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Instance-level recognition
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Instance recognition

Motivation – visual search

Visual words: quantization, inverted index, bags of words

Spatial verification: RANSAC, Hough

Other text retrieval tools: tf-idf

Example applications
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Recognizing or retrieving specific objects

Example: Visual search in feature films

[Source: J. Sivic]
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Recognizing or retrieving specific objects

Example: Search photos on the web for particular places

[Source: J. Sivic]
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Why is it difficult?

Want to find the object despite possibly large changes in scale, viewpoint,
lighting and partial occlusion.

We can’t expect to match such varied instances with a single global
template...

[Source: J. Sivic]
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Indexing local features

Each patch / region has a descriptor, which is a point in some
high-dimensional feature space (e.g., SIFT)

[Source: K. Grauman]
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Indexing local features

It can have millions of features to search.

[Source: K. Grauman]
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Indexing local features: inverted file index

For text documents, an efficient way to find all pages on which a word
occurs is to use an index.

We want to find all images in which a feature occurs.

To use this idea, well need to map our features to visual words.

Why?

[Source: K. Grauman]
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Indexing local features: inverted file index

Map high-dimensional descriptors to tokens/words by quantizing the feature
space.

Quantize via clustering, let cluster centers be the prototype words.

Determine which word to assign to each new image region by finding the
closest cluster.

[Source: K. Grauman]
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Visual words

Each group of patches
belongs to the same
visual word.
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Visual vocabulary formation issues

Vocabulary size, number of words.

Sampling strategy: where to extract features?

Clustering / quantization algorithm.

Unsupervised vs. supervised.

What corpus provides features (universal vocabulary?)
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Inverted File Index

Database images are loaded into the index mapping words to image numbers
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Inverted File Index

New query image is mapped to indices of database images that share a word.
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What else do we need to do?

How to summarize the content of an entire image? And gauge overall
similarity?

How large should the vocabulary be? How to perform quantization
efficiently?

Is having the same set of visual words enough to identify the object/scene?
How to verify spatial agreement?

How to score the retrieval results?
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Relation to Documents
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Bags of visual words

Summarize entire image based on its distribution (histogram) of word
occurrences.

Analogous to bag of words representation commonly used for documents.
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Comparing visual Words

Rank frames by normalized scalar product between their (possibly weighted)
occurrence counts—nearest neighbor search for similar images

sim(dj , q) =
< dj , q >

||dj || · ||q||
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What else do we need to do?

How to summarize the content of an entire image? And gauge overall
similarity?

How large should the vocabulary be? How to perform quantization
efficiently?

Is having the same set of visual words enough to identify the object/scene?
How to verify spatial agreement?

How to score the retrieval results?
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Vocabulary Trees

Hierarchical clustering for large vocabularies, [Nister et al., 06].

k defines the branch factor (number of children of each node) of the tree.

First, an initial k- means process is run on the training data, defining k
cluster centers.

The same process is then recursively applied to each group.

The tree is determined level by level, up to some maximum number of levels
L.

Each division into k parts is only defined by the distribution of the descriptor
vectors that belong to the parent quantization cell.

Raquel Urtasun (TTI-C) Visual Recognition Jan 24, 2012 21 / 105



Vocabulary Trees

Hierarchical clustering for large vocabularies, [Nister et al., 06].

k defines the branch factor (number of children of each node) of the tree.

First, an initial k- means process is run on the training data, defining k
cluster centers.

The same process is then recursively applied to each group.

The tree is determined level by level, up to some maximum number of levels
L.

Each division into k parts is only defined by the distribution of the descriptor
vectors that belong to the parent quantization cell.

Raquel Urtasun (TTI-C) Visual Recognition Jan 24, 2012 21 / 105



Vocabulary Trees

Hierarchical clustering for large vocabularies, [Nister et al., 06].

k defines the branch factor (number of children of each node) of the tree.

First, an initial k- means process is run on the training data, defining k
cluster centers.

The same process is then recursively applied to each group.

The tree is determined level by level, up to some maximum number of levels
L.

Each division into k parts is only defined by the distribution of the descriptor
vectors that belong to the parent quantization cell.

Raquel Urtasun (TTI-C) Visual Recognition Jan 24, 2012 21 / 105



Vocabulary Trees

Hierarchical clustering for large vocabularies, [Nister et al., 06].

k defines the branch factor (number of children of each node) of the tree.

First, an initial k- means process is run on the training data, defining k
cluster centers.

The same process is then recursively applied to each group.

The tree is determined level by level, up to some maximum number of levels
L.

Each division into k parts is only defined by the distribution of the descriptor
vectors that belong to the parent quantization cell.

Raquel Urtasun (TTI-C) Visual Recognition Jan 24, 2012 21 / 105



Vocabulary Trees

Hierarchical clustering for large vocabularies, [Nister et al., 06].

k defines the branch factor (number of children of each node) of the tree.

First, an initial k- means process is run on the training data, defining k
cluster centers.

The same process is then recursively applied to each group.

The tree is determined level by level, up to some maximum number of levels
L.

Each division into k parts is only defined by the distribution of the descriptor
vectors that belong to the parent quantization cell.

Raquel Urtasun (TTI-C) Visual Recognition Jan 24, 2012 21 / 105



Vocabulary Trees

Hierarchical clustering for large vocabularies, [Nister et al., 06].

k defines the branch factor (number of children of each node) of the tree.

First, an initial k- means process is run on the training data, defining k
cluster centers.

The same process is then recursively applied to each group.

The tree is determined level by level, up to some maximum number of levels
L.

Each division into k parts is only defined by the distribution of the descriptor
vectors that belong to the parent quantization cell.

Raquel Urtasun (TTI-C) Visual Recognition Jan 24, 2012 21 / 105



Constructing the tree

Offline phase: hierarchical clustering.

Vocabulary Tree 
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Parsing the tree

Online phase: each descriptor vector is propagated down the tree by at each
level comparing the descriptor vector to the k candidate cluster centers
(represented by k children in the tree) and choosing the closest one.

The tree directly defines the visual vocabulary and an efficient search
procedure in an integrated manner.

Every node in the vocabulary tree is associated with an inverted file.

The inverted files of inner nodes are the concatenation of the inverted files
of the leaf nodes (virtual).
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Vocabulary size

Complexity: branching factor and number of levels

Most important for the retrieval quality is to have a large vocabulary
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Visual words/bags of words

Good

flexible to geometry / deformations / viewpoint

compact summary of image content

provides vector representation for sets

very good results in practice

Bad

background and foreground mixed when bag covers whole image

optimal vocabulary formation remains unclear

basic model ignores geometry must verify afterwards, or encode via features
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What else do we need to do?

How to summarize the content of an entire image? And gauge overall
similarity?

How large should the vocabulary be? How to perform quantization
efficiently?

Is having the same set of visual words enough to identify the object/scene?
How to verify spatial agreement?

How to score the retrieval results?
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Spatial Verification

Both image pairs have many visual words in common

Only some of the matches are mutually consistent

[Source: O. Chum]
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Spatial Verification

Two basic strategies

RANSAC

Generalized Hough Transform
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Illustration: Least Squares Fit

[Source: K. Grauman]
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Illustration: Least Squares Fit

[Source: K. Grauman]

Raquel Urtasun (TTI-C) Visual Recognition Jan 24, 2012 29 / 105



RANSAC

RANdom Sample Consensus.

Approach: we want to avoid the impact of outliers, so lets look for inliers,
and use those only.

Intuition: if an outlier is chosen to compute the current fit, then the
resulting line wont have much support from rest of the points.
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RANSAC: General form

Loop

Randomly select a seed group of points on which to base transformation
estimate

Compute model from seed group

Find inliers to this transformation

If the number of inliers is sufficiently large, re-compute estimate of model on
all of the inliers

Keep the model with the largest number of inliers
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RANSAC for line fitting

Repeat:

Draw s points uniformly at random

Fit line to these s points

Find inliers to this line among the remaining points (i.e., points whose
distance from the line is less than t)

If there are d or more inliers, accept the line and refit using all inliers

[S. Lazebnik]

Raquel Urtasun (TTI-C) Visual Recognition Jan 24, 2012 32 / 105



Example of line fitting
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Example of line fitting
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RANSAC for line fitting example

1 Randomly select minimal
subset of points

2 Hypothesize a model

3 Compute error function

4 Select points consistent
with model

5 Repeat hypothesize and
verify loop

[Source: R. Raguram]
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What about fitting a transformation?

Select one match, count inliers
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RANSAC

Typically sort by BoW similarity as initial filter

Verify by checking support (inliers) for possible transformations

Success if find a transformation with > N inlier correspondences
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Fitting an affine transformation

Approximates viewpoint changes for roughly planar objects and roughly
orthographic cameras

Affine is p′ = Ap̄, with A an arbitrary 2× 3 matrix, i.e.,

p′ =

[
a00 a01 a02
a10 a11 a12

]
p̄

Parallel lines remain parallel under affine transformations.

Raquel Urtasun (TTI-C) Visual Recognition Jan 24, 2012 37 / 105



Fitting an affine transformation

For all points 
...

xi yi 0 0 1 0
0 0 xi yi 0 1

...


︸ ︷︷ ︸

P


a00
a01
a02
a10
a11
a12


︸ ︷︷ ︸

a

=


...
x ′i
y ′i
...


