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Local features for instance-level recognition
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Application Example: Image stitching

[Source: K. Grauman]
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Local features

@ Detection: Identify the interest points.
@ Description: Extract vector feature descriptor around each interest point.
@ Matching: Determine correspondence between descriptors in two views.

@ Tracking: alternative to matching that only searches a small neighborhood
around each detected feature.

[Source: K. Grauman]
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Goal: interest operator repeatability

@ We want to detect (at least some of) the same points in both images.

@ We have to be able to run the detection procedure independently per image.

W

Figure: No chance to find the true matches

[Source: K. Grauman]
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Goal: descriptor distinctiveness

@ We want to be able to reliably determine which point goes with which.

@ Must provide some invariance to geometric and photometric differences
between the two views.

[Source: K. Grauman]
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Local features

@ Detection: Identify the interest points.
@ Description: Extract vector feature descriptor around each interest point.

@ Matching: Determine correspondence between descriptors in two views.

[Source: K. Grauman]
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What points to choose?

[Source: K. Grauman]
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What points to choose?

@ Textureless patches are nearly impossible to localize.
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What points to choose?

@ Textureless patches are nearly impossible to localize.
@ Patches with large contrast changes (gradients) are easier to localize.

@ But straight line segments at a single orientation suffer from the aperture
problem, i.e., it is only possible to align the patches along the direction
normal to the edge direction.
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What points to choose?

@ Textureless patches are nearly impossible to localize.
@ Patches with large contrast changes (gradients) are easier to localize.

@ But straight line segments at a single orientation suffer from the aperture
problem, i.e., it is only possible to align the patches along the direction
normal to the edge direction.

@ Gradients in at least two (significantly) different orientations are the easiest,
e.g., corners.
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Corners as distinctive interest points

@ We should easily recognize the point by looking through a small window.

@ Shifting a window in any direction should give a large change in intensity.

Figure: (left) flat region: no change in all directions, (center) edge: no change
along the edge direction, (right) corner: significant change in all directions

[Source: Alyosha Efros, Darya Frolova, Denis Simakov]
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A Simple Matching Criteria

@ Compare two image patches using (weighted) summed square difference
Ewssp(u) = Z w(p:)[h(pi + u) — lb(p:)]?

with fp and /; two images being compared, u(uy, u,) a displacement vector,
w(p) a spatially varying weighting function, and the summation i is over all
the pixels in the patch.
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A Simple Matching Criteria

@ Compare two image patches using (weighted) summed square difference
Ewssp(u) = Z w(p:)[h(pi + u) — lb(p:)]?

with fp and /; two images being compared, u(uy, u,) a displacement vector,
w(p) a spatially varying weighting function, and the summation i is over all
the pixels in the patch.

@ We do not know which other image locations the feature will end up being
matched against.

@ We can only compute how stable this metric is with respect to small
variations in position u by comparing an image patch against itself.

@ This is the auto-correlation function

Enc(Bu) =" w(pi)llo(pi + Au) — lo(p)]?

i
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Which one is better?

[Source: R. Szeliski]
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How to select?

@ Using a Taylor Series expansion ly(p; + Au) = lo(p;) + Vio(p;) we can
approximate the autocorrelation as

Eac(Au) = Z w(p)llo(pi + Au) — I(p:)]?
Z w(pi)llo(pi) + Vio(pi)Au — o(p;)]?

= D" wlp)[Vh(pi)duP

i

Q

= Au’AAu
with Oly 0
bip) = ( ==, = i
the image gradient.

@ Gradient can be computed with the filtering techniques we saw, e.g.,
derivatives of Gaussians.
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More on selection

@ The autocorrelation is Eac(Au) = Au” AAu, with

A 2oL, 12 L,
“X S wwn | S e[
u v

y

where we have replaced the weighted summations with discrete convolutions
with the weighting kernel w.

direction of the
fastest change

direction of the
slowest change

[Source: R. Szeliski]
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More on selection

@ The autocorrelation is Eac(Au) = Au” AAu, with
21 21l
A=Y S wwn | 5w 55
u v

where we have replaced the weighted summations with discrete convolutions
with the weighting kernel w.

@ A can be interpreted as a tensor where the outer products of the gradients
are convolved with a weighting function.

