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Which detectors?

Window-based

Part-based

BOW, pyramids ISM: voting deformable parts poselets
e.g., [Grauman et al.] e.g., [Leibe & Shiele] e.g., [Felzenszwalb et al.] [Bourdev et al.]
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Sliding Window Recap

[Source: K. Grauman]
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Example: Dalal & Triggs
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Task to solve

Pedestrian detection
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Representation

Histogram of gradients: [Schiele & Crowley, Freeman & Roth]

Code available: http://pascal.inrialpes.fr/soft/olt/
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Linear Classifier

Find linear function to separate positive and negative examples

f (x) = wTx + b

f (x) > 0 if x is a positive example.

f (x) < 0 if x is a negative example.
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Learning Setup

Input x ∈ X , and outputs yi ∈ {−1, 1}
General setup: training set {xi , yi} sampled i.i.d. from p(x, y), we want to
find parametric predictor f ∈ F that minimizes

R(f ) = Ex,y

[
L̄(f (x0; θ), y)

]
with L̄ the loss

Regularized ERM:

θ̂ = argmin
θ

N∑
i=1

L(f (xi ; θ), yi ) + R(θ)

Surrogate loss L: square loss (ridge regression, GP), hinge (SVM), log loss
(logistic regression)
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Support Vector Machine (SVM)

Discriminative classifier based on optimal separating hyperplane

Maximize the margin between the positive and negative training examples

[Source: G. Shakhnarovich]
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Support Vector Machine (SVM)

Maximize the margin between the positive and negative training examples

Positive yi = 1: wTxi + b ≥ 1

Negative yi = −1: wTxi + b ≤ 1

Support vector: wTxi + b = ±1

Point line distance: y(wT x+b)
||w||

For support vectors: 1
||w||

Margin M = 2
||w||

[Source: K. Grauman]
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Find the max margin hyperplane

We want to maximize the margin

max
w,b

{
1

‖w‖ min
i

yi
(
wTxi + b

)}
Hard optimization problem. . . but we can set

min
i

yi
(
wTxi + b

)
= 1,

since we can rescale ‖w‖, b appropriately.

Then, the optimization becomes a quadratic optimization problem

min
w

1

2
‖w‖2

subject to yi (wTxi + b)− 1 ≥ 0, i = 1, . . . ,N.

[Source: G. Shakhnarovich]
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Find the max margin hyperplane

min
w

1

2
‖w‖2

subject to yi (b + wTxi )− 1 ≥ 0, i = 1, . . . ,N.

We can write the Lagrangian

L =
1

2
‖w‖2 +

N∑
i=1

αi

[
1− yi (b + wTxi )

]
We can reformulate our problem now:

min
w

{
1

2
‖w‖2 +

N∑
i=1

max
αi≥0

αi

[
1− yi (b + wTxi )

]}
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Max-margin optimization

We want all the constraint terms to be zero:

min
w

{
1

2
‖w‖2 +

N∑
i=1

max
αi≥0

αi

[
1− yi (b + wTxi )

]}

= min
w

max
{αi≥0}

{
1

2
‖w‖2 +

N∑
i=1

αi

[
1− yi (b + wTxi )

]}

= max
{αi≥0}

min
w

{
1

2
‖w‖2 +

N∑
i=1

αi

[
1− yi (b + wTxi )

]}
︸ ︷︷ ︸

J(w,w0;α)

.

We need to minimize J(w, b;α) for any settings of α = [α1, . . . , αN ]T .

[Source: G. Shakhnarovich]
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Strategy for optimization

We need to find
max
{αi≥0}

min
w

J(w, b;α)

We will first fix α and treat J(w, b;α) as a function of w,b.

Find functions w(α), b(α) that attain the minimum.

Next, treat J(w(α), b(α);α) as a function of α.

Find α∗ that attain the maximum.

In the end, the solution is given by α∗, w(α∗) and b(α∗).

[Source: G. Shakhnarovich]
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Minimizing J(w,w0;α) with respect to w, b

For fixed α we can minimize

J(w, b;α) =
1

2
‖w‖2 +

N∑
i=1

αi

[
1− yi (b + wTxi )

]
by setting derivatives w.r.t. b,w to zero:

∂

∂w
J(w, b;α) = w −

N∑
i=1

αiyixi = 0,

∂

∂b
J(w, b;α) = −

N∑
i=1

αiyi = 0.

Note that the bias term b dropped out but has produced a “global”
constraint on α.

[Source: G. Shakhnarovich]
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Solving for α

w(α) =
N∑
i=1

αiyixi︸ ︷︷ ︸
Representer theorem!

,

N∑
i=1

αiyi = 0.

Now can substitute this solution into

max
{αi≥0,

∑
i αiyi=0}

{
1

2
‖w(α)‖2 +

N∑
i=1

αi

[
1− yi (b(α) + w(α)Txi )

]}

= max
{αi≥0,

∑
i αiyi=0}


N∑
i=1

αi −
1

2

N∑
i,j=1

αiαjyiyjx
T
i xj

 .

[Source: G. Shakhnarovich]
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Max-margin and quadratic programming

We started by writing down the max-margin problem and arrived at the dual
problem in α:

max


N∑
i=1

αi −
1

2

N∑
i,j=1

αiαjyiyjx
T
i xj


subject to

N∑
i=1

αiyi = 0, αi ≥ 0 for all i = 1, . . . ,N.

Solving this quadratic program yields α∗.

We substitute α∗ back to get w:

ŵ = w(α∗) =
N∑
i=1

α∗i yixi

[Source: G. Shakhnarovich]
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Maximum margin decision boundary

ŵ = w(α∗) =
N∑
i=1

α∗i yixi

Suppose that, under the optimal solution, the margin (distance to the
boundary) of a particular xi is

yi
(
b + ŵTxi

)
> 1.

Then, necessarily, α∗i = 0 ⇒ not a support vector.

The direction of the max-margin decision boundary is

ŵ =
∑
α∗

i >0

α∗i yixi .

b is set by making the margin equidistant to two classes.

[Source: G. Shakhnarovich]
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Support vectors

ŵ =
∑
αi>0

αiyixi .

Given a test example x, it is classified by

ŷ = sign
(
b̂ + ŵTx

)
= sign

(
b̂ + (

∑
αi>0

αiyixi )
Tx

)

= sign

(
b̂ +

∑
αi>0

αiyix
T
i x

)

The classifier is based on the expansion in terms of dot products of x with
support vectors.

[Source: G. Shakhnarovich]
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SVM classification

α > 0 w

1/‖w‖

α > 0

α = 0

α = 0

α > 0

α > 0 α > 0

w

1/‖w‖

α > 0

α > 0

α > 0

[Source: G. Shakhnarovich]
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SVM: summary so far

We started with argmax
w,b

{
1
‖w‖ mini yi

(
wTxi + b

)}
In linearly separable case, we get a quadratic program

max


N∑
i=1

αi −
1

2

N∑
i,j=1

αiαjyiyjx
T
i xj


subject to

N∑
i=1

αiyi = 0, αi ≥ 0 for all i = 1, . . . ,N.

Solving it for α we get the SVM classifier

ŷ = sign

(
b̂ +

∑
αi>0

αiyix
T
i x

)
.

[Source: G. Shakhnarovich]
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SVM classification

α > 0 w

1/‖w‖

α > 0

α = 0

α = 0

α > 0

α > 0 α > 0

w

1/‖w‖

α > 0

α > 0

α > 0

Only support vectors (points with αi > 0) determine the boundary

[Source: G. Shakhnarovich]
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Non-separable case

Not linearly separable data: we can no longer satisfy yi
(
wTxi + b

)
≥ 1 for

all i .

We introduce slack variables ξi ≥ 0:

yi
(
b + wTxi

)
− 1 + ξi ≥ 0.

Whenever the original constraint is satisfied, ξi = 0.

The updated objective:

min
w

1

2
‖w‖2 + C

N∑
i=1

ξi .

The parameter C determines the penalty paid for violating margin
constraints.

This is applicable even when the data are separable!

[Source: G. Shakhnarovich]
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Non-separable case: solution

min
w

1

2
‖w‖2 + C

N∑
i=1

ξi .

We can solve this using Lagrange multipliers

Introduce additional multipliers for the ξs, as they have to be positive.

