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Which detec

Window-based

2

=\

Boosting + face
detection

NN + scene Gist SVM + person
classification detection

Viola & Jones
e.g., Hays & Efros e.g., Dalal & Triggs

BOW, pyramids ISM: voting deformable parts poselets
e.g., [Grauman et al.] e.g., [Leibe & Shiele] e.g., [Felzenszwalb et al.]  [Bourdev et al.]
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Sliding Window Recap

Training:

1. Obtain training data
2. Define features

3. Define classifier

Given new image:
1. Slide window

2. Score by classifier Training examples
I 1NN

Classifier

Feature
extraction

[Source: K. Grauman]
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Example:

Dalal & Triggs

Histograms of Oriented Gradients for Human Detection

Navneet Tl

al and Bill Triges

INRLA Rhine-Alps, 655 avenue de I Evrope, Montbonnot 38334, France
{Mavneet Dalal Bill Trigge } @ inrialpes._fr. hrtp:flearinrialpas fr

Ahbstract

We stwdy the question of feature sets for robust viswal ab-
ject recogniti inear SV based human devec-
I {sting edye and gra-
5, we show experimentally thar grids

a5 @ besk Co
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High-quealiry local commrest narmalization in overlapping de-
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1 Introduction

Visual Recognition

We briefly discuss previons work on human detection in
give an overview of our method §3, describe our data
sets in k4 and gve a detailed descniption and experimental
evaluation of each siage of the process in §3-6. The main
conclasions are summarized in

2 Previous Work

There is an extensive litermtune on object detection, but
here we mention just a few relevant papers on human detec-
22.16,20]. See [6] for o survey, Papageoigion et

o hesed on polynomial
SVM using muln-:l Haar wavelets as input deseriptors, with
a parts isubwindowy based varant in [17). Depoociere er af
an optimized version of this [2]. Gavrla & Philomen
amore direct images and
amier
WE TN reul-time pede
frian detection system [7]. Viola e gl [22] build an effic
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Task to solve

@ Pedestrian detection
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Representation

@ Histogram of gradients: [Schiele & Crowley, Freeman & Roth]
@ Code available: http://pascal.inrialpes.fr/soft/olt/

Orientation Voting
— Overlapping Blocks

Input Image Gradient Image

— Local Normalization
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Linear Classifier

@ Find linear function to separate positive and negative examples
fx)=w'x+b
@ f(x) > 0if x is a positive example.

@ f(x) < 0if x is a negative example.
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Learning Setup

@ Input x € X, and outputs y; € {—1,1}

@ General setup: training set {x;, y;} sampled i.i.d. from p(x,y), we want to
find parametric predictor f € F that minimizes

R(f) = Exy [L(f(x0:0),y)]
with L the loss

@ Regularized ERM:

N

0 = argmin L(f(xi; 0),yi;) + R(O
er ;(( ), yi) + R(0)

@ Surrogate loss L: square loss (ridge regression, GP), hinge (SVM), log loss
(logistic regression)
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Support Vector Machine (SVM)

@ Discriminative classifier based on optimal separating hyperplane

@ Maximize the margin between the positive and negative training examples

[Source: G. Shakhnarovich]
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Support Vector Machine (SVM)

@ Maximize the margin between the positive and negative training examples

1’-‘.‘-%‘& @ Positive y; = 1: wa,. +b>1
% 9
“’%\\ Ve o Negativey; = —1: w'x; + b < 1

@ Support vector: w'x; + b = %1

.
@ Point line distance: W

For support vectors: ﬁ

L] Ay

Margin M = %

Support vectors [wl]

Margin
[Source: K. Grauman]
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Find the max margin hyperplane

@ We want to maximize the margin

| g i 078 |

@ Hard optimization problem. .. but we can set
min y; (wa,- + b) =1,
1

since we can rescale ||w||, b appropriately.

@ Then, the optimization becomes a quadratic optimization problem

1
min = |lw|?
w2
subject to yi(w'x;+b)—1>0, i=1,...,N.