@ Eigenvalues a notion of uncertainty

direction of the
fastest change

direction of the
slowest change

[Source: R. Szeliski]
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Eigenvalues a notion of uncertainty

@ A is symmetric

Xo O

A:U[o A\

:| UT with  Au; = \ju;

@ The eigenvalues of A reveal the amount of intensity change in the two
principal orthogonal gradient directions in the window.

@ How is this matrix for

[Source: R. Szeliski]
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Local Feature Selection Criteria

@ Shi and Tomasi, 94 proposed the smallest eigenvalue of A, i.e., )\0_1/2.

Raquel Urtasun (TTI-C) Visual Recognition Jan 19, 2012 16 / 80
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@ Harris and Stephens, 88 is rotationally invariant and downweights edge-like
features where A1 > A\g
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@ Harris and Stephens, 88 is rotationally invariant and downweights edge-like
features where A1 > A\g

det(A) — atrace(A)? = M1 — a(Xo 4+ A\1)?

@ Triggs, 04 suggested
)\0 — Oé)\l

also reduces the response at 1D edges, where aliasing errors sometimes
inflate the smaller eigenvalue.
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Local Feature Selection Criteria

@ Shi and Tomasi, 94 proposed the smallest eigenvalue of A, i.e., )\0_1/2.

@ Harris and Stephens, 88 is rotationally invariant and downweights edge-like
features where A1 > A\g

det(A) — atrace(A)? = M1 — a(Xo 4+ A\1)?

@ Triggs, 04 suggested
)\0 — Oé)\l

also reduces the response at 1D edges, where aliasing errors sometimes
inflate the smaller eigenvalue.

@ Brown et al, 05 use the harmonic mean

det(A) . AoA1
trace(A) Ao+ A1
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Type of responses

“‘edge”: “corner’: “flat” region
Ay >> 2y L, and A, are large, A, and A, are
A, >> A, Ay~ Ao small;

[Source: K. Grauman]
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Harris Corner detector

@ Compute A for each image window to get their cornerness scores.

@ Find points whose surrounding window gave large corner response (f >
threshold).

© Take the points of local maxima, i.e., perform non-maximum suppression.
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[Source: K. Grauman]
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1) Compute Cornerness

[Source: K. Grauman]
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2) Find High Response

[Source: K. Grauman]
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3) Non-maxima Suppresion

[Source: K. Grauman]
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[Source: K. Grauman]
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Another Example

[Source: K. Grauman]
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Cornerness

[Source: K. Grauman]
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Interest Points

[Source: K. Grauman]
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Properties of Harris Corner Detector

@ Rotation invariant?
2

A=wx [ /IX/ ljéy } =U [ Ao 0 ]UT with  Au; = \ju;
y Ix

@ Scale Invariant?

]
o -

All points will be Corner!
classified as edges

[Source: K. Grauman]
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Scale invariant interest points

How can we independently select interest points in each image, such that the
detections are repeatable across different scales?
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@ Extract features at a variety of scales, e.g., by using multiple resolutions in a
pyramid, and then matching features at the same level.
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Scale invariant interest points

How can we independently select interest points in each image, such that the
detections are repeatable across different scales?

@ Extract features at a variety of scales, e.g., by using multiple resolutions in a
pyramid, and then matching features at the same level.

@ When does this work?

@ More efficient to extract features that are stable in both location and scale.
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Scale invariant interest points

How can we independently select interest points in each image, such that the
detections are repeatable across different scales?

@ Extract features at a variety of scales, e.g., by using multiple resolutions in a
pyramid, and then matching features at the same level.

@ When does this work?
@ More efficient to extract features that are stable in both location and scale.

@ Find scale that gives local maxima of a function f in both position and scale.

Ja@, ,, (xo) = fU , (.Y
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Automatic Scale Selection

Function responses for increasing scale (scale signature).
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Automatic Scale Selection

Function responses for increasing scale (scale signature).
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What can the signature function be?

@ Lindeberg (1998): extrema in the Laplacian of Gaussian (LoG).

@ Lowe (2004) proposed computing a set of sub-octave Difference of Gaussian
filters looking for 3D (space+scale) maxima in the resulting structure.