︸ ︷︷ ︸

P′

Least-squares fitting
min

a00,··· ,a12
||Pa− P′||22
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Ransac Verification

[Source: K. Grauman]
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Spatial Verification

Generalized Hough Transform

Its not feasible to check all combinations of features by fitting a model to
each possible subset.

First, cycle through features, cast votes for model parameters: location,
scale, orientation of the model object.

Look for model parameters that receive a lot of votes, and verify them.

Noise & clutter features will cast votes too, but their votes should be
inconsistent with the majority of good features.
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Generalized Hough Transform

If we use scale, rotation, and translation invariant local features, then each
feature match gives an alignment hypothesis (for scale, translation, and
orientation of model in image).

[Source: S. Lazebnik]
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Generalized Hough Transform

A hypothesis generated by a single match its in general unreliable,

Let each match vote for a hypothesis in Hough space.

[Source: K. Grauman]
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[Lowe 04]

Training phase: For each model feature, record 2D location, scale, and
orientation of model (relative to normalized feature frame)

Test phase: Let each match between a test SIFT feature and a model
feature vote in a 4D Hough space

Use broad bin sizes of 30 degrees for orientation, a factor of 2 for scale,
and 0.25 times image size for location
Vote for two closest bins in each dimension

Find all bins with at least three votes and perform geometric verification

Estimate least squares affine transformation
Search for additional features that agree with the alignment
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Recognition Example
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Problems of Voting

Noise/clutter can lead to as many votes as true target

Bin size for the accumulator array must be chosen carefully

In practice, good idea to make broad bins and spread votes to nearby bins,
since verification stage can prune bad vote peaks
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Comparison Verification

Generlized Hough Transform

Each single correspondence votes for all consistent parameters

Represents uncertainty on the parameter space

Complexity: Beyond 4D space is impractical

Can handle high outlier/inlier ratio

Ransac

Minimal subset of correspondences to estimate the model, then count inliers

Represent uncertainty in image space

Must look at all points to check for inliers at each iteration

Scales better with high dimensionality of parameter space.
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Scoring retrieval

[Source: O. Chum]
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More from NLP community

tf-idf weighting

Term frequency – inverse document frequency

Describe frame by frequency of each word within it, downweight words that
appear often in the database

ti =
nid
nd

log
N

ni

nid : number of occurrences of word i in document d

nd : number of words in document d

N : total number of documents in the dataset

ni : number of documents word i occurs in (in the whole dataset)
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Video Google System

Collect all words within query region

Inverted file index to find relevant frames

Compare word counts

Spatial verification
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[Philbin 07]

Object retrieval with large vocabularies and fast spatial matching

Results from 5k Flickr images (demo available for 100k set)
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Recognition via feature matching + spatial verification

Pros:

Effective when we are able to find reliable features within clutter

Great results for matching specific instances

Cons:

Scaling with number of models

Spatial verification as post-processing – expensive for large-scale problems

Not suited for category recognition
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Summary

Matching local invariant features

Useful not only to provide matches for multi-view geometry, but also to
find objects and scenes.

Bag of words representation: quantize feature space to make discrete set of
visual words

Summarize image by distribution of words
Index individual words

Inverted index: pre-compute index to enable faster search at query time

Recognition of instances via alignment: matching local features followed by
spatial verification

Robust fitting : RANSAC, Generalized Hough Transform
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Category-level recognition
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General recognition problem

Raquel Urtasun (TTI-C) Visual Recognition Jan 24, 2012 55 / 105



Challenges

Realistic scenes are crowded, cluttered, have overlapping objects
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Recognition framework

Build/train object model

Choose a representation
Learn or fit parameters of model / classifier

Generate candidates in new image: only one for global scene classifiers

Score the candidates
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Representation Choice

Models can be divided on

Window-based models: reason about the full object

Part-based models: reason about parts and compose the information
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Window-based model

1 Holistic: vector of pixel intensities –template matching

2 Holistic: grayscale/color histogram

Pixel-based representations sensitive to small shifts

Color or grayscale-based appearance description can be sensitive to
illumination and intra-class appearance variation

Possible solution: Consider edges, contours, and (oriented) intensity
gradients
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Window-based model

1 Summarize local distribution of gradients with histogram

Locally orderless: offers invariance to small shifts and rotations

Contrast-normalization: try to correct for variable illumination
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Which Classifier to use?

So many choices

Nearest Neighbors (NN)

Support Vector Machines (SVMs)

Gaussian processes (GPs)

Boosting

Neural networks

Conditional Random Fields (CRFs)

etc
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Recognition framework

Build/train object model

Choose a representation
Learn or fit parameters of model / classifier

Generate candidates in new image: only one for global scene classifiers

Score the candidates
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Generating and scoring candidates

Try every possible location: not very efficient.

Work at different scales
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Sliding Window Recap

[Source: K. Grauman]
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Choices and Issues

What classifier?

Generative or discriminative model?

Data resources – how much training data?

How is the labeled data prepared?

Training time allowance

Test time requirements – real-time?

Fit with the representation
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Choices and Issues

What classifier?

What features or representations?

How to make it affordable?

What categories are amenable?

Similar to specific object matching, we expect spatial layout to be fairly
rigidly preserved.
Unlike specific object matching, by training classifiers we attempt to
capture intra-class variation or determine discriminative features.
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What categories work well with sliding window?
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Which detectors?

Window-based

Part-based

BOW, pyramids ISM: voting deformable parts poselets
e.g., [Grauman et al.] e.g., [Leibe & Shiele] e.g., [Felzenszwalb et al.] [Bourdev et al.]
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Example: Global representation
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Where was this taken in the world?
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Distribution of images

Large collection of images from Flickr

6+ million geotagged photos by 109,788 photographers
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Representation

Color Histograms – L*A*B* 4x14x14 histograms, total of 784 dimensions.

Texton Histograms – 512 entry, bank of filters with 8 orientations, 2 scales,
and 2 elongations. For each image we then build a 512 dimensional
histogram by assigning each pixel’s set of filter responses to the nearest
texton dictionary entry.

Line Features – Histograms of straight line stats (line angles and line
lenghts) to distinguishing between natural and man-made.

Geometric context – compute the geometric class probabilities for image
regions.

Gist scene descriptor – 5 by 5 spatial resolution where each bin contains that
image regions average response to steerable filters at 6 orientations and 4
scales.
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Spatial Envelope Theory of Scene Representation

[Source: A. Oliva]
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Spatial Envelope Theory of Scene Representation

[Source: A. Oliva]
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Classifier

Assign label of nearest training data point to each test data point

Voronoi partitioning of feature space for 2-category 2D data
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Classifier improvement

For a new point, find the k closest points from training data

Labels of the k points vote to classify
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Qualitative Results
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Qualitative Results
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Results: size matters
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Results: features

Multi-features: We scale each features distances so that their standard
deviations are roughly the same and thus they influence the ordering of
scene matches equally.
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NN

Pros:

Simple to implement

Flexible to feature / distance choices

Naturally handles multi-class cases

Can do well in practice with enough representative data

Cons:

Large search problem to find nearest neighbors, e.g., KD-trees, hashing, etc.

Storage of data: non-parametric, we keep everything.

Must know we have a meaningful distance function: metric learning

Raquel Urtasun (TTI-C) Visual Recognition Jan 24, 2012 84 / 105



Example: Dalal & Triggs
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Task to solve

Pedestrian detection
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Representation

Histogram of gradients: [Schiele & Crowley, Freeman & Roth]

Code available: http://pascal.inrialpes.fr/soft/olt/
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Linear Classifier

Find linear function to separate positive and negative examples

f (x) = wTx + b

f (x) > 0 if x is a positive example.

f (x) < 0 if x is a positive example.
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Learning Setup

Input x ∈ <D , and outputs yi ∈ {−1, 1}

General setup: training set sampled i.i.d. from p(x, y), we want to find
parametric predictor f ∈ F that minimizes

R(f ) = Ex0,y0 [L(f (x0; Θ), y0)]

with L the loss

Regularized ERM:

θ̂ = argmin
θ

N∑
i=1

L(f (xi ; θ), yi ) + R(θ)

Loss L: square loss (ridge regression, GP), hinge (SVM), log loss (logistic
regression)
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Linear Classifier

Discriminative classifier based on optimal separating hyperplane

Maximize the margin between the positive and negative training examples
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Support Vector machines

Maximize the margin between the positive and negative training examples

Positive yi = 1: wTxi + b ≥ 1

Negative yi = −1: wTxi + b ≤ 1

Support vector: xi ·w + b =??1

Point line distance: y(wT x+b)
||w||

For support vectors: 1
||w||

Margin M = 2
||w||
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Find the max margin hyperplane

Maximize the margin and classify all the points

Quadratic optimization problem

min
w

1

2
‖w‖2

subject to yi (b + wTxi )− 1 ≥ 0, i = 1, . . . ,N.

We will associate with each constraint the loss

max
α≥0

α
[
1− yi (b + wTxi )

]
=

{
0, if yi

(
w0 + wTxi

)
− 1 ≥ 0,

∞ otherwise (constraint violated).

We can reformulate our problem now:

min
w

{
1

2
‖w‖2 +

N∑
i=1

max
αi≥0

αi

[
1− yi (b + wTxi )

]}
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