[Source: G. Shakhnarovich]
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Find the max margin hyperplane

1,
min 5wl

subject to yi(b+w'x;)—1>0, i=1,...,N.

@ We can write the Lagrangian

N
L= %Hsz +) i [1—yi(b+w'x)]

i=1

@ We can reformulate our problem now:

N
1
min {2||w||2 + ;23%04,- [1—yi(b+w'x,)] }
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Max-margin optimization

@ We want all the constraint terms to be zero:

N
1 2 T
" {2||w|| + Y maes 1 b+ w xo]}
. L2
mmlln{(rlrjix { [lw] —|—Zo¢, —yilb+w x,)]}
1 N
max mmin {2||w||2 + Za; [1—yi(b+ WTXI)] } :

>0
{2i20} i=1

J(w,wp;)

@ We need to minimize J(w, b; o) for any settings of o = [ag,...,an] .

[Source: G. Shakhnarovich]
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Strategy for optimization

@ We need to find
max_ min J(w, b; @)
{a;i>0} w
@ We will first fix o and treat J(w, b; ) as a function of w,b.
e Find functions w(«), b(c) that attain the minimum.
@ Next, treat J(w(«), b(«); @) as a function of «.

o Find o* that attain the maximum.

@ In the end, the solution is given by a*, w(a*) and b(a*).

[Source: G. Shakhnarovich]
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Minimizing J(w, wp; &) with respect to w, b

@ For fixed o we can minimize

N
1
J(w, b;a) = §|\w||2 + Za; [1—yi(b+w'x)]
i=1

by setting derivatives w.r.t. b, w to zero:

0

a—wJ(w,b;a) = w —Za;y,-x,- =0,
aJwboz = Za =0
8b - .yl - .

@ Note that the bias term b dropped out but has produced a “global”
constraint on a.

[Source: G. Shakhnarovich]
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Solving for

N N
w(a) = Z QyiXi, Z QY = 0.
i=1 i=1

Representer theorem!

@ Now can substitute this solution into

N
{aiZO,r%?i,-y,-:o} {;|w(a)||2 + Z «; [1 —yi(b(a) + w(a)Tx,-)] }

i=1
N N
-
= max g o — = g QO YiYiX] X;
{@i>0,>"; ajyi=0} | “ 7 ' 2 & 1 R
1= 1=

[Source: G. Shakhnarovich]
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Max-margin and quadratic programming

@ We started by writing down the max-margin problem and arrived at the dual
problem in a:

Za, — Zaajy,ij X

IJ 1
N
subject to » _ajy; =0, a; > O forall i=1,...,N.
i=1

@ Solving this quadratic program yields o*.

@ We substitute o™ back to get w:

N
W = w(a®) = ) ajyx;
i=1

[Source: G. Shakhnarovich]
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Maximum margin decision boundary

N
W= w(a®) = ) ajyx;
i=1

@ Suppose that, under the optimal solution, the margin (distance to the
boundary) of a particular x; is

@ Then, necessarily, af = 0 = not a support vector.
@ The direction of the max-margin decision boundary is

~ *
w = E Q; YiXi.

ar>0

@ b is set by making the margin equidistant to two classes.

[Source: G. Shakhnarovich]
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Support vectors

w = E QjYiX;.

a;>0

@ Given a test example x, it is classified by
y = sign (B + WTX)

= sign (Z) + (Z a,-y,-x,-)Tx>

;>0

= sign (BJr Z a,-y,-x,-Tx>

;>0

@ The classifier is based on the expansion in terms of dot products of x with
support vectors.

[Source: G. Shakhnarovich]
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SVM classification

1/ wll 1/w]
[Source: G. Shakhnarovich]
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SVM: summary so far

@ We started with argmax { Ty Mini i (w'x; + b) }
w,b

@ In linearly separable case, we get a quadratic program

N T

Zoz,- - 5 Z a;ozjy,-ij,-ij

i=1 ij=1
N

subject toZa,-y,- =0, a;>0foralli=1,... N.
i=1

@ Solving it for a we get the SVM classifier
y = sign <B+ Z a,-y;x,Tx> .
a;i>0

[Source: G. Shakhnarovich]
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SVM classification

I
' 1
! 1
\

1wl

@ Only support vectors (points with «; > 0) determine the boundary
[Source: G. Shakhnarovich]

Raquel Urtasun (TTI-C) Visual Recognition Jan 24, 2012



Non-separable case

@ Not linearly separable data: we can no longer satisfy y; (w’x; + b) > 1 for
all /.

[Source: G. Shakhnarovich]
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Non-separable case

@ Not linearly separable data: we can no longer satisfy y; (w’x; + b) > 1 for
all /.

@ We introduce slack variables &; > 0:

yi(b+w'x)—=1+¢& > 0.

@ Whenever the original constraint is satisfied, & = 0.

[Source: G. Shakhnarovich]
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Non-separable case

@ Not linearly separable data: we can no longer satisfy y; (w’x; + b) > 1 for
all /.

@ We introduce slack variables &; > 0:
yi(b+w'x)—=1+¢& > 0.

@ Whenever the original constraint is satisfied, & = 0.

@ The updated objective:

N
1
g+ €36

@ The parameter C determines the penalty paid for violating margin
constraints.

@ This is applicable even when the data are separable!

[Source: G. Shakhnarovich]
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Non-separable case: solution

N
T
"u”EHWH + C;&-

@ We can solve this using Lagrange multipliers
e Introduce additional multipliers for the &s, as they have to be positive.

@ The resulting dual problem:
N 1N
.= vvivx ] x;
max z;a, 5 Zla,ajy,ij, X;
i= ij=

N
subject to Y ~aiy; =0, 0< o < Cforall i=1,..., N.
i=1

[Source: G. Shakhnarovich]
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SVM with slack variables

a=00<¢<1

a<CE=0

D
A

© /+ +
+ 0<a l,' +
+
a=0C¢ ®K)<_$_|<C‘T(:U
+
0<a<C¢ !+ 44
+
/ +
a=C¢>1

1wl
@ Support vectors: points with a > 0

@ If 0 < a < C: SVs on the margin, £ = 0.
@ If 0 < o= C: SVs over the margin, either misclassified (£ > 1) or not

(0<&<).
[Source: G. Shakhnarovich|
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SVM and regularization

N
1
m“in §||WH2 + C;f;

@ C is a regularization parameter, controlling penalty for imperfect fit to
training labels.

@ Larger C = more reluctant to make mistakes

@ How do we select value of C?

[Source: G. Shakhnarovich]
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SVM and regularization

N
1
m“in §||WH2 + C;f;

@ C is a regularization parameter, controlling penalty for imperfect fit to
training labels.

@ Larger C = more reluctant to make mistakes

@ How do we select value of C? Cross validation is a common practical way to
do that.

[Source: G. Shakhnarovich]
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Loss in SVM

. N
@ Loss is measured as ;" &

@ This surrogate loss is known as hinge loss

Lot

v

[Source: G. Shakhnarovich]
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Nonlinear features

@ We can move to nonlinear classifiers by mapping data into nonlinear feature
space.

o : [xl,xz]T — [xf,\@xlxz,xzz]T

[Source: G. Shakhnarovich]
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Nonlinear features

@ We can move to nonlinear classifiers by mapping data into nonlinear feature
space.

space z = ¢(x):

2 2

X X V4 Z

1 2 1 3
S+ 5=c=> Ss+5=c
2 B 2 B

[Source: G. Shakhnarovich]
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Representer theorem

@ Consider the optimization problem

w* = argmin ||w|? sty (w'x;+b)>1Vi
w
@ Theorem: the solution can be represented as
N
wh = Za,-x,-
i=1

@ This is the “magic” behind Support Vector Machines!

[Source: G. Shakhnarovich]
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Example of nonlinear mapping

@ Consider the mapping: ¢ : [x1,x2]7 — [1, V2x1, V2x2, X2, x3, V/2x1%0] 7.

@ The (linear) SVM classifier in the feature space:
y = sign (E + Y aiYi¢(Xi)T¢(X))
;>0
@ The dot product in the feature space:
(b(x)T(b(z) = 14+2x21 +2x020 + X12212 + x22222 + 2X1X021 22
— (1+x72)".

[Source: G. Shakhnarovich]
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Dot products and feature space

@ We defined a non-linear mapping into feature space
b [xi,x]” — [1, V2x1, V2x0, X2, X3, \@xlxz]T
and saw that ¢(x)"¢(z) = K(x, z) using the kernel
K(x,z) = (1+ xTz)2 .

@ l.e., we can calculate dot products in the feature space implicitly, without
ever writing the feature expansion!

[Source: G. Shakhnarovich|
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The kernel trick

@ Replace dot products in the SVM formulation with kernel values.

@ The optimization problem:

N N
1
max E «; ~3 g ajajyiyi K(xi, %))
i=1 ij=1

o Need to compute the kernel matrix for the training data

@ The classifier:

y = sign (B +> Oéi)/iK(Xiax)>

a;i>0

o Need to compute K(x;,x) for all SVs x;.

[Source: G. Shakhnarovich]
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Mercer's kernels

@ What kind of function K is a valid kernel, i.e. such that there exists a
feature space ®(x) in which K(x,z) = ¢(x)"¢(z)?

@ Theorem due to Mercer (1930s): K must be

e Continuous;
e symmetric: K(x,z) = K(z,x);
e positive definite: for any Xy, ..., Xy, the kernel matrix

must be positive definite.

[Source: G. Shakhnarovich]
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Some popular kernels

@ The linear kernel:
K(x,z) = x"z.

This leads to the original, linear SVM.
@ The polynomial kernel:
K(x,z; ¢,d) = (c+x"z)9.

We can write the expansion explicitly, by concatenating powers up to d and
multiplying by appropriate weights.

[Source: G. Shakhnarovich|
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Example: SVM with polynomial kernel

linear 274 order polynomial
(using C < 0)

215 -1 -5 0 05 1 15 2 As = 05 0 o5 i 15 2

4™ order polynomial 8 order polynomial
[Source: G. Shakhnarovich]
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Radial basis function kernel

@ The RBF kernel is a measure of similarity between two examples.
e The feature space is infinite-dimensional!

@ What is the role of parameter o7
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Radial basis function kernel

@ The RBF kernel is a measure of similarity between two examples.
e The feature space is infinite-dimensional!

@ What is the role of parameter o7 Consider o — 0.

[Source: G. Shakhnarovich]
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Radial basis function kernel

@ The RBF kernel is a measure of similarity between two examples.
e The feature space is infinite-dimensional!
@ What is the role of parameter o7 Consider o — 0.

1 ifx=x;,

K(xi,x;0) — )
0 if x # x;.

@ All examples become SVs = likely overfitting.

[Source: G. Shakhnarovich]
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SVM with RBF (Gaussian) kernels

e Data are linearly separable in the (infinite-dimensional) feature space

@ We don’t need to explicitly compute dot products in that feature
space — instead we simply evaluate the RBF kernel.
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@ Two main ideas:

e large margin classification,
o the kernel trick.

o Complexity of classifier depends on the number of SVs.
o Controlled indirectly by C and kernel parameters.
@ One of the most successful ML techniques applied to computer vision!
o Recommended off-the-shelf package: SVM/ght
http://svmlight. joachims.org

[Source: G. Shakhnarovich]
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SVM for Visual Recognition

© Define your representation for each example.

@ Select a kernel function.

© Compute pairwise kernel values between labeled examples

@ Use this kernel matrix to solve for SVM support vectors & weights.

© To classify a new example: compute kernel values between new input and
support vectors, apply weights, check sign of output.

[Source: K. Grauman]
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Multi-class SVMs

Achieve multi-class classifier by combining a number of binary classifiers
@ One vs. all

e Training: learn an SVM for each class vs. the rest
o Testing: apply each SVM to test example and assign to it the class of
the SVM that returns the highest decision value

@ One vs. one

e Training: learn an SVM for each pair of classes
o Testing: each learned SVM votes for a class to assign to the test
example

[Source: K. Grauman]
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Which detec

Window-based

2

=\

Boosting + face
detection

NN + scene Gist SVM + person
classification detection

Viola & Jones
e.g., Hays & Efros e.g., Dalal & Triggs

BOW, pyramids ISM: voting deformable parts poselets
e.g., [Grauman et al.] e.g., [Leibe & Shiele] e.g., [Felzenszwalb et al.]  [Bourdev et al.]
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Raquel Urtasun

Viola-Jones face detector

AcCEPTED CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION 2001

Rapid Object Detection using a Boosted Cascade of Simple

Features
Paul Viola Michael Jones
viclaf@merl.com mjones@crl.dec.com
Mitsubishi Electric Research Labs Compaq CRL
201 Broadway, 8th FL One Cambridge Center
Cambridge, MA 02139 Cambridge. MA 02142

Abstract

This paper describes a machine learning approach for vi-
sual object detection which is capable of processing images
extremely rapidly and achieving high detection rates. This
work is distinguished by three key contributions. The first
15 the introduction of a new image representation called the
“Integral Image” which allows the features used by our de-
tector to be computed very quickly. The second is a learning
algorithm, based on AdaBoost, which selects a small nium-

Visual Recognition

tected at 15 frames per second on a conventional 700 MHz
Intel Pentium III. In other face detection systems, auxiliary
information, such as image differences in video sequences,
or pixel color in color images, have been used to achieve
high frame rates. Our system achieves high frame rates
working only with the information present in a single grey
scale image. These alternative sources of information can
also be integrated with our system to achieve even higher
frame rates.

There are three main contributions of our object detec-

Jan 24, 2012



@ Represent local texture with rectangular features within window of interest

Use integral images to compute the features efficiently

Select discriminative features to be weak classifiers

Use boosted combination of them as final classifier

@ Form a cascade of such classifiers, rejecting clear negatives quickly
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Efficient computation of the features

@ Rectangular filters: Feature output is the difference between adjacent
regions

@ Can be computed efficiently with integral images: any sum can be computed
in constant time

@ Cumulative row sum s(x,y) =s(x — 1,y) + i(x,y)
@ Integral image: ii(x,y) = ii(x,y — 1) + s(x, y)

@ Avoid scaling images: scale features directly for same cost.

ii(x, y-1)
s(x-1,y) | =

i(x, y)
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Representation

@ Rectangular filters: difference between adjacent regions

@ Consider all possible filter parameters: position, scale, and type. 180,000
features for 24 x 24 window.

@ Which subset of these features should we use?

@ Use AdaBoost to select the informative features and to form the classifier

= gl |
—

~ o LN
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Boosting: intuition

Want to pick weak classifiers that contribute something to the ensemble.

o
® o
Greedy algorithm: form=1,... .M
[ - @ Pick a weak classifier h,
H ® @ Adjust weights: misclassified
o examples get “heavier”
H ® «py, set according to weighted
[ | error of hy,

[Source: G. Shakhnarovich]
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Boosting: intuition

Want to pick weak classifiers that contribute something to the ensemble.

o
P o
Seeell Greedy algorithm: form=1,... . M
I @ Pick a weak classifier hy,
o u .9 @ Adjust weights: misclassified
o examples get “heavier”
[ @ «p, set according to weighted
[ ] error of hy,
® o

[Source: G. Shakhnarovich]
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Boosting: intuition

Want to pick weak classifiers that contribute something to the ensemble.

°
o o
DTN Greedy algorithm: form=1,... .M
| ‘-""--._.__ @ Pick a weak classifier h,,
" om BRRDIR e Adjust weights: misclassified
- examples get “heavier”
- ® «py, set according to weighted

] . . error of hy,

[Source: G. Shakhnarovich]
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Boosting: intuition

Want to pick weak classifiers that contribute something to the ensemble.

o
\‘ ® g
' Greedy algorithm: form=1,... . M
| ‘\‘ @ Pick a weak classifier A,
.‘\‘ u ° @ Adjust weights: misclassified
¥ = examples get “heavier”

@ «p, set according to weighted

A
LY
- Y . error of hpy
‘
1
@
'

[Source: G. Shakhnarovich]
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Boosting: intuition

Want to pick weak classifiers that contribute something to the ensemble.

* .
A} L ]
\‘ Greedy algorithm: form=1,... . M
. \ @ Pick a weak classifier h,,
*
" . . ‘ @ Adjust weights: misclassified
‘ . "
' examples get “heavier
A} . .
. ' @ «, set according to weighted

error of hy,

L
. .
1
L)
L3

[Source: G. Shakhnarovich]
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Boosting: intuition

Want to pick weak classifiers that contribute something to the ensemble.

Greedy algorithm: form=1,... . M
@ Pick a weak classifier A,
@ Adjust weights: misclassified
examples get “heavier”
@ «, set according to weighted
error of hy,

[Source: G. Shakhnarovich]
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Boosting: intuition

Want to pick weak classifiers that contribute something to the ensemble.

Greedy algorithm: form=1,... . M
@ Pick a weak classifier h,

[ . @ Adjust weights: misclassified
: examples get “heavier”

@ «, set according to weighted
error of hy,

o ©
[Source: G. Shakhnarovich]
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Boosting: training

@ Initially, weight each training example equally
@ In each boosting round:

e Find the weak learner that achieves the lowest weighted training error
o Raise weights of training examples misclassified by current weak learner

@ Compute final classifier as linear combination of all weak learners (weight of
each learner is directly proportional to its accuracy)

@ Exact formulas for re-weighting and combining weak learners depend on the
particular boosting scheme (e.g., AdaBoost)

[Source: S. Lazebnik]
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AdaBoost: algorithm summary

Q Initialize weights: W,-(O) =1/N

Q lteratefor m=1,..., M:

o Find (any) “weak” classifier hp, that attains weighted error

1 N 1
€m = 5 <1 - Z W,-(ml)y,-hm(x;)> < 5
i=1

o Let ap, = %Iogl;ﬂ.

o Update the weights and normalize so that >, W,-(m) =1

1

wm — 2 pm=1) g—amyihm(x)
! Z

1 )

© The combined classifier: sign (Z%:l amhm(x))

[Source: G. Shakhnarovich|
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Boosting: pros and cons

Advantages

@ Integrates classification with feature selection: only one feature in VJ
detector

@ Complexity of training is linear in the number of training examples
@ Flexibility in the choice of weak learners, boosting scheme
@ Testing is fast
@ Easy to implement
Disadvantages
@ Needs many training examples

@ Often found not to work as well as SVMs, GPs, etc.
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Viola Jones Adaboost

@ Select the single feature and threshold that best separates positive (faces)
and negative (nonfaces) training examples, in terms of weighted error.

@ Weak classifier is defined as

hix) {+1 if f:(x) > 6;

—1 Otherwise
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s Given example images (z1,31),.... (n.yn) where y; = 0,1 for negative and positive examples
respectively.

e Initialize weights w; = zm zy fory; = 0,1 respectively, where m and [ are the number of negatives
and positives respectively.

e Fort =1,..., "

1. Normalize the weights,
W i

Wi
E o1 W
so that 1w, is a probability distribution.
. For each feature, j, train a classifier /2; which is restricted to using a single feature. The error is
evaluated with respect to wy, e; = 3, w; |hj(z;) — yil.