Scale
(next
octave)

Scale
(first
octave)

Difference of
Gaussian Gaussian (DOG) LTI T T

[Source: R. Szeliski]
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Blob detection

@ Laplacian of Gaussian: Circularly symmetric operator for blob detection in
2D

[Source: K. Grauman]
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Blob detection in 2D: scale selection

Laplacian-of-Gaussian = blob detector

filter scales

[Source: B. Leibe]
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Characteristic Scale

@ We define the characteristic scale as the scale that produces peak of
Laplacian response

2000

BEEEE s

.
>
~

characteristic scale

[Source: S. Lazebnik]
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Example

L=

S >
[Source: K. Grauman]
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Example

[Source: K. Grauman]
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Scale invariant interest points

Interest points are local maxima in both position

and scale.
of

r F I T FEF
O' ,
- / Scale
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Squared filter
response maps

= List of
(x, y. 0)

Kristen Grauman
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[Source: S. Lazebnik]
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Fast approximation

(Laplacian)

(Difference of Gaussians)

I (ko)

[Source: K. Grauman]
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Lowe's DoG

@ Lowe (2004) proposed computing a set of sub-octave Difference of Gaussian
filters looking for 3D (space+scale) maxima in the resulting structure

Scale
(next
octave)

Scale
(first
octave)

Difference of
Gaussian Gaussian (DOG) LTI T T

[Source: R. Szeliski]
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Laplacian vs Hessian

@ Laplacian of Gaussians is scale invariant.
@ Simple and efficient.

@ But fires more on edges than determinant of hessian
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Properties of the ideal feature

@ Local: features are local, so robust to occlusion and clutter (no prior
segmentation).
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Properties of the ideal feature

@ Local: features are local, so robust to occlusion and clutter (no prior
segmentation).

@ Invariant: to certain transformations, e.g, scale, rotation.

@ Robust: noise, blur, discretization, compression, etc. do not have a big
impact on the feature.

@ Distinctive: individual features can be matched to a large database of
objects.

@ Quantity: many features can be generated for even small objects.
@ Accurate: precise localization.

o Efficient: close to real-time performance.
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A lot of other interest point detectors

@ Hessian

@ Lowe: DoG

@ Lindeberg: scale selection

@ Miikolajczyk & Schmid: Hessian/Harris-Laplacian/Affine
@ Tuyttelaars & Van Gool: EBR and IBR

@ Matas: MSER

@ Kadir & Brrady: Salient Regions

@ Speeded-Up Robust Features (SURF) of Bay et al.
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Evaluation criteria: repeatability

@ Repeatability rate: percentage of detected that have correct corresponding
points

@ What's the problem of this?

#correspondences = 3
#detected = 5
Repeatability=60%

[Source: T. Tuyttellaars]
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Evaluation criteria: repeatability

@ Two points are in correspondence if the intersection over union is bigger
than a certain threshold.

[Source: T. Tuyttellaars]
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Local features

@ Detection: ldentify the interest points.
@ Description: Extract vector feature descriptor around each interest point.

@ Matching: Determine correspondence between descriptors in two views.

[Source: K. Grauman]
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The ideal feature descriptor

Repeatable (invariant/robust)

Distinctive

Compact

Efficient
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Invariances

Multiple View
Geometry
inen

dies wsion

- . e.g. scale,

translation,

- rotation

[Source: T. Tuytelaars]
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Invariances

[Source: T. Tuytelaars]
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Raw Pixels as Local Descriptrs

@ The simplest way is to write down the list of intensities to form a feature
vector, and normalize them (i.e., mean 0, variance 1).

@ But this is very sensitive to even small shifts, rotations.

region A region B

(I |

-— =3

>

 -—
vector a vector b

[Source: K. Grauman]
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SIFT descriptor [Lowe 2004]

@ Compute the gradient at each pixel in a 16 x 16 window around the

detected keypoint, using the appropriate level of the Gaussian pyramid at
which the keypoint was detected.

@ Doweight gradients by a Gaussian fall-off function (blue circle) to reduce the
influence of gradients far from the center.

@ In each 4 x 4 quadrant, compute a gradient orientation histogram using 8

orientation histogram bins.

