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Instance-level recognition
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Instance recognition

@ Motivation — visual search
@ Visual words: quantization, inverted index, bags of words
@ Spatial verification: RANSAC, Hough

@ Other text retrieval tools: tf-idf

@ Example applications
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Recognizing or retrieving specific objects

@ Example: Visual search in feature films

Visually defined query “Groundhog Day” [Rammis, 1993]

“Find this
clock”

“Find this
place”

[Source: J. Sivic]
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Recognizing or retrieving specific objects

@ Example: Search photos on the web for particular places

Find these landmarks ...In these images and 1M more

[Source: J. Sivic]
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E Google Goggles

Use pictures to search the web. [» Wwatch a video

Get Google Goggles

Android 1.6+ required)
Drowmload from Android Market.

Send Goggles to Android phone

nzv: iPhone (0§ 4.0 required)
Drowmload from the App Store.

Send Goggles to iPhone

Wing Logos

Landmarks Contact Info

Laen mikateEts vor Bisbauern mit
Schatitten, Tomatenoults und Basilikum-
Grocch

German Luits] - Irgish

Lamb chogs from the farmers with the
shalloty, tomato sauce and basd gnacchi
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Why is it difficult?

@ Want to find the object despite possibly large changes in scale, viewpoint,
lighting and partial occlusion.

@ We can't expect to match such varied instances with a single global
template...

Lighting Occlusion

[Source: J. Sivic]
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Indexing local features

@ Each patch / region has a descriptor, which is a point in some
high-dimensional feature space (e.g., SIFT)

Descriptor’s
feature space

[Source: K. Grauman]
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Indexing local features

@ It can have millions of features to search.

[Source: K. Grauman]
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Indexing local features: inverted file index

@ For text documents, an efficient way to find all pages on which a word
occurs is to use an index.

@ We want to find all images in which a feature occurs.
@ To use this idea, well need to map our features to visual words.

o Why?

pace o Frcce: 136140161

[Source: K. Grauman]
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Indexing local features: inverted file index

@ Map high-dimensional descriptors to tokens/words by quantizing the feature
space.

@ Quantize via clustering, let cluster centers be the prototype words.

@ Determine which word to assign to each new image region by finding the
closest cluster.

/ Descriptor's

feature space

[Source: K. Grauman]
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Visual words

@ Each group of patches Enﬁﬁnﬁm

belongs to the same R4
visual word. EEEE-EEE
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Visual vocabulary formation issues

@ Vocabulary size, number of words.
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Visual vocabulary formation issues

@ Vocabulary size, number of words.

@ Sampling strategy: where to extract features?
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@ Vocabulary size, number of words.
@ Sampling strategy: where to extract features?

@ Clustering / quantization algorithm.
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Visual vocabulary formation issues

@ Vocabulary size, number of words.
@ Sampling strategy: where to extract features?
@ Clustering / quantization algorithm.

@ Unsupervised vs. supervised.
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Visual vocabulary formation issues

Vocabulary size, number of words.

Sampling strategy: where to extract features?

Clustering / quantization algorithm.

Unsupervised vs. supervised.

What corpus provides features (universal vocabulary?)
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Inverted File Index

@ Database images are loaded into the index mapping words to image numbers

Image #1
o 2
]
o
g 7 1,2
ﬁ Image #2 g a3
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&
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10
Image #3
81 2
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Inverted File Index

@ New query image is mapped to indices of database images that share a word.

w

New query image
10

91 2
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What else do we need to do?

@ How to summarize the content of an entire image? And gauge overall
similarity?

Raquel Urtasun (TTI-C) Visual Recognition Jan 24, 2012 16 / 105



What else do we need to do?

@ How to summarize the content of an entire image? And gauge overall
similarity?

@ How large should the vocabulary be? How to perform quantization
efficiently?
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What else do we need to do?

@ How to summarize the content of an entire image? And gauge overall
similarity?

@ How large should the vocabulary be? How to perform quantization
efficiently?

@ Is having the same set of visual words enough to identify the object/scene?
How to verify spatial agreement?
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What else do we need to do?

@ How to summarize the content of an entire image? And gauge overall
similarity?

@ How large should the vocabulary be? How to perform quantization
efficiently?

@ Is having the same set of visual words enough to identify the object/scene?
How to verify spatial agreement?