(5]

3. Choose the classifier, h; . with the lowest error ¢; .

4. Update the weights:
Wysli = 'm,_‘,-ﬁfl_e‘

where e; = 0 if example z; is classified correctly, e; = 1 otherwise, and 3 = =

o The final strong classifier is:

h(z) = { 1 Z: Lothi(z) = %Z' Lo

0 otherwise

where a; = log Jlf

Visual Recognition




Cascading Classifiers

@ Form a cascade with low false negative rates early on

@ Apply less accurate but faster classifiers first to immediately discard windows
that clearly appear to be negative

All sub-windows,
multiple scales More features,
lower false positive rates

Detection at a
sub-window

Stage 1
classifier

Stage 2
classifier

Stage 3
classifier

ll\lcm-face lNon-fa:e lNon-face

Rejected sub-windows

[K. Grauman]
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Training the cascade

@ Set target detection and false positive rates for each stage
@ Keep adding features until its target rates have been met

o Low AdaBoost threshold to max detection (don't minimize total
classification error)
o Test on a validation set

@ If the overall false positive rate is not low enough, then add another stage

@ Use false positives from current stage as the negative training examples for
the next stage
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First classifier

@ Only uses 2 features

@ Detects 100% of the faces, and only 40% false positives.

-

o
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Viola Jones detector

@ Train with 5K positives, 350M negatives
@ Real-time detector using 38 layer cascade 6061 features in all layers

@ Code: http://www.intel.com/technology/computing/opencv/

Train cascade of
classifiers with
AdaBoost

=
Selected features,
thresholds, and weights

[K. Grauman]
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http://www.intel.com/technology/computing/opencv/

Viola Jones Summary

@ A seminal approach to real-time object detection
@ Training is slow, but detection is very fast
@ Key ideas

@ Integral images for fast feature evaluation
@ Boosting for feature selection
© Attentional cascade of classifiers for fast rejection of non-face windows
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Also works for profile faces

[Source: K. Grauman]
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Example using Viola-Jones detector

@ Frontal faces detected and then tracked, character names inferred with
alignment of script and subtitles, [Everingham et al, BMVC 2006]

[Source: K. Grauman]
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Commercial Applications

[Source: S. Lazebnik]
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http://www.apple.com/ilife/iphoto/

Interesting cases....

[Source: S. Lazebnik]
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http://www.apple.com/ilife/iphoto/

Can even recognize cats

[Source: S. Lazebnik]
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http://www.maclife.com/article/news/iphotos_faces_recognizes_cats

Scoring a sliding window detector

@ Detection is correct if the intersection of the bounding boxes, divided by

their union, is > 50%.
area(B, N Bg)

 area(B, U By;)

[Source: K. Grauman]
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P rmance

@ If the detector can produce a confidence score on the detections, then we
can plot the rate of true vs. false positives as a threshold on the confidence
is varied.

@ Plot precision-recall curves

@ Plot ROC curves.
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Window-based detection

Strengths
@ Simple detection protocol to implement
@ Good feature choices critical
@ Past successes for certain classes
Limitations

@ High computational complexity: For example: 250,000 locations x 30
orientations x 4 scales =30,000,000 evaluations!

@ If training binary detectors independently, means cost increases linearly with
number of classes

@ With so many windows, false positive rate better be low

[Source: K. Grauman]
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More Limitations ...

@ Not all objects are box shaped: Non-rigid, deformable objects not captured
well with representations assuming a fixed 2d structure; or must assume
fixed viewpoint

[Source: K. Grauman]

Raquel Urtasun (TTI-C) Visual Recognition Jan 24, 2012



More Limitations

@ Objects with less-regular textures not captured well with holistic
appearance-based descriptions

[Source: K. Grauman]
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Even more...

@ If considering windows in isolation, context is lost

b

L
| N |
1 RN | O | PR |
TR 1
RIRHOCE 100

|

B

[Source: K. Grauman]
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Ore...

@ In practice, often entails large, cropped training set (expensive)

@ Requiring good match to a global appearance description can lead to
sensitivity to partial occlusions

[Source: K. Grauman]
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@ Basic pipeline for window-based detection

o Model/representation/classifier choice
e Sliding window and classifier scoring

@ Discriminative classifiers for window-based representations:

e Boosting: Viola-Jones face detector example
o Nearest neighbors: Scene recognition example
o Support vector machines: HOG person detection example

@ Pros and cons of window-based detection

[K. Grauman]
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