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What did we see in class last week?
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@ Image formation.

@ Filtering: convolution vs correlation

Flz,y] Glz, y]

Separable filters.
Computing edges.

Steerable filters.

Midwest Vision Workshop.
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First Recognition System:Template matching

@ What if the template is not identical to some subimage in the scene?

@ Match can be meaningful, if scale, orientation, and general appearance is
right.

@ How can | find the right scale?

Template

Scene

[Source: K. Grauman]
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Today's lecture ...

@ Additional transformations

@ Local features: Interest point detection and descriptors
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Material

@ Chapter 3 and 4 of Rich Szeliski book

tn:rs IM COMPUTER SCIENCE

Computer Vision

Algorithms and Applications

Richard Szeliski

@ Springer

@ Available online here
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http://szeliski.org/Book/
http://szeliski.org/Book/

Other transformations

Raquel Urtasun (TTI-C) Visual Recognition Jan 17, 2012 7 /88



Integral Images

@ If an image is going to be repeatedly convolved with different box filters, it
is useful to compute the summed area table.
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Integral Images

@ If an image is going to be repeatedly convolved with different box filters, it
is useful to compute the summed area table.

@ It is the running sum of all the pixel values from the origin
i g
s(ij) =D D k1)

k=0 /=0
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Integral Images

@ If an image is going to be repeatedly convolved with different box filters, it
is useful to compute the summed area table.

@ It is the running sum of all the pixel values from the origin
i g
s(ij) =D D k1)

k=0 /=0

@ This can be efficiently computed using a recursive (raster-scan) algorithm

s(i,j))=s(i—=1,))+s(i,j—1)—s(i—1,j— 1)+ f(i,))
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Integral Images

@ If an image is going to be repeatedly convolved with different box filters, it
is useful to compute the summed area table.

@ It is the running sum of all the pixel values from the origin

s(i) =Y. fk,1)

k=0 /=0

@ This can be efficiently computed using a recursive (raster-scan) algorithm

s(i,j))=s(i—=1,))+s(i,j—1)—s(i—1,j— 1)+ f(i,))

@ The image s(/,j) is called an integral image and can actually be computed
using only two additions per pixel if separate row sums are used.
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Integral Images

@ If an image is going to be repeatedly convolved with different box filters, it
is useful to compute the summed area table.

@ It is the running sum of all the pixel values from the origin

s(i) =Y. fk,1)

k=0 /=0

@ This can be efficiently computed using a recursive (raster-scan) algorithm
s(i,j)=s(i=1,j)+s(i,j—1)—s(i—1,j— 1)+ f(i,))
@ The image s(/,j) is called an integral image and can actually be computed
using only two additions per pixel if separate row sums are used.

@ To find the summed area (integral) inside a rectangle [io, 1] X [fo, /1] we
simply combine four samples from the summed area table.

S([io, i1] < [jo,j1]) = s(ir,j1) = s(ir,Jo — 1) — s(io — 1,j1) +s(io — 1,jo — 1)
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Integral Images

@ If an image is going to be repeatedly convolved with different box filters, it
is useful to compute the summed area table.

@ It is the running sum of all the pixel values from the origin

s(i) =Y. fk,1)

k=0 /=0

@ This can be efficiently computed using a recursive (raster-scan) algorithm

s(i,j))=s(i—=1,))+s(i,j—1)—s(i—1,j— 1)+ f(i,))

@ The image s(/,j) is called an integral image and can actually be computed
using only two additions per pixel if separate row sums are used.

@ To find the summed area (integral) inside a rectangle [io, 1] X [fo, /1] we
simply combine four samples from the summed area table.

S([io, i1] < [jo,j1]) = s(ir,j1) = s(ir,Jo — 1) — s(io — 1,j1) +s(io — 1,jo — 1)

@ Summed area tables have been used in face detection [Viola & Jones, 04]
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Example of Integral Images

3217213 s|i2]14]17 3|5 |12fz4]17

1s|1|3]a 4 (11|19 24]31 4 [11f19f24]31

sl1f3]s5]1 17] 28| 38 | 46 9 | 17| 28] 3846

1l3f2f1]e6 13| 2437|4862 13 |24(37]48] 62

2(af1fals 15[30 44| 59|81 15[30[ 44| 59|81
() S= 24 (b) s= 28 (c) S= 24

Figure 3.17 Summed area tables: (a) original image; (b) summed area table; (c) computation
of area sum. Each value in the summed area table s(z, j) (red) is computed recursively from
its three adjacent (blue) neighbors (3.31). Area sums S (green) are computed by combining
the four values at the rectangle corners (purple) (3.32). Positive values are shown in bold and
negative values in italics.
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Non-linear filters: Median filter

@ We have seen linear filters, i.e., their response to a sum of two signals is the
same as the sum of the individual responses.

Raquel Urtasun (TTI-C) Visual Recognition Jan 17, 2012 10 / 88



Non-linear filters: Median filter

@ We have seen linear filters, i.e., their response to a sum of two signals is the
same as the sum of the individual responses.

@ Median filter: Non linear filter that selects the median value from each
pixels neighborhood.
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Non-linear filters: Median filter

@ We have seen linear filters, i.e., their response to a sum of two signals is the
same as the sum of the individual responses.

@ Median filter: Non linear filter that selects the median value from each
pixels neighborhood.

@ Robust to outliers, but not good for Gaussian noise.
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Non-linear filters: Median filter

@ We have seen linear filters, i.e., their response to a sum of two signals is the
same as the sum of the individual responses.

@ Median filter: Non linear filter that selects the median value from each
pixels neighborhood.

@ Robust to outliers, but not good for Gaussian noise.

@ o-trimmed mean: averages together all of the pixels except for the «
fraction that are the smallest and the largest.
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Example of non-linear filters

1211 ]2]4 1[211]2]4
211]13]5]|8 2111358
113]17]6]9 113]17]6]|9
314|867 314|867
41517]18]|°9 415]17]18]9
(Median filter) (a-trimmed mean)
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Bilateral Filtering

@ Weighted filter kernel with a better outlier rejection.
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Bilateral Filtering

@ Weighted filter kernel with a better outlier rejection.

@ Instead of rejecting a fixed percentage, we reject (in a soft way) pixels whose
values differ too much from the central pixel value.
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Bilateral Filtering

@ Weighted filter kernel with a better outlier rejection.

@ Instead of rejecting a fixed percentage, we reject (in a soft way) pixels whose
values differ too much from the central pixel value.

@ The output pixel value depends on a weighted combination of neighboring

pixel values o
>k Flk Dw(isj, k. 1)
Zk,l W(i>j7 ka I)

g(i,j) =
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Bilateral Filtering

@ Weighted filter kernel with a better outlier rejection.

@ Instead of rejecting a fixed percentage, we reject (in a soft way) pixels whose
values differ too much from the central pixel value.

@ The output pixel value depends on a weighted combination of neighboring

pixel values o
>k Flk Dw(isj, k. 1)
Zk,l W(i>j7 ka I)

g(i,j) =

@ Data-dependent bilateral weight function

i o) = o (~EHELUZ 1P WG~ MDY

2 2
204 207

composed of the domain kernel and the range kernel.
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Example Bilateral Filtering

(d) @ (H

Figure: Bilateral filtering [Durand & Dorsey, 02]. (a) noisy step edge input. (b)
domain filter (Gaussian). (c) range filter (similarity to center pixel value). (d)
bilateral filter. (e) filtered step edge output. (f) 3D distance between pixels

[Source: R. Szeliski]
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Distance Transform

@ Useful to quickly precomputing the distance to a curve or a set of points.
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Distance Transform

@ Useful to quickly precomputing the distance to a curve or a set of points.

o Let d(k, /) be some distance metric between pixel offsets, e.g., Manhattan

distance
d(k, 1) = [k + 1]

d(k,)) = VK2 + P2

or Euclidean distance
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Distance Transform

@ Useful to quickly precomputing the distance to a curve or a set of points.

o Let d(k, /) be some distance metric between pixel offsets, e.g., Manhattan

distance
d(k, 1) = [k + 1]

d(k,)) = VK2 + P2

or Euclidean distance

@ The distance transform D(i,j) of a binary image b(/,) is defined as

DY — ki
(i,J) cmin (i—k,j—=1)

it is the distance to the nearest pixel whose value is 0.
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Distance Transform Algorithm

@ The Manhattan distance can be computed using a forward and backward
pass of a simple raster-scan algorithm.
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Distance Transform Algorithm

@ The Manhattan distance can be computed using a forward and backward
pass of a simple raster-scan algorithm.

@ Forward pass:, each non-zero pixel in b is replaced by the minimum of 1 +
the distance of its north or west neighbor.

ofofofof1]o]o ofofofof1]o]o oflofofof1]o]o ofofofof1]o]o
oflof1|1f1o]o olo|1]|1]z2]ofo olo[1]1]2]0]0 oloft|1]1]o]0
of1|1]af1]1]o 012 310 o|1]2]2|3|1]0 o1 10
ol1|1]afa|1]o0 01 3 0| 1]2]2 1] 0 o1 110
oft|1]1]ofofo o|1]2 olo]o o1 1|ofo]o
olo|1]ofo|o]o oflo[1]ofo]0]0 olof|1]ofo|o]0
olololololo]o of[ofo]ofo]o]o olofofofofo]o
(a) (b) (c) (d

[Source: R. Szeliski]
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Distance Transform Algorithm

@ The Manhattan distance can be computed using a forward and backward
pass of a simple raster-scan algorithm.

@ Forward pass:, each non-zero pixel in b is replaced by the minimum of 1 +
the distance of its north or west neighbor.

@ Backward pass: the same, but the minimum is both over the current value
D and 1 + the distance of the south and east neighbors.

ofofofof1]o]o ofofofof1]o]o oflofofof1]o]o ofofofof1]o]o
oflof1|1f1o]o olo|1]|1]z2]ofo olo[1]1]2]0]0 oloft|1]1]o]0
of1|1]af1]1]o 012 310 o|1]2]2|3|1]0 o1 10
ol1|1]afa|1]o0 01 3 0| 1]2]2 1] 0 o1 110
oft|1]1]ofofo o|1]2 olo]o o1 1|ofo]o
olo|1]ofo|o]o oflo[1]ofo]0]0 olof|1]ofo|o]0
olololololo]o of[ofo]ofo]o]o olofofofofo]o
(a) (b) (c) (d

Figure: City block distance transform: (a) original binary image; (b) top to bottom (forward)
raster sweep: green values are used to compute the orange value; (c) bottom to top (backward)
raster sweep: green values are merged with old orange value; (d) final distance transform.

[Source: R. Szeliski]
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Example of Distance Transform

@ More complicated in the Euclidean case.

@ Example of a distance transform

-

@ The ridges is the skeleton or medial axis.

@ Extension: Signed distance transform.

[Source: P. Felzenszwalb]
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Fourier Transform

@ Fourier analysis could be used to analyze the frequency characteristics of
various filters.
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Fourier Transform

@ Fourier analysis could be used to analyze the frequency characteristics of

various filters.

@ How can we analyze what a given filter does to high, medium, and low
frequencies?

Jan 17, 2012 17 / 88
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Fourier Transform

@ Fourier analysis could be used to analyze the frequency characteristics of
various filters.

@ How can we analyze what a given filter does to high, medium, and low
frequencies?

@ Pass a sinusoid of known frequency through the filter and to observe by how
much it is attenuated

s(x) = sin(2rfx + ¢;) = sin(wx + ¢;)

with frequency f, angular frequency w and phase ¢;.
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Fourier Transform

@ Fourier analysis could be used to analyze the frequency characteristics of
various filters.

@ How can we analyze what a given filter does to high, medium, and low
frequencies?

@ Pass a sinusoid of known frequency through the filter and to observe by how
much it is attenuated

s(x) = sin(2rfx + ¢;) = sin(wx + ¢;)

with frequency f, angular frequency w and phase ¢;.

@ If we convolve the sinusoidal signal s(x) with a filter whose impulse response
is h(x), we get another sinusoid of the same frequency but different
magnitude and phase

o(x) = h(x) * s(x) = Asin(wx + ¢,)
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Filtering and Fourier

@ Convolution can be expressed as a weighted summation of shifted input
signals (sinusoids); so it is just a single sinusoid at that frequency.

o(x) = h(x) * s(x) = Asin(wx + ¢,)

A is the gain or magnitude of the filter, while the phase difference
A¢p = ¢, — ¢;i is the shift or phase

<
S

h(x) >
s(x) o(x)

Y

Figure 3.24 The Fourier Transform as the response of a filter h(z) to an input sinusoid
s(z) = e1“* yielding an output sinusoid o(z) = h(z) * s(x) = Aefwr+9,
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Complex notation

@ The sinusoid is express as s(x) = /% = coswx + jsinwx and the filter
sinusoid as _
0(x) = h(x) * s(x) = A<+
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Complex notation

@ The sinusoid is express as s(x) = /% = coswx + jsinwx and the filter
sinusoid as _
0(x) = h(x) * s(x) = A<+

@ The Fourier transform pair is

h(x) «— H(w)
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Complex notation

@ The sinusoid is express as s(x) = /% = coswx + jsinwx and the filter
sinusoid as _
0(x) = h(x) * s(x) = A<+

@ The Fourier transform pair is

h(x) +— H(w)
@ The Fourier transform in continuous domain

H(w) = / " h(x)e % dx

— 00
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Complex notation

The sinusoid is express as s(x) = e/“* = coswx + jsinwx and the filter
sinusoid as _
0(x) = h(x) * s(x) = A<+

The Fourier transform pair is

h(x) +— H(w)

The Fourier transform in continuous domain

H(w) = / " h(x)e % dx

— 00

The Fourier transform in discrete domain

H(k) = Z h(x)e %

where N is the length of the signal.
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Complex notation

The sinusoid is express as s(x) = e/“* = coswx + jsinwx and the filter
sinusoid as _
0(x) = h(x) * s(x) = A<+

The Fourier transform pair is

h(x) «— H(w)

The Fourier transform in continuous domain

H(w) = / " h(x)e % dx

— 00

The Fourier transform in discrete domain

H(k) = 2 h(x)e %

where N is the length of the signal.

The discrete form is known as the Discrete Fourier Transform (DFT).
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Properties Fourier Transform

Property Signal Transform
superposition filz) + fa(x) Fi(w) + Fa(w)
shift flz — ) F(w)edweo
reversal fl—xz) F*(w)
convolution flz)xh(z) F(w)H(w)
correlation flz)® hz) F(w)H*(w)
multiplication f(z)h(z) F(w) = H(w)
differentiation f(z) jwF(w)
domain scaling flaz) 1/aF(w/a)
real images flz)=f*2) < Flw)=F(-w)
Parseval’s Theorem > _[f(z)]* = S IF(w)]?

[Source: R. Szeliski]
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Name Signal Transform

impulse . . é(x) o 1 .
shifted - p .
impulse ———— 8z —u) = e—iwe — 7
box filter ] box(x/a) o asinc(aw)
tent ’ tent(x/a) o asinc? (aw)
Gaussian ~ __ | _ G(w;a) o @G’[w; ]
Laplacian i | VG (z: VI 20 -1
of Gaussian ~ +———— b —=lClzio) o = wio™) ST
Gabor e .. . cos(wyz)CG(z;0) o J@G’{uiwg; a
unsharp ] (14 ~)8(x) (1+~)— ]
mask — —7G(z;0) = @G(w: o 1) . )
windowed - reos(x/(aW)) .
sinc e sinc(z/a) o (see Figure 3.29) . B

[Source: R. Szeliski]
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Name Kernel Transform Plot

(1 +2cosw)

box-3

box-5 5l +(1+ 2cosw + 2cos 2w)

linear (1 +cosw)

binomial % n i

1+ cosw)?

&l

Sobel sinw

1
corner z(1—cosw)

[Source: R. Szeliski]
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2D Fourier Transform

@ Same as 1D, but in 2D. Now the sinusoid is

s(x,y) = sin(wxx + wyy)
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2D Fourier Transform

@ Same as 1D, but in 2D. Now the sinusoid is

s(x,y) = sin(wxx + wyy)

@ The 2D Fourier in continuous domain is then

H(mey):/ / h(x, y)e ™ “=FrY dxdy

and in the discrete domain

1 M—

~ MN
x=0

._.
2
._.

H(kx, k h 7271_1 kxx+kyy

i
o

where M and N are the width and height of the image.
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2D Fourier Transform

@ Same as 1D, but in 2D. Now the sinusoid is

s(x,y) = sin(wxx + wyy)

@ The 2D Fourier in continuous domain is then

H(mey):/ / h(x, y)e ™ “=FrY dxdy

and in the discrete domain

1 M—

~ MN
x=0

._.
2
._.

H(kx, k h 7271_1 kxx+kyy

i
o

where M and N are the width and height of the image.

@ All the properties carry over to 2D.

Raquel Urtasun (TTI-C) Visual Recognition Jan 17, 2012



Example of 2D Fourier Transform

[Source: A. Jepson]
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Pyramids

@ We might want to change resolution of an image before processing.
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Pyramids

@ We might want to change resolution of an image before processing.

@ We might not know which scale we want, e.g., when searching for a face in
an image.
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@ We might want to change resolution of an image before processing.

@ We might not know which scale we want, e.g., when searching for a face in
an image.

@ In this case, we will generate a full pyramid of different image sizes.
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@ We might want to change resolution of an image before processing.

@ We might not know which scale we want, e.g., when searching for a face in
an image.

@ In this case, we will generate a full pyramid of different image sizes.

@ Can also be used to accelerate the search, by first finding at the coarser level
of the pyramid and then at the full resolution.
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Image Pyramid

AN
/ [\ \
coarse E\ =2
AN
/
medium / \ \ =1
AN
/]
/ \ \
fine =0
/ 7 o o
Vs o o o o o o &

[Source: R. Szeliski]
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Interpolation

@ To interpolate (or upsample) an image to a higher resolution, we need to
select an interpolation kernel with which to convolve the image

gli.j) =" f(k,))h(i — rk,j—rl)
kI
with r the up-sampling rate.

@ The linear interpolator (corresponding to the tent kernel) produces
interpolating piecewise linear curves.

@ More complex kernels, e.g., B-splines.

ey, SR

80) RIh(-rk)

r-(k-1) ki r-(k+1)
[Source: R. Szeliski]
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Decimation

@ Decimation: reduces resolution

g(ij) =Y f(k,Nh(i —k/r.j—1/r)

kI
with r the down-sampling rate.

@ Different filters exist as well.
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Multi-Resolution Representations

The most used one is the Laplacian pyramid:

@ We first blur and subsample the original image by a factor of two and store
this in the next level of the pyramid.

@ They then subtract this low-pass version from the original to yield the
band-pass Laplacian image.

@ The pyramid has perfect reconstruction: the Laplacian images plus the
base-level Gaussian are sufficient to exactly reconstruct the original image.

h,
@ How do we reconstruct back?
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Local features for instance-level recognition
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Application Example: Image stitching

[Source: K. Grauman]
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Local features

@ Detection: Identify the interest points.
@ Description: Extract vector feature descriptor around each interest point.
@ Matching: Determine correspondence between descriptors in two views.

@ Tracking: alternative to matching that only searches a small neighborhood
around each detected feature.

[Source: K. Grauman]
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Goal: interest operator repeatability

@ We want to detect (at least some of) the same points in both images.

@ We have to be able to run the detection procedure independently per image.

W

Figure: No chance to find the true matches

[Source: K. Grauman]
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Goal: descriptor distinctiveness

@ We want to be able to reliably determine which point goes with which.

@ Must provide some invariance to geometric and photometric differences
between the two views.

[Source: K. Grauman]
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Local features

@ Detection: Identify the interest points.
@ Description: Extract vector feature descriptor around each interest point.

@ Matching: Determine correspondence between descriptors in two views.

[Source: K. Grauman]
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What points to choose?

[Source: K. Grauman]
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What points to choose?

@ Textureless patches are nearly impossible to localize.
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What points to choose?

@ Textureless patches are nearly impossible to localize.

@ Patches with large contrast changes (gradients) are easier to localize.
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What points to choose?

@ Textureless patches are nearly impossible to localize.
@ Patches with large contrast changes (gradients) are easier to localize.

@ But straight line segments at a single orientation suffer from the aperture
problem, i.e., it is only possible to align the patches along the direction
normal to the edge direction.
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What points to choose?

@ Textureless patches are nearly impossible to localize.
@ Patches with large contrast changes (gradients) are easier to localize.

@ But straight line segments at a single orientation suffer from the aperture
problem, i.e., it is only possible to align the patches along the direction
normal to the edge direction.

@ Gradients in at least two (significantly) different orientations are the easiest,
e.g., corners.
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Corners as distinctive interest points

@ We should easily recognize the point by looking through a small window.

@ Shifting a window in any direction should give a large change in intensity.

Figure: (left) flat region: no change in all directions, (center) edge: no change
along the edge direction, (right) corner: significant change in all directions

[Source: Alyosha Efros, Darya Frolova, Denis Simakov]
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A Simple Matching Criteria

@ Compare two image patches using (weighted) summed square difference
Ewssp(u) = Z w(p:)[h(pi + u) — lb(p:)]?

with fp and /; two images being compared, u(uy, u,) a displacement vector,
w(p) a spatially varying weighting function, and the summation i is over all
the pixels in the patch.
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A Simple Matching Criteria

@ Compare two image patches using (weighted) summed square difference
Ewssp(u) = Z w(p:)[h(pi + u) — lb(p:)]?

with fp and /; two images being compared, u(uy, u,) a displacement vector,
w(p) a spatially varying weighting function, and the summation i is over all
the pixels in the patch.

@ We do not know which other image locations the feature will end up being
matched against.

@ We can only compute how stable this metric is with respect to small
variations in position u by comparing an image patch against itself.

@ This is the auto-correlation function

Enc(Bu) =" w(pi)llo(pi + Au) — lo(p)]?

i
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Which one is better?

[Source: R. Szeliski]
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How to select?

@ Using a Taylor Series expansion ly(p; + Au) = lo(p;) + Vio(p;) we can
approximate the autocorrelation as

Eac(Au) = Z w(p)llo(pi + Au) — I(p:)]?
Z w(pi)llo(pi) + Vio(pi)Au — o(p;)]?

= D" wlp)[Vh(pi)duP

i

Q

= Au’AAu
with Oly 0
bip) = ( ==, = i
the image gradient.

@ Gradient can be computed with the filtering techniques we saw, e.g.,
derivatives of Gaussians.
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More on selection

@ The autocorrelation is Eac(Au) = Au” AAu, with

A 2oL, 12 L,
“X S wwn | S e[
u v

y

where we have replaced the weighted summations with discrete convolutions
with the weighting kernel w.

direction of the
fastest change

direction of the
slowest change

[Source: R. Szeliski]
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More on selection

@ The autocorrelation is Eac(Au) = Au” AAu, with
21 21l
A=Y S wwn | 5w 55
u v

where we have replaced the weighted summations with discrete convolutions
with the weