple kernels

@ Summing kernels is equivalent to concatenating feature spaces

e m feature maps
e Minimization with respect to weights
e Results in a predictor f(x) = dig1(x) + -+ + dmd(x)

@ Regularization by }.|[|dj|| is equivalent to K =}, K;
@ Regularization ) ||d;|| imposes sparsity

@ We can regularize by blocks: structured sparsity
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Is computer vision solved?

@ We thought so for a few days as it performs great on Caltech 101

Caltech 101 Categories Data Set

e GP-Mti-Kornol
== GP-PMK

Jain, Kulis, & Grauman (CVPROS)

Varma and Ray (ICCV07)

Bosch, Zisserman, & Munoz (ICCVO7)
= @ = Frome, Singer, Sha, & Malik (CCV07)
—— zhang, Berg, Maire, & Malik(CVPROE)

Lazebnik, Schmid, & Ponce (CVPROG)

mean recogpnition rate per class

ol o ey
ol
- o
ol riklnprdwaict e
oty el ooy

Serre, Woll, & Poggio(CVPROS)
©  Fei-Fei, Fergus, & Perona

SSD baseline
o I L L L T T
o 5 0 1 20 25 30

number of training examples per class

Unfortunately, there was a bug in the kernels ...
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Other SVM-MKL formulations

@ More standard formulation [Bach 04]
1 N
min 5 (Zk:IIWkIIz> + C;&
. T
subject to £ > 0 and y; <Zwk or(xi) + b> -14¢& >0
K

@ The solution can be written as wy = S,wj with S > 0and >, Bk =1

@ The dual
N
min~y — o
N
subject to » "y =0, 0< o; <1Cforalli=1,...,N.
i=1
N
5 .Zla,-ajy;yij(x,-,xj) <y Vk=1,--- K
ij=
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Gaussian process as an alternative to SVMs
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Gaussian processes (GPs)

Definition

A Gaussian process is a collection of random variables, any finite number
of which have a joint Gaussian distribution.

@ Probability Distribution over Functions
@ Functions are infinite dimensional.

» Prior distribution over instantiations of the function: finite dimensional
objects.

@ GPs are consistent.
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Gaussian processes

@ A (zero mean) Gaussian process likelihood is of the form

p(y|X) = N(y|0,K),
where K is the covariance function or kernel.
@ Covariance samples

N S

Figure:  linear kernel, K = XXT

Iy

N

o

\
/
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Gaussian processes

@ A (zero mean) Gaussian process likelihood is of the form

p(y|X) = N(y|0,K),

where K is the covariance function or kernel.
@ Covariance samples

[

-1 -0.5 0 0.5 1

Figure: RBF kernel, k;j = aexp (—% x; — xj||2), with / =0.32, a = 1
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Gaussian processes

@ A (zero mean) Gaussian process likelihood is of the form

p(y|X) = N(y|0,K),
where K is the covariance function or kernel.
@ Covariance samples

6
6

a
oL i
|
\

0\
oL %
a ,
=1 -05 0 0.5 1

Figure: RBF kernel, k;j = a exp (—% x; — xj||2), with /=1, a =1
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Gaussian processes

@ A (zero mean) Gaussian process likelihood is of the form

p(y|X) = N(y|0,K),
where K is the covariance function or kernel.
@ Covariance samples

6

-1 -0.5 0 0.5 1

Figure: bias ‘kernel’, k; j; = o, with o =1 and
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Gaussian processes

@ A (zero mean) Gaussian process likelihood is of the form
p(y[X) = N(y|0,K),

where K is the covariance function or kernel.
@ Covariance samples

6
6

-1 -0.5 0 0.5 1

Figure: summed combination of: RBF kernel, &« = 1, | = 0.3; bias kernel,
« =1; and white noise kernel, g = 100
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Gaussian process regression

Posterior Distribution over Functions
o Gaussian processes are often used for regression.
@ We are given a known inputs X and targets Y.
@ We assume a prior distribution over functions by selecting a kernel.
@ Combine the prior with data to get a posterior distribution over
functions.

-1 o

-3
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MKL is much simpler with Gaussian Processes

@ Let X be the matrix of all training inputs and let Y be the associated labels.
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@ Let X be the matrix of all training inputs and let Y be the associated labels.

@ We assume a GP prior

p(Y|X) ~ N(0,K).
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MKL is much simpler with Gaussian Processes

@ Let X be the matrix of all training inputs and let Y be the associated labels.

@ We assume a GP prior
p(Y|X) ~ N(0,K).

@ Assuming Gaussian noise, the posterior can be computed as
1 1
log p(t,|X,©) = —Et[(a% +K) 't — 5 log |o?1 + K| — Const.

with K = 3K | a;KO),
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MKL is much simpler with Gaussian Processes

@ Let X be the matrix of all training inputs and let Y be the associated labels.

@ We assume a GP prior

p(Y[X) ~ N(0, K).
@ Assuming Gaussian noise, the posterior can be computed as
1 1
log p(t,|X,©) = —Et[(a% +K) 't — 5 log |o?1 + K| — Const.
with K = 3K | a;KO),
@ Learning can then be formulated as

arg min —log p(t.[X, &) + yillal[ +2[le]]2

subject to: a; >0 forie€{0,.,k}.
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MKL is much simpler with Gaussian Processes

@ Let X be the matrix of all training inputs and let Y be the associated labels.

@ We assume a GP prior
p(Y[X) ~ N(0, K).
@ Assuming Gaussian noise, the posterior can be computed as
1 1
log p(t,|X,©) = —Et[(a% +K) 't — 5 log |o?1 + K| — Const.
with K = 3K | a;KO),
@ Learning can then be formulated as
arg mCi!n —log p(t.|X, @) + yllalli + 2| le]2

subject to: a; >0 forie€{0,.,k}.

@ Prediction using y = k(x.) " (o2l + K)~'t
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Results: Caltech 101

Comparison with SVM kernel combination [Kapoor et al. 09]

Computational Efficiency (Caltech-101, 15 Examples per Class)

Statistical Efficiency (Caltech-101, 15 Examples per Class)

6000 .
GP (6 kernels) S
- - = Varma & Ray (6 kernels) I
8of- 5000 ‘
/
I
oy /
Q ol 8 4000 ,
5 5 -
g g '
@ I3 X
5 s 2 a0 ,
= > =
z .
2 £ ’
F o] R
14 L=
. =
4o GP (6 kernels) 1000 -
I Varma & Ray (6 kerels)| s
-
. . . . . . . ot = - n
o 4 6 0 10 2 14 16 0 5 10 15
Number of labeled images per class Number of labeled images per class
Figure: Average precision. Figure: Time of computation.
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Results: Caltech 101 for real ;)

Caltech 101 Categories Data Set

0

A Boiman etal. (CvPRO8)
e Jain, Kulis, & Grauman (CVPRO8)
= @ = Frome, Singer, Sha, & Malik (ICCV07)
= zhang, Berg, Maire, & Malik(CVPRO)

Lazebnik, Schmid, & Ponce (CVPRO6)

e
0l = Wang, Zhang, & Fei-Fei (CVPROE)
et Holub, Welling, & Perona(ICCV05)
i Serre, Wolf, & Poggio(CVPROS)

©  Fei-Fei, Fergus, & Perona.

:

mean recognition rate per class

o I I I I
o s 10 15 20 25 0

number of training examples per class

Figure: Comparison with the state of the art [Kapoor et al. 09].
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Is learning the weights important?

@ Unfortunately not really...
@ In general very similar performance if you learn or not the weights.
@ If you don't learn the weights, for GP you don't have to do training, just

invert a matrix!

@ Life is simple ;)
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NN approaches

NN approaches perform worst than more complex classifiers but [Boiman et al.
08] argue that this is due to

@ Quantization of local image descriptors (used to generate bags-of-words,
codebooks).
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distance.
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@ They proposed an effective NN-based classifier NBNN, (Naive-Bayes
Nearest-Neighbor), which employs NN distances in the space of the local
image descriptors (not images).
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NN approaches

NN approaches perform worst than more complex classifiers but [Boiman et al.
08] argue that this is due to

@ Quantization of local image descriptors (used to generate bags-of-words,
codebooks).

@ Computation of Image-to-Image distance, instead of Image-to-Class
distance.

@ They proposed an effective NN-based classifier NBNN, (Naive-Bayes
Nearest-Neighbor), which employs NN distances in the space of the local
image descriptors (not images).

@ NBNN computes direct Image to- Class distances without descriptor
quantization.

@ No learning/training phase.

@ Similarities with ISM but now for classification.
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Algortithm of NBNN

@ Given a query image, compute all its local image descriptors dy, - - - , d,.

@ Search for the class C which minimizes

n

> lld; = NNc(d))|P”

i=1
with NN¢(d;) the NN descriptor of d; in class C.

@ Requires fast NN search.
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Why quantization is bad

@ When densely sampled image descriptors are divided into fine bins, the
bin-density follows a power-law.

@ There are almost no clusters in the descriptor space.

@ Therefore, any clustering to a small number of clusters (even thousands) will
inevitably incur a very high quantization error.

@ Informative descriptors have low database frequency, leading to high
quantization error.
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Image-to-Image vs. Image-to-Class distance

=

KL(p,|p)=17.54
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Results Caltech 101

Caltech-101 (Single Descriptor Type) Caltech-101 (Multiple Descriptor Types)
85 85 ¢ !
- — " W
Les 5 o A
£ A £ =
P asm—— \
% 55 // ﬁ_ﬁ — L g 55 l/ Ar’/
g [y /== NBNN (1 Des) g g
£ ' —®— Griffin SPAL £
248 e P S 8 a5 /‘
g —a—sPM 5 /
- PMK o —B— NBNN (5 Desc)
= DHDP 35 ——Bosch Tlees (ROT)
° GBSWM o Boseh sV
25 T ¢ GB Voie NN 25 _._sfm ist
- o @ e
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Multiple descriptors by summing weighted distances.
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Effects of Quantization

Impact of introducing descriptor quantization or Imageto- Image distance into
NBNN (using SIFT descriptor on Caltech- 101, nlabel = 30).

No Quant. With Quant.
“Image-to-Class” 70.4% 50.4% (-28 4%)
“Image-to-Image” | 584% (-17%) | -
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Randomized Decision Forests

@ Very fast tools for classification, clustering and regression
@ Good generalization through randomized training
@ Inherently multi-class: automatic feature sharing

@ Simple training / testing algorithms
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Randomized Forests in Vision

OV W 770
gﬂavc¢6"q:
0O PN L EF*
<<LcLoer g3
N B T SRR
[Amit & Geman, 97]
digit recognition

[Lepetit et al., 06]

\keypoint recognition

[Moosmann et al., 06]
visual word clustering

-~
X
chair
boat
road
[Shotton et al., 08] [Rogez et al., 08]
object segmentation ) pose estimation

[Source: Shotton et al.]
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[Criminisi et al., 09]

organ detection
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Is the grass wet?

world state

is it raining?

is the sprinkler on?
P(wet)
=0.95

P(wet) P(wet)
=0.1 =0.9

[Source: Shotton et al.]
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Binary Decision Trees

- feature vector v € RV O leaf
+ split functions f(v) : RN - R eaf nodes

« thresholds th €R \Y; O split nodes
* classifications P, (c)

category C

Source: Shotton et al.
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Decision Tree Pseudo-Code

double[] ClassifyDT(node, v)
if node.IsSplitNode then
if node.f(v) >= node.t then
return ClassifyDT(node.right, v)
else
return ClassifyDT(node.left, v)
end
else
return node.P
end

end

[Source: Shotton et al.]
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Toy Example

* Try several lines, N /

. s

chosen at random .. A
° ®eo %o \.’ ./.—/oo..

©e®0, .’“\a‘ 74 ., R

e Keep line that best -,—._/7,,_\ 20N
separates data . :/? BN

— information gain . . N
Ve \ o N
/ \
* Recurse "
« feature vectors are X, y coordinates: v =[x, y]"
* split functions are lines with parameters a, b: f,(v) = ax + by
* threshold determines intercepts: t,

» four classes: purple, blue, red, green

Source: Shotton et al.
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Toy Example

e Try several lines,
chosen at random

e Keep line that best
separates data

— information gain

e Recurse "
« feature vectors are X, y coordinates: v =[x, y]"
* split functions are lines with parameters a, b: f,(v) = ax + by
* threshold determines intercepts: t,

e four classes: purple, blue, red, green

Source: Shotton et al.

Raquel Urtasun (TTI-C) Visual Recognition Feb 14, 2012 49 /



Toy Example

e Try several lines,
chosen at random

¢ Keep line that best
separates data

— information gain

¢ Recurse "
« feature vectors are X, y coordinates: v =[x, y]”
* split functions are lines with parameters a, b: f,(v) = ax + by
* threshold determines intercepts: t,

e four classes: purple, blue, red, green

Source: Shotton et al.