@ How to score the retrieval results?
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Relation to Documents

Of all the sensory impressions proceeding to China is forecasting a trade surplus of $90bn
the brain, the visual experiences are the (£51bn) to $100bn this year, a threefold
dominant enes. Our perception of the world increase on 2004's $32bn. The Commerce

around us is based essentigliv on the
messages that

Mlnlslry said the surplys would be created by

eye, cell, optical
nerve, image
Hubel, Wiesel

uan, bank, domestic,
foreign, increase,
trade, value

demonstrate that the message abo¥
image falling on the retina undergoe.
wise analysis in a system of nerve ce

permitted it to trade within a narro
the US wants the yuan to be allowe

it will take its time and tread carefully be
allowing the yuan to rise further in value.

a specific detail in the pattern of the retinal
image.
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Bags of visual words

@ Summarize entire image based on its distribution (histogram) of word
occurrences.

@ Analogous to bag of words representation commonly used for documents.
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Comparing visual Words

@ Rank frames by normalized scalar product between their (possibly weighted)
occurrence counts—nearest neighbor search for similar images

. <dj,q>
sim(d;, q) = —21 9~

! il - Il
18 1 4] 51 1 0]

Raquel Urtasun (TTI-C) Visual Recognition Jan 24, 2012 19 / 105



What else do we need to do?

@ How to summarize the content of an entire image? And gauge overall
similarity?

@ How large should the vocabulary be? How to perform quantization
efficiently?

@ Is having the same set of visual words enough to identify the object/scene?
How to verify spatial agreement?

@ How to score the retrieval results?
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Vocabulary Trees

@ Hierarchical clustering for large vocabularies, [Nister et al., 06].
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Vocabulary Trees

@ Hierarchical clustering for large vocabularies, [Nister et al., 06].

@ k defines the branch factor (number of children of each node) of the tree.
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Vocabulary Trees

@ Hierarchical clustering for large vocabularies, [Nister et al., 06].
@ k defines the branch factor (number of children of each node) of the tree.

@ First, an initial k- means process is run on the training data, defining k
cluster centers.
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Vocabulary Trees

Hierarchical clustering for large vocabularies, [Nister et al., 06].

k defines the branch factor (number of children of each node) of the tree.
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cluster centers.
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@ The tree is determined level by level, up to some maximum number of levels
L.
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Vocabulary Trees

@ Hierarchical clustering for large vocabularies, [Nister et al., 06].
@ k defines the branch factor (number of children of each node) of the tree.

@ First, an initial k- means process is run on the training data, defining k
cluster centers.

@ The same process is then recursively applied to each group.

@ The tree is determined level by level, up to some maximum number of levels

L.

@ Each division into k parts is only defined by the distribution of the descriptor
vectors that belong to the parent quantization cell.
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Constructing the tree

@ Offline phase: hierarchical clustering.

Vocabulary Tree
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Constructing the tree

@ Offline phase: hierarchical clustering.

Vocabulary Tree

Raquel Urtasun (TTI-C) Visual Recognition Jan 24, 2012 22 / 105



Parsing the tree

@ Online phase: each descriptor vector is propagated down the tree by at each
level comparing the descriptor vector to the k candidate cluster centers
(represented by k children in the tree) and choosing the closest one.

@ The tree directly defines the visual vocabulary and an efficient search
procedure in an integrated manner.

@ Every node in the vocabulary tree is associated with an inverted file.

@ The inverted files of inner nodes are the concatenation of the inverted files
of the leaf nodes (virtual).
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Vocabulary size

@ Complexity: branching factor and number of levels

@ Most important for the retrieval quality is to have a large vocabulary
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Visual words/bags of words

Good
o flexible to geometry / deformations / viewpoint
@ compact summary of image content
@ provides vector representation for sets

@ very good results in practice

@ background and foreground mixed when bag covers whole image
@ optimal vocabulary formation remains unclear

@ basic model ignores geometry must verify afterwards, or encode via features
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What else do we need to do?

@ How to summarize the content of an entire image? And gauge overall
similarity?

@ How large should the vocabulary be? How to perform quantization
efficiently?

@ Is having the same set of visual words enough to identify the object/scene?
How to verify spatial agreement?

@ How to score the retrieval results?
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Spatial Verification

@ Both image pairs have many visual words in common

@ Only some of the matches are mutually consistent

DB image with |gjh Bow
similarity

similarity

[Source: O. Chum]
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Spatial Verification

Two basic strategies
@ RANSAC

@ Generalized Hough Transform
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lllustration: Least Squares Fit

[Source: K. Grauman]
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lllustration: Least Squares Fit

b b b b o w s o

[Source: K. Grauman]
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RANSAC

@ RANdom Sample Consensus.

@ Approach: we want to avoid the impact of outliers, so lets look for inliers,
and use those only.

@ Intuition: if an outlier is chosen to compute the current fit, then the
resulting line wont have much support from rest of the points.
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RANSAC: General form

Loop

@ Randomly select a seed group of points on which to base transformation
estimate

@ Compute model from seed group
@ Find inliers to this transformation

@ If the number of inliers is sufficiently large, re-compute estimate of model on
all of the inliers

Keep the model with the largest number of inliers
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RANSAC for line fitting

Repeat:
@ Draw s points uniformly at random
@ Fit line to these s points

@ Find inliers to this line among the remaining points (i.e., points whose
distance from the line is less than t)

@ If there are d or more inliers, accept the line and refit using all inliers

[S. Lazebnik]
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Example

of line fitting
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Example of line fitting

Raquel Urtasun (TTI-C) Visual Recognition Jan 24, 2012 33 / 105



RANSAC for line fitting example

© Randomly select minimal
subset of points

[Source: R. Raguram]
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RANSAC for line fitting example

© Randomly select minimal
subset of points

@ Hypothesize a model

[Source: R. Raguram]
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RANSAC for line fitting example

© Randomly select minimal
subset of points

@ Hypothesize a model

© Compute error function

[Source: R. Raguram]
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RANSAC for line fitting example

© Randomly select minimal
subset of points .
@ Hypothesize a model ) o _:. .
P " had . ._
© Compute error function . . t.-‘ NN "
@ Select points consistent . A e
with model gy .
, * .
1 T3 &

[Source: R. Raguram]
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RANSAC for line fitting example

© Randomly select minimal .
subset of points T

@ Hypothesize a model
© Compute error function Test W N

@ Select points consistent ) A A
with model TN

© Repeat hypothesize and .
verify loop -

[Source: R. Raguram]
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RANSAC for line fitting example

© Randomly select minimal
subset of points

.
Tei

@ Hypothesize a model

© Compute error function '.._ . I
. G-
@ Select points consistent -
with model .
@ Repeat hypothesize and - ¥ g
verify loop e

[Source: R. Raguram]
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RANSAC for line fitting example

© Randomly select minimal
subset of points iy Ve

@ Hypothesize a model
© Compute error function e ,.’~‘

@ Select points consistent
with model

@ Repeat hypothesize and
verify loop ’

[Source: R. Raguram]
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What about fitting a transformation?

@ Select one match, count inliers

Putative matches
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What about fitting a transformation?

@ Select one match, count inliers

Find “average” translation vector
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RANSAC

@ Typically sort by BoW similarity as initial filter
@ Verify by checking support (inliers) for possible transformations

@ Success if find a transformation with > N inlier correspondences
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Fitting an affine transformation

@ Approximates viewpoint changes for roughly planar objects and roughly
orthographic cameras

o Affine is p’ = Ap, with A an arbitrary 2 x 3 matrix, i.e.,

’ dp0 4do1 402 | -
p = P
410 411 412

@ Parallel lines remain parallel under affine transformations.

(%::3:) o
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Fitting an affine transformation

@ For all points

a00 )
. dao1 .
x yvi 0 0 1 0 age | | X
0 0 Xi Vi 01 ai1o o y,-’
: a1l :
a
P i
a

@ Least-squares fitting
min ||Pa — P’|[3

400,412
(%:34)
x5y
o °
° — o b
o [
L] L
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Ransac Verification

[Source: K. Grauman]
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Spatial Verification

Generalized Hough Transform

@ lIts not feasible to check all combinations of features by fitting a model to
each possible subset.
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@ First, cycle through features, cast votes for model parameters: location,
scale, orientation of the model object.
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Spatial Verification

Generalized Hough Transform

@ lIts not feasible to check all combinations of features by fitting a model to
each possible subset.

@ First, cycle through features, cast votes for model parameters: location,
scale, orientation of the model object.

@ Look for model parameters that receive a lot of votes, and verify them.
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Spatial Verification

Generalized Hough Transform

@ lIts not feasible to check all combinations of features by fitting a model to
each possible subset.

@ First, cycle through features, cast votes for model parameters: location,
scale, orientation of the model object.

@ Look for model parameters that receive a lot of votes, and verify them.

@ Noise & clutter features will cast votes too, but their votes should be
inconsistent with the majority of good features.
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Generalized Hough Transform

@ If we use scale, rotation, and translation invariant local features, then each
feature match gives an alignment hypothesis (for scale, translation, and
orientation of model in image).

[Source: S. Lazebnik]
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Generalized Hough Transform

@ A hypothesis generated by a single match its in general unreliable,

@ Let each match vote for a hypothesis in Hough space.

[Source: K. Grauman]
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[Lowe 04]

@ Training phase: For each model feature, record 2D location, scale, and
orientation of model (relative to normalized feature frame)
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[Lowe 04]

@ Training phase: For each model feature, record 2D location, scale, and
orientation of model (relative to normalized feature frame)

@ Test phase: Let each match between a test SIFT feature and a model
feature vote in a 4D Hough space

e Use broad bin sizes of 30 degrees for orientation, a factor of 2 for scale,
and 0.25 times image size for location
e Vote for two closest bins in each dimension
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[Lowe 04]

@ Training phase: For each model feature, record 2D location, scale, and
orientation of model (relative to normalized feature frame)

@ Test phase: Let each match between a test SIFT feature and a model
feature vote in a 4D Hough space

e Use broad bin sizes of 30 degrees for orientation, a factor of 2 for scale,
and 0.25 times image size for location
e Vote for two closest bins in each dimension

@ Find all bins with at least three votes and perform geometric verification

o Estimate least squares affine transformation
e Search for additional features that agree with the alignment
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Recognition Example

Background subtract Obijects recognized, Recognition in
for model boundaries spite of occlusion
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Problems of Voting

@ Noise/clutter can lead to as many votes as true target
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Problems of Voting

@ Noise/clutter can lead to as many votes as true target

@ Bin size for the accumulator array must be chosen carefully
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Problems of Voting

@ Noise/clutter can lead to as many votes as true target
@ Bin size for the accumulator array must be chosen carefully

@ In practice, good idea to make broad bins and spread votes to nearby bins,
since verification stage can prune bad vote peaks
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Comparison Verification

Generlized Hough Transform
@ Each single correspondence votes for all consistent parameters
@ Represents uncertainty on the parameter space
@ Complexity: Beyond 4D space is impractical
@ Can handle high outlier/inlier ratio
Ransac
@ Minimal subset of correspondences to estimate the model, then count inliers
@ Represent uncertainty in image space
@ Must look at all points to check for inliers at each iteration

@ Scales better with high dimensionality of parameter space.
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Scoring retrieval

Scoring retrieval quality

Results (ordered):

Database size: 10 images

Query Relevant (total): 5 images 4 i
’ i
precision = #relevant / #returned
recall = #relevant / #total relevant

/

o 0.2 0.4 0.6 08 1
recall

[Source: O. Chum]

Raquel Urtasun (TTI-C) Visual Recognition Jan 24, 2012 47 / 105



More from NLP community

tf-idf weighting
@ Term frequency — inverse document frequency

@ Describe frame by frequency of each word within it, downweight words that
appear often in the database

N4 N
ti = — log —
ng nj

@ njy : number of occurrences of word 7/ in document d
@ ny : number of words in document d
@ N : total number of documents in the dataset

@ n; : number of documents word i occurs in (in the whole dataset)
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Video Google System

@ Collect all words within query region
@ Inverted file index to find relevant frames
@ Compare word counts

@ Spatial verification
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http://www.robots.ox.ac.uk/~vgg/research/vgoogle/index.html
http://www.robots.ox.ac.uk/~vgg/research/vgoogle/index.html

[Philbin 07]

@ Object retrieval with large vocabularies and fast spatial matching

@ Results from 5k Flickr images (demo available for 100k set)
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http://www.robots.ox.ac.uk/~vgg/research/oxbuildings/index.html

E Google Goggles

Use pictures to search the web. [» Wwatch a video

Get Google Goggles

Andreid (1.6+ required)
Drowmload from Android Market.

Send Goggles to Android phone

zw: iPhone (08 4.0 required)
Drowmload from ihe App Store.

Send Goggles to iPhone

Landmarks Contact Info Wing

Lan mkateRetts vorm Biobal
Schatitten, Tomatess ol und
o

German (o] - fegith

Lamh chops from the farmers with the
shallots, tomato sauce and sl gnocchi
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Recognition via feature matching + spatial verification

Pros:
@ Effective when we are able to find reliable features within clutter
@ Great results for matching specific instances
Cons:
@ Scaling with number of models
@ Spatial verification as post-processing — expensive for large-scale problems

@ Not suited for category recognition
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@ Matching local invariant features

o Useful not only to provide matches for multi-view geometry, but also to
find objects and scenes.
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e Summarize image by distribution of words
e Index individual words
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@ Matching local invariant features

o Useful not only to provide matches for multi-view geometry, but also to
find objects and scenes.

@ Bag of words representation: quantize feature space to make discrete set of
visual words

e Summarize image by distribution of words
e Index individual words

@ Inverted index: pre-compute index to enable faster search at query time

@ Recognition of instances via alignment: matching local features followed by
spatial verification

e Robust fitting : RANSAC, Generalized Hough Transform
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Category-level recognition
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General recognition problem
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Challenges

@ Realistic scenes are crowded, cluttered, have overlapping objects
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Recognition framework

@ Build/train object model

e Choose a representation
o Learn or fit parameters of model / classifier

@ Generate candidates in new image: only one for global scene classifiers

@ Score the candidates
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Representation Choice

Models can be divided on
@ Window-based models: reason about the full object

@ Part-based models: reason about parts and compose the information
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Window-based model

@ Holistic: vector of pixel intensities —template matching

@ Holistic: grayscale/color histogram

@ Pixel-based representations sensitive to small shifts

@ Color or grayscale-based appearance description can be sensitive to
illumination and intra-class appearance variation

@ Possible solution: Consider edges, contours, and (oriented) intensity
gradients
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Window-based model

© Summarize local distribution of gradients with histogram

@ Locally orderless: offers invariance to small shifts and rotations

@ Contrast-normalization: try to correct for variable illumination
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Which Classifier to use?

So many choices
@ Nearest Neighbors (NN)
@ Support Vector Machines (SVMs)
@ Gaussian processes (GPs)
@ Boosting
@ Neural networks
@ Conditional Random Fields (CRFs)

@ etc
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Recognition framework

@ Build/train object model

e Choose a representation
o Learn or fit parameters of model / classifier

@ Generate candidates in new image: only one for global scene classifiers

@ Score the candidates
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Generating and scoring candidates

@ Try every possible location: not very efficient.

@ Work at different scales

Car/non-car
Classifier
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Sliding Window Recap

Training:

1. Obtain training data
2. Define features

3. Define classifier

Given new image:
1. Slide window

2. Score by classifier Training examples
I 1NN

Classifier

Feature
extraction

[Source: K. Grauman]
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ices and Issues

What classifier?
@ Generative or discriminative model?
@ Data resources — how much training data?

@ How is the labeled data prepared?

Training time allowance
@ Test time requirements — real-time?

@ Fit with the representation
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Choices and Issues

@ What classifier?

@ What features or representations?
@ How to make it affordable?

@ What categories are amenable?

o Similar to specific object matching, we expect spatial layout to be fairly
rigidly preserved.

e Unlike specific object matching, by training classifiers we attempt to
capture intra-class variation or determine discriminative features.

Raquel Urtasun (TTI-C) Visual Recognition Jan 24, 2012 66 / 105



What categories work well with sliding window?

foresr”
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Which detec

Window-based

2

=\

Boosting + face
detection

NN + scene Gist SVM + person
classification detection

Viola & Jones
e.g., Hays & Efros e.g., Dalal & Triggs

BOW, pyramids ISM: voting deformable parts poselets
e.g., [Grauman et al.] e.g., [Leibe & Shiele] e.g., [Felzenszwalb et al.]  [Bourdev et al.]
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aquel Urtasu

Example: Global representation

IM2GPs: estimating geographic information from a single image

James Hays and Alexei A, Efros
Carnegie Mellon University

Abstract

Estimating geographic informarion from an image is
an excellent, difficult high-level computer vision problem
whose time has come. The emergence af vast amounts of
geagraphically-calibrated image data is a great reason for
computer vision fo start looking globally — on the scale of
the entire planet! In this paper, we propose a simple al-
gorithm for estimating a distribution aver geographic loca-
tions from a single image using a purely data-driven scene
matching approach. For this task, we will leverage a dataset
af over 6 million GPS-tagged images from the Internet. We
represent the estimated image location as a probability dis-
tribution over the Earth’s surface. We quantitatively evalu-
afe our approach in several geolocation tasks and demon-
strate encouraging performance (up to 30 times better than
chance). We show that geolocation estimates can provide
the basis for numerous other image understanding tasks
such as population density estimation, land cover estima-
tion or urban/rural classification.

1. Introduction

Consider the photographs in Figure 1. What can you say
about where they were taken? The first one is easy — it's
an iconic image of the Notre Dame cathedral in Paris. The
middle photo looks vaguelv Mediterranean. perhans a small

Figure 1. What can you say about where these photos were taken?

ical sea, sand and palm trees. we would simply remember:
“Thave seen something similar on a trip to Hawaii!”. Note
that although the original picture is unlikely to actually be
from Hawaii, this association is still extremely valuable in
helping to implicitly define the type of place that the photo
belongs to.

Of course, computationally we are quite far from being
able to semantically reason about a photograph (although
encowraging progress is being made). On the other hand,
the recent availability of truly gigantic image collections has
made data association, such as brute-force scene matching,
quite feasible [17, 4].

In this paper, we propose an algorithm for estimating a
distribution over geographic locations from an image using
a purely data-driven scene matching approach. For this task,
we leverage a dataset of over 6 million GPS-tagged images
fmm the Flickr onhma photo cn]]emon We repnesennhe es-

Visual Recognition Jan 24, 2012

69 / 105



Where was this taken in the world?
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Distribution of images

@ Large collection of images from Flickr

@ 6+ million geotagged photos by 109,788 photographers
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Representation

@ Color Histograms — L¥*A*B* 4x14x14 histograms, total of 784 dimensions.

@ Texton Histograms — 512 entry, bank of filters with 8 orientations, 2 scales,
and 2 elongations. For each image we then build a 512 dimensional
histogram by assigning each pixel's set of filter responses to the nearest
texton dictionary entry.

@ Line Features — Histograms of straight line stats (line angles and line
lenghts) to distinguishing between natural and man-made.

@ Geometric context — compute the geometric class probabilities for image
regions.

@ Gist scene descriptor — 5 by 5 spatial resolution where each bin contains that
image regions average response to steerable filters at 6 orientations and 4
scales.
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Spatial Envelope Theory of Scene Representation

A scene is a single surface that can be
represented by global (statistical) descriptors

[Source: A. Oliva]
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Spatial Envelope Theory of Scene Representation

V = {energy at each orientation and
scale} = 6 x 4 dimensions

L 80 feafures

I

.
— |V, |— pPCcA— |

G

Gist
descriptor

[Source: A. Oliva]
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@ Assign label of nearest training data point to each test data point

@ Voronoi partitioning of feature space for 2-category 2D data

Black = negative
Red = positive

Novel test example

Closestto a
positive example
from the training
set, so classify it
as positive.

from Duda et a/.
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Classifier improvement

@ For a new point, find the k closest points from training data

@ Labels of the k points vote to classify

X,
v, . k=5
Black = negative Lub e e ° "
Red = positive I S R
1, .
.= L] " . .'
- L]
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Qualitative Results
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Qualitative Results
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Qualitative Results
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Qualitative Results

Argentina
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Qualitative Results
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Results: size matters

16
14F

= First Nearest Neighbor Scene Match
= = = Chance- Random Scenes

1 1 1 1 1 1 1
09 0.38 1.54 6.16 246 985 394 1,676 6,304
Database size (thousands of images, log scale)

Percentage of Geolocations within 200km
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Results: features

@ Multi-features: We scale each features distances so that their standard
deviations are roughly the same and thus they influence the ordering of
scene matches equally.

18 T T T T T T T T
[ First Nearest Neighbor Scene Match
I Mean Shift Mode, Largest Cluster

14} |= = = Chance- Random Scenes J

Percentage of Estimates Within 200km
=

1]
Color Geometry Gist Lines 16x16 Textons 5x5 All features

Feature Used to Estimate Geolocation
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Pros:
@ Simple to implement
@ Flexible to feature / distance choices
@ Naturally handles multi-class cases
@ Can do well in practice with enough representative data
Cons:
@ Large search problem to find nearest neighbors, e.g., KD-trees, hashing, etc.
@ Storage of data: non-parametric, we keep everything.

@ Must know we have a meaningful distance function: metric learning
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Example:

Dalal & Triggs

Histograms of Oriented Gradients for Human Detection

Navneet Tl

al and Bill Triges

INRLA Rhine-Alps, 655 avenue de I Evrope, Montbonnot 38334, France
{Mavneet Dalal Bill Trigge } @ inrialpes._fr. hrtp:flearinrialpas fr

Ahbstract

We stwdy the question of feature sets for robust viswal ab-
ject recogniti inear SV based human devec-
I {sting edye and gra-
5, we show experimentally thar grids

a5 @ besk Co
dient bared descripn

af Histograms of Ortented Gradiens (HOG) descriprors rig-

an rw-;fmuwwe m.r.'lrﬂuamjr.lur i rz.r-l’c- ) e, fime
envlenranion b relarively coarse spawal b, and
High-quealiry local commrest narmalization in overlapping de-
acriprar Blocks are all important for good resnitn, The new
approach gives near-perfect separation on the original MIT
pedesirion datalbare, so we nroduce @ more
datarer containing cver J200 apnotied
o large range of pose variarions and back gronds,

pnan images with

1 Introduction

Visual Recognition Jan

We briefly discuss previons work on human detection in
give an overview of our method §3, describe our data
sets in k4 and gve a detailed descniption and experimental
evaluation of each siage of the process in §3-6. The main
conclasions are summarized in

2 Previous Work

There is an extensive litermtune on object detection, but
here we mention just a few relevant papers on human detec-
22.16,20]. See [6] for o survey, Papageoigion et

o hesed on polynomial
SVM using muln-:l Haar wavelets as input deseriptors, with
a parts isubwindowy based varant in [17). Depoociere er af
an optimized version of this [2]. Gavrla & Philomen
amore direct images and
amier
WE TN reul-time pede
frian detection system [7]. Viola e gl [22] build an effic

24, 2012
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Task to solve

@ Pedestrian detection
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Representation

@ Histogram of gradients: [Schiele & Crowley, Freeman & Roth]
@ Code available: http://pascal.inrialpes.fr/soft/olt/

Orientation Voting
— Overlapping Blocks

Input Image Gradient Image

— Local Normalization
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Linear Classifier

@ Find linear function to separate positive and negative examples
fx)=w'x+b
@ f(x) > 0if x is a positive example.

@ f(x) < 0if x is a positive example.
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Learning Setup

@ Input x € RP, and outputs y; € {—1,1}

@ General setup: training set sampled i.i.d. from p(x,y), we want to find
parametric predictor f € F that minimizes

R(f) = Exo.y [L(f(x0; ©), 0)]
with L the loss
@ Regularized ERM:

6 = argmin ZL(f(x,-;O),y,-) + R(9)

@ Loss L: square loss (ridge regression, GP), hinge (SVM), log loss (logistic
regression)
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Linear Classifier

@ Discriminative classifier based on optimal separating hyperplane

@ Maximize the margin between the positive and negative training examples
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Support Vector machines

@ Maximize the margin between the positive and negative training examples

Positivey; =1: w/x; + b >1

@ Negativey; = —1: w/x; + b <1

Support vector: x;-w + b =771

y(w'x+b)
[lwl]
1

For support vectors: Tl

@ Point line distance:

Margin M = 2

[Twl]

Margin
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Find the max margin hyperplane

@ Maximize the margin and classify all the points

@ Quadratic optimization problem

1
min 5w

subject to yi(b+w'x;)—1>0, i=1,...,N.

@ We will associate with each constraint the loss

0, ify; (Wo —|—wa,~) —-1>0,

maxa [1 — yi(b+w'x;)| = . L
a>0 =% ) {oo otherwise (constraint violated).

We can reformulate our problem now:

N
1
m“in {2||w||2 + ;Q%a; [1—yi(b+w'x,)] }
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