(a) image gradients (b) keypoint descriptor

[Source: R. Szeliski]
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SIFT descriptor [Lowe 2004]

@ To reduce the effects of location and dominant orientation misestimation,
each of the original 256 weighted gradient magnitudes is softly added to
nearby bins.
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SIFT descriptor [Lowe 2004]

@ To reduce the effects of location and dominant orientation misestimation,
each of the original 256 weighted gradient magnitudes is softly added to
nearby bins.

@ The resulting 128 non-negative values form a raw version of the SIFT
descriptor vector.

@ To reduce the effects of contrast or gain (additive variations are already
removed by the gradient), the 128-D vector is normalized to unit length.

@ To further make the descriptor robust to other photometric variations,
values are clipped to 0.2 and the resulting vector is once again renormalized
to unit length.

@ Great engineering effort!
@ Why subpatches?

@ Why does SIFT have some illumination invariance?
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Making descriptor rotation invariant

@ Rotate patch according to its dominant gradient orientation

@ This puts the patches into a canonical orientation

Figure: Figure from M. Brown

[Source: K. Grauman]
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SIFT descriptor [Lowe 2004]

Extraordinarily robust matching technique
@ Changes in viewpoint: up to about 60 degree out of plane rotation
@ Changes in illumination: sometimes even day vs. night
@ Fast and efficient: can run in real time
°

Lots of code available

P4 l

[Source: S. Seitz]
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Example

Figure: NASA Mars Rover images with SIFT feature matches

[Source: N. Snavely]
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SIFT properties

Invariant to
@ Scale

@ Rotation

Partially invariant to
@ lllumination changes
@ Camera viewpoint

@ Occlusion, clutter
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Gradient location-orientation histogram (GLOH)

@ Developed by Mikolajczyk and Schmid (2005): variant on SIFT that uses a
log-polar binning structure instead of the four quadrants.

@ The spatial bins are 11, and 15, with eight angular bins (except for the
central region), for a total of 17 spatial bins and 16 orientation bins.

@ The 272D histogram is then projected onto a 128D descriptor using PCA
trained on a large database.

(a) image gradients (b) keypoint descriptor

[Source: R. Szeliski]
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Other Descriptors

@ Steerable filters

@ moment invariants
@ complex filters

@ shape contexts

e PCA-SIFT

e HOG

@ SURF

o DAISY
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Local features

@ Detection: ldentify the interest points.
@ Description: Extract vector feature descriptor around each interest point.

@ Matching: Determine correspondence between descriptors in two views.

[Source: K. Grauman]

Raquel Urtasun (TTI-C) Visual Recognition Jan 19, 2012 56 /



Matching local features

Once we have extracted features and their descriptors, we need to match the
features between these images.

@ Matching strategy: which correspondences are passed on to the next stage

@ Devise efficient data structures and algorithms to perform this matching

Figure: Images from K. Grauman
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Matching local features

@ To generate candidate matches, find patches that have the most similar
appearance (e.g., lowest SSD)

@ Simplest approach: compare them all, take the closest (or closest k, or
within a thresholded distance)

[Source: K. Grauman]
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Ambiguous matches

@ At what SSD value do we have a good match?

@ To add robustness, consider ratio of distance to best match to distance to
second best match

o If low, first match looks good.
e If high, could be ambiguous match.

%
i

[Source: K. Grauman]
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Matching SIFT Descriptors

@ Nearest neighbor (Euclidean distance)

@ Threshold ratio of nearest to 2nd nearest descriptor

0.8
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Figure: Images from D. Lowe

[Source: K. Grauman]
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Which threshold to use?

@ Setting the threshold too high results in too many false positives, i.e.,
incorrect matches being returned.

@ Setting the threshold too low results in too many false negatives, i.e., too
many correct matches being missed

Figure: Images from R. Szeliski

Visual Recognition Jan 19, 2012
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How to quantize how good is our matching?

@ TP: true positives, i.e., number of correct matches

@ FN: false negatives, matches that were not correctly detected

FP: false positives, proposed matches that are incorrect

@ TN: true negatives, non-matches that were correctly rejected.

True positive rate (recall) TPR = #PFN = T?f)
True negative rate  TNR = % = FT\I/D
positive predictive value (precision) PPV = % = g
accuracy ACC = %
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Measuring performance

@ Any particular matching strategy (at a particular threshold or parameter
setting) can be rated by the TPR and FPR numbers

@ We want TPR=1 and FPR=0.

@ As we vary the matching threshold, we obtain a family of such points, i.e.,
receiver operating characteristic (ROC curve)

@ The closer this curve lies to the upper left corner, the better its performance.

I

) equal error
08}-- rate
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true positive rate
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false positive rate

Figure: Images from R. Szeliski

Raquel Urtasun (TTI-C) Visual Recognition Jan 19, 2012 63 / 80



Measuring performance

@ Area under the curve (AUC) is a way to summarize ROC with 1 number.

@ Mean average precision, which is the average precision (PPV) as you vary
the threshold.

@ The equal error rate is sometimes used as well.

I
o equalterror
- rate
=038 /
4 H
.z '
= ! -
1723 H -
g H . random chance
o H B
4 H
g H
& H
H
0
n
A
o
0

false positive rate

Figure: Images from R. Szeliski
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Applications of local invariant features

Wide baseline stereo

Motion tracking

@ Panoramas

Mobile robot navigation

@ 3D reconstruction

Recognition

[Source: K. Grauman]
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Wide Baseline Stereo

[Source: T. Tuytelaars]
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Recognizing the Same Object

Rothganger et al. 2003 Lowe 2002

[Source: K. Grauman]
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Motion Tracking

Figure: Images from J. Pilet
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Interest point detection
@ Harris corner detector
@ Laplacian of Gaussian, automatic scale selection

@ Difference of Gaussians

Invariant descriptors
@ Rotation according to dominant gradient direction
@ Histograms for robustness to small shifts and translations (SIFT descriptor)

@ Polar coordinate descriptors GLOH.
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Category-level recognition
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Recognizing or retrieving specific objects

@ Example: Visual search in feature films

Visually defined query “Groundhog Day” [Rammis, 1993]

“Find this
clock”

“Find this
place”

[Source: J. Sivic]
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Recognizing or retrieving specific objects

@ Example: Search photos on the web for particular places

Find these landmarks ...In these images and 1M more

[Source: J. Sivic]
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2 Google Goggles

Use pictures to search the web. [» Wwatch a video

Get Google Goggles

Android 1.6+ required)
Drowmload from Android Market.

Send Goggles to Android phone

nzv: iPhone (0§ 4.0 required)
Drowmload from the App Store.

Send Goggles to iPhone

Landmarks Contact Info Arwork Wing Logos

Laen mikateEts vor Bisbauern mit
Schatitten, Tomatenoults und Basilikum-
Grocch

German Luits] - Irgish

from the farmers weh the
o seuce and basd grocehi
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Why is it difficult?

@ Want to find the object despite possibly large changes in scale, viewpoint,
lighting and partial occlusion.

@ We can't expect to match such varied instances with a single global
template...

Lighting Occlusion

[Source: J. Sivic]
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Indexing local features

@ Each patch / region has a descriptor, which is a point in some
high-dimensional feature space (e.g., SIFT)

Descriptor’s
feature space

[Source: K. Grauman]
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Indexing local features

@ It can have millions of features to search.

[Source: K. Grauman]

Raquel Urtasun (TTI-C)

Descriptor’s
feature space

Visual Recognition

Query
image
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Indexing local features: inverted file index

@ For text documents, an efficient way to find all pages on which a word
occurs is to use an index.

@ We want to find all images in which a feature occurs.
@ To use this idea, well need to map our features to visual words.

o Why?

pace o Frcce: 136140161

[Source: K. Grauman]
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Indexing local features: inverted file index

@ Map high-dimensional descriptors to tokens/words by quantizing the feature
space.

@ Quantize via clustering, let cluster centers be the prototype words.

@ Determine which word to assign to each new image region by finding the
closest cluster.

/ Descriptor's

feature space

[Source: K. Grauman]
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Visual words

@ Each group of patches Enﬁﬁnﬁm

belongs to the same R4
visual word. EEEE-EEE
bbb/ i\

zlaletalnlelsinles

ansamiailae

ml!m-m-!mn
SIC]
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Visual vocabulary formation issues

Vocabulary size, number of words

Sampling strategy: where to extract features?

Clustering / quantization algorithm

Unsupervised vs. supervised

What corpus provides features (universal vocabulary?)
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