The resulting dual problem:

max


N∑
i=1

αi −
1

2

N∑
i,j=1

αiαjyiyjx
T
i xj


subject to

N∑
i=1

αiyi = 0, 0 ≤ αi ≤ C for all i = 1, . . . ,N.

[Source: G. Shakhnarovich]

Raquel Urtasun (TTI-C) Visual Recognition Jan 24, 2012 24 / 71



SVM with slack variables

ξi/‖w‖

w

1/‖w‖

α = C, ξ > 1

0 < α < C, ξ = 0

α = C, ξ > 1

α = C, 0 < ξ < 1

0 < α < C, ξ = 0

0 < α < C, ξ = 0

0 < α < C, ξ = 0

Support vectors: points with α > 0

If 0 < α < C : SVs on the margin, ξ = 0.

If 0 < α = C : SVs over the margin, either misclassified (ξ > 1) or not
(0 < ξ ≤ 1).

[Source: G. Shakhnarovich]
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SVM and regularization

min
w

1

2
‖w‖2 + C

N∑
i=1

ξi

C is a regularization parameter, controlling penalty for imperfect fit to
training labels.

Larger C ⇒ more reluctant to make mistakes

How do we select value of C? Cross validation is a common practical way to
do that.

[Source: G. Shakhnarovich]
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Loss in SVM

Loss is measured as
∑N

i=1 ξi

This surrogate loss is known as hinge loss

yf (x)

L(yf (x))

0

0/1 log p

err2

hinge

[Source: G. Shakhnarovich]
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Nonlinear features

We can move to nonlinear classifiers by mapping data into nonlinear feature
space.

φ : [x1, x2]T → [x21 ,
√

2x1x2, x
2
2 ]T

Elliptical decision boundary in the input space becomes linear in the feature
space z = φ(x):

x21
a2

+
x22
b2

= c ⇒ z1
a2

+
z3
b2

= c .

[Source: G. Shakhnarovich]
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Representer theorem

Consider the optimization problem

w∗ = argmin
w
‖w‖2 s.t. yi (wTxi + b) ≥ 1 ∀i

Theorem: the solution can be represented as

w∗ =
N∑
i=1

αixi

This is the “magic” behind Support Vector Machines!

[Source: G. Shakhnarovich]
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Example of nonlinear mapping

Consider the mapping: φ : [x1, x2]T → [1,
√

2x1,
√

2x2, x
2
1 , x

2
2 ,
√

2x1x2]T .

The (linear) SVM classifier in the feature space:

ŷ = sign

(
b̂ +

∑
αi>0

αiyiφ(xi )
Tφ(x)

)

The dot product in the feature space:

φ(x)Tφ(z) = 1 + 2x1z1 + 2x2z2 + x21 z
2
1 + x22 z

2
2 + 2x1x2z1z2

=
(
1 + xT z

)2
.

[Source: G. Shakhnarovich]
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Dot products and feature space

We defined a non-linear mapping into feature space

φ : [x1, x2]T → [1,
√

2x1,
√

2x2, x
2
1 , x

2
2 ,
√

2x1x2]T

and saw that φ(x)Tφ(z) = K (x, z) using the kernel

K (x, z) =
(
1 + xT z

)2
.

I.e., we can calculate dot products in the feature space implicitly, without
ever writing the feature expansion!

[Source: G. Shakhnarovich]
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The kernel trick

Replace dot products in the SVM formulation with kernel values.

The optimization problem:

max


N∑
i=1

αi −
1

2

N∑
i,j=1

αiαjyiyjK (xi , xj)


Need to compute the kernel matrix for the training data

The classifier:

ŷ = sign

(
b̂ +

∑
αi>0

αiyiK (xi , x)

)

Need to compute K (xi , x) for all SVs xi .

[Source: G. Shakhnarovich]
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Mercer’s kernels

What kind of function K is a valid kernel, i.e. such that there exists a
feature space Φ(x) in which K (x, z) = φ(x)Tφ(z)?

Theorem due to Mercer (1930s): K must be

Continuous;
symmetric: K (x, z) = K (z, x);
positive definite: for any x1, . . . , xN , the kernel matrix

K =

K (x1, x1) K (x1, x2) K (x1, xN)
. . . . . . . . . . . . . . . .
K (xN , x1) K (xN , x2) K (xN , xN)


must be positive definite.

[Source: G. Shakhnarovich]
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Some popular kernels

The linear kernel:
K (x, z) = xT z.

This leads to the original, linear SVM.

The polynomial kernel:

K (x, z; c , d) = (c + xT z)d .

We can write the expansion explicitly, by concatenating powers up to d and
multiplying by appropriate weights.

[Source: G. Shakhnarovich]
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Example: SVM with polynomial kernel

(using C <∞)

[Source: G. Shakhnarovich]
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Radial basis function kernel

K (x, z;σ) = exp

(
− 1

σ2
‖x− z‖2

)
.

The RBF kernel is a measure of similarity between two examples.

The feature space is infinite-dimensional!

What is the role of parameter σ? Consider σ → 0.

K (xi , x;σ) →
{

1 if x = xi ,

0 if x 6= xi .

All examples become SVs ⇒ likely overfitting.

[Source: G. Shakhnarovich]
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SVM with RBF (Gaussian) kernels

Data are linearly separable in the (infinite-dimensional) feature space

We don’t need to explicitly compute dot products in that feature
space – instead we simply evaluate the RBF kernel.
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SVM: summary

Two main ideas:

large margin classification,
the kernel trick.

Complexity of classifier depends on the number of SVs.

Controlled indirectly by C and kernel parameters.

One of the most successful ML techniques applied to computer vision!

Recommended off-the-shelf package: SVMlight

http://svmlight.joachims.org

[Source: G. Shakhnarovich]
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SVM for Visual Recognition

1 Define your representation for each example.

2 Select a kernel function.

3 Compute pairwise kernel values between labeled examples

4 Use this kernel matrix to solve for SVM support vectors & weights.

5 To classify a new example: compute kernel values between new input and
support vectors, apply weights, check sign of output.

[Source: K. Grauman]
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Multi-class SVMs

Achieve multi-class classifier by combining a number of binary classifiers

One vs. all

Training: learn an SVM for each class vs. the rest
Testing: apply each SVM to test example and assign to it the class of
the SVM that returns the highest decision value

One vs. one

Training: learn an SVM for each pair of classes
Testing: each learned SVM votes for a class to assign to the test
example

[Source: K. Grauman]
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Which detectors?

Window-based

Part-based

BOW, pyramids ISM: voting deformable parts poselets
e.g., [Grauman et al.] e.g., [Leibe & Shiele] e.g., [Felzenszwalb et al.] [Bourdev et al.]
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Viola-Jones face detector
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Main idea

Represent local texture with rectangular features within window of interest

Use integral images to compute the features efficiently

Select discriminative features to be weak classifiers

Use boosted combination of them as final classifier

Form a cascade of such classifiers, rejecting clear negatives quickly
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Efficient computation of the features

Rectangular filters: Feature output is the difference between adjacent
regions

Can be computed efficiently with integral images: any sum can be computed
in constant time

Cumulative row sum s(x , y) = s(x − 1, y) + i(x , y)

Integral image: ii(x , y) = ii(x , y − 1) + s(x , y)

Avoid scaling images: scale features directly for same cost.
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Representation

Rectangular filters: difference between adjacent regions

Consider all possible filter parameters: position, scale, and type. 180,000
features for 24× 24 window.

Which subset of these features should we use?

Use AdaBoost to select the informative features and to form the classifier
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Boosting: intuition

Want to pick weak classifiers that contribute something to the ensemble.

Greedy algorithm: for m = 1, . . . ,M

Pick a weak classifier hm

Adjust weights: misclassified
examples get “heavier”

αm set according to weighted
error of hm

[Source: G. Shakhnarovich]
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Boosting: training

Initially, weight each training example equally

In each boosting round:

Find the weak learner that achieves the lowest weighted training error
Raise weights of training examples misclassified by current weak learner

Compute final classifier as linear combination of all weak learners (weight of
each learner is directly proportional to its accuracy)

Exact formulas for re-weighting and combining weak learners depend on the
particular boosting scheme (e.g., AdaBoost)

[Source: S. Lazebnik]
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AdaBoost: algorithm summary

1 Initialize weights: W
(0)
i = 1/N

2 Iterate for m = 1, . . . ,M:

Find (any) “weak” classifier hm that attains weighted error

εm =
1

2

(
1−

N∑
i=1

W
(m−1)
i yihm(xi )

)
<

1

2

Let αm = 1
2 log 1−εm

εm
.

Update the weights and normalize so that
∑

i W
(m)
i = 1:

W
(m)
i =

1

Z
W

(m−1)
i e−αmyihm(xi ),

3 The combined classifier: sign
(∑M

m=1 αmhm(x)
)

[Source: G. Shakhnarovich]
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Boosting: pros and cons

Advantages

Integrates classification with feature selection: only one feature in VJ
detector

Complexity of training is linear in the number of training examples

Flexibility in the choice of weak learners, boosting scheme

Testing is fast

Easy to implement

Disadvantages

Needs many training examples

Often found not to work as well as SVMs, GPs, etc.
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Viola Jones Adaboost

Select the single feature and threshold that best separates positive (faces)
and negative (nonfaces) training examples, in terms of weighted error.

Weak classifier is defined as

hi (x) =

{
+1 if fi (x) > θi

−1 Otherwise
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Cascading Classifiers

Form a cascade with low false negative rates early on

Apply less accurate but faster classifiers first to immediately discard windows
that clearly appear to be negative

[K. Grauman]
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Training the cascade

Set target detection and false positive rates for each stage

Keep adding features until its target rates have been met

Low AdaBoost threshold to max detection (don’t minimize total
classification error)
Test on a validation set

If the overall false positive rate is not low enough, then add another stage

Use false positives from current stage as the negative training examples for
the next stage
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First classifier

Only uses 2 features

Detects 100% of the faces, and only 40% false positives.
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Viola Jones detector

Train with 5K positives, 350M negatives

Real-time detector using 38 layer cascade 6061 features in all layers

Code: http://www.intel.com/technology/computing/opencv/

[K. Grauman]
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Viola Jones Summary

A seminal approach to real-time object detection

Training is slow, but detection is very fast

Key ideas

1 Integral images for fast feature evaluation
2 Boosting for feature selection
3 Attentional cascade of classifiers for fast rejection of non-face windows
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Results
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Also works for profile faces

[Source: K. Grauman]
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Example using Viola-Jones detector

Frontal faces detected and then tracked, character names inferred with
alignment of script and subtitles, [Everingham et al, BMVC 2006]

[Source: K. Grauman]
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Commercial Applications

[Source: S. Lazebnik]
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Interesting cases....

[Source: S. Lazebnik]
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Can even recognize cats

[Source: S. Lazebnik]
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Scoring a sliding window detector

Detection is correct if the intersection of the bounding boxes, divided by
their union, is > 50%.

a0 =
area(Bp ∩ Bgt)

area(Bp ∪ Bgt)

[Source: K. Grauman]
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Performance

If the detector can produce a confidence score on the detections, then we
can plot the rate of true vs. false positives as a threshold on the confidence
is varied.

Plot precision-recall curves

Plot ROC curves.
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Window-based detection

Strengths

Simple detection protocol to implement

Good feature choices critical

Past successes for certain classes

Limitations

High computational complexity: For example: 250,000 locations x 30
orientations x 4 scales =30,000,000 evaluations!

If training binary detectors independently, means cost increases linearly with
number of classes

With so many windows, false positive rate better be low

[Source: K. Grauman]
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More Limitations ...

Not all objects are box shaped: Non-rigid, deformable objects not captured
well with representations assuming a fixed 2d structure; or must assume
fixed viewpoint

[Source: K. Grauman]
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More Limitations

Objects with less-regular textures not captured well with holistic
appearance-based descriptions

[Source: K. Grauman]
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Even more...

If considering windows in isolation, context is lost

[Source: K. Grauman]
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And more...

In practice, often entails large, cropped training set (expensive)

Requiring good match to a global appearance description can lead to
sensitivity to partial occlusions

[Source: K. Grauman]
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Summary

Basic pipeline for window-based detection

Model/representation/classifier choice
Sliding window and classifier scoring

Discriminative classifiers for window-based representations:

Boosting: Viola-Jones face detector example
Nearest neighbors: Scene recognition example
Support vector machines: HOG person detection example

Pros and cons of window-based detection

[K. Grauman]
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