Raquel Urtasun (TTI-C) Visual Recognition Feb 14, 2012 49 /



Toy Example

e Try several lines,
chosen at random

¢ Keep line that best
separates data

— information gain

¢ Recurse "
« feature vectors are X, y coordinates: v =[x, y]”
* split functions are lines with parameters a, b: f,(v) = ax + by
* threshold determines intercepts: t,

e four classes: purple, blue, red, green

Source: Shotton et al.

Raquel Urtasun (TTI-C) Visual Recognition Feb 14, 2012 49 /



Randomized Learning

@ Recursively split examples at node n: set /, indexes labeled training
examples (v;, I;)

left split .
P L = {iel, | f(vi) <t}
- {
rightgﬁ L = I \ | quncﬁon O':threshold
example i’s

feature vector

@ At node n, P,(c) is histogram of example labels /;.

[Source: Shotton et al.]
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Randomized Learning

leftsplit Iy = {i€l,| f(vi) <t}
rightsplit Ir = 1, \ I

* Features f(v) chosen at random from
feature pool f2 F

¢ Thresholds t chosen in range t € (min; f(v;), max; f(v;))

* Choose f and t to maximize gain in information

4| ||
AE = — - B(n) - U E(L)
|17 |1y
[ Entropy E calculated from histogram of labels in | ]

[Source: Shotton et al.]
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How many features and thresholds to try?
@ just one = extremely randomized
@ few — fast training, may under-fit, maybe too deep
@ many — slower training, may over-fit
When to stop growing the tree?
@ maximum depth
@ minimum entropy gain
@ delta class distribution
@ pruning

[Source: Shotton et al.]
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Randomized Learning Pseudo Code

N\

p
TreeNode LearnDT(I)

repeat featureTests times
let f = RndFeature()
let r = EvaluateFeatureResponses(I, f)

repeat threshTests times
let t = RndThreshold(r)
let (I_1, I_r) = Split(I, r, t)
let gain = InfoGain(I_1l, I_r)
if gain is best then remember f, t, I.1, I r
end
end

if best gain is sufficient

return SplitNode(f, t, LearnDT(I_1), LearnDT(I_r))
else

return LeafNode(HistogramExamples(I))
end

end
\. S

Source: Shotton et al.
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A forests of trees
* Forest is ensemble of O leaf nodes
several decision trees (O split nodes

v v
tree t, tree t;
Pr(c)
Pi(e)
|||||| | category C
category C
1 T [Amit & Geman 97]
— classification is P(c|v) = T Z Py(clv) [Breiman 01]
t=1 [Lepetit et al. 06]

Source: Shotton et al.
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Forest Pseudo

N
double[] ClassifyDF(forest, v)
let P = double[forest.CountClasses]
for t = 1 to forest.CountTrees
let P’ = ClassifyDT(forest.Tree[t], V)
P=P+P
end
P = P / forest.CountTrees
end
. J

[Source: Shotton et al.]

Raquel Urtasun (TTI-C) Visual Recognition Feb 14, 2012 55 /73



* Divide training examples into T subsets |, j |
— improves generalization
— reduces memory requirements & training time

e Train each decision tree t on subset |,

— same decision tree learning as before

e Multi-core friendly

* Subsets can be chosen at random or hand-picked
* Subsets can have overlap (and usually do)

* Can enforce subsets of images (not just examples)
* Could also divide the feature pool into subsets

[Source: Shotton et al.]
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Ve

N
Forest LearnDF(countTrees, I)
let forest = Forest(countTrees)
for t = 1 to countTrees

let I_t = RandomSplit(I)

forest[t] = LearnDT(I_t)
end

return forest

end
.

[Source: Shotton et al.]
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Classification

¢ Trees can be trained for

— classification, regression, or clustering

¢ Change the object function
— information gain for classification: 1= H(s) - i

i=1

1Sil

s H(S;) measure of distribution purity

d
class O
..’ > @ o
° S
ol 20 o) 0 o)
‘ S S,
v © o 0O Q Q Q
OooOoOono 0o OO 00

class

data classification tree

Preay (¥(d) =)

Source: Shotton et al.
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(w2
o ®
y o S o o)
o o a o0 . S
o o © ° o/° L4
3 © o = o)
..... Sl 52
T RYE © o O o o 0
' - DonOo 0o OO0 oo
data regression tree
- Real-valued Output y 2 |g measure of fit of model )
- Object function: maximize Err(S)— 3 “‘S,'[I:‘rr(h‘,) Err(S) =3 (vj - _v{r,))
i=1 I* jes

e.g. linear model y = ax+b,
Or just constant model

Source: Shotton et al.
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Clustering

d
. o
ol o o}
° S
o o O o
Sy S
o o O o (0] o
Ooooo 00O oo oo
clustering tree
efd}
- Output is cluster membership
- Option 1 — minimize imbalance: B = |log|S;| — log|S,| | [Moosmann et al. 06]

- Option 2 — maximize Gaussian likelihood:
2

T=Asl- 3

i=1

measure of cluster tightness
(maximizing a function of info gain
for Gaussian distributions)

|Si

—~As;|
S|

Source: Shotton et al.
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Clustering example [Moosmann et al. 06]

* Visual words good for e.g. matching, recognition [ [Sivic et al. 03] ]
but k-means clustering very slow [Csurka et al. 04]

¢ Randomized forests for clustering descriptors
— e.g. SIFT, texton filter-banks, etc.

¢ Leaf nodes in forest are clusters
— concatenate histograms from trees in forest

tree t, tree t;

Source: Shotton et al.
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Clustering example [Moosmann et al. 06]

tree t;

N /

tree t, tree t;

z
C
“bagof 3
words” £

node index

[Source: Shotton et al.]
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Applications: keypoint detection [LePetit 06]

Wide-baseline matching
as classification problem

Extract prominent key-points in training images

.
* Forest classifies ‘ :’
— patches -> keypoints o)<k - )
° m o = o
Features Y .

— pixel comparisons

Augmented training set
— gives robustness to patch scaling, translation, rotation

[Source: Shotton et al.]
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Fast Keypoint Recognition

Itipls View
"‘&“eo’?&\ etry

\_‘.. tﬂm;h YYEY WE

[Source: Shotton et al.]
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http://cvlab.epfl.ch/research/augm/detect.php 

Classification
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Classification
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Object Recognition Pipeline

extract features clustering » assignment
SIFT, filter bank k-means nearest neighbour
hand-crafted unsupervised ‘
classification algorithm
supervised

SVM, decision forest, boosting

[Source: Shotton et al.]
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Object Recognition Pipeline

Semantic Texton Forest (STF)
* decision forest for
clustering & classification

* tree nodes have learned
object category associations
~
clustéring into
’sema;r!ﬁc tgxtons’

classification algorithm

SVM, decision forest, boosting

[Source: Shotton et al.]
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Example Semantic Texton Forest

r

Input mage Alg] - B[b 8 Ground Truth

|Alb] - B[g]| >37

i ELgii i

R o EEeEH H
Alr] +B[r] >363 Jll Alb]+B[b]>284 Alg] - B[b] > 13

el 1 N |

e
i

Example
Patches

[Source: Shotton et al.]
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MSRC Dataset Results

building grass tree cow sheep sky, airplane ~ water,
bicycle flower: sign bird book chair; road

[Source: Shotton et al.]
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Microsoft Kinect

-
B
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T
P(ell,x) = %ZE(CH,X). (93]
t=1

Training. Each tree is trained on a different set of randomly
synthesized images. A random subset of 2000 example pix-
els from each image is chosen to ensure a roughly even dis-
tribution across body parts. Each tree is trained using the
following algorithm [20]:
1. Randomly propose a set of splitting candidates ¢ =
(@, 7) (feature parameters # and thresholds 7).

2. Partition the set of examples Q@ = {(I,x)} into left

and right subsets by each ¢:
Q) = {Ux)|hlx)<t}
(@) = Q\ () “@
3. Compute the ¢ giving the largest gain in information:
o = argmax G(d) 5)
0 -y e " 190N g g, (8)) 6)
se{lr}

where Shannon entropy H((}) is computed on the nor-
malized histogram of body part labels I;(x) for all

(I,x)eQ.
4. If the largest gain G/(¢*) is sufficient, and the depth in
the tree is below a maximum, then recurse for left and

right subsets Q1(¢*) and Qr(¢*).
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Microsoft Kinect

Synthetic Test Set

;
?

Real Test Set

g

g

3
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i o=
# #
. .

== 00k training images
=—#— 15k training images

== 900k training images
~—#— 15k training images
T T 1

30%
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Depth of trees Depth of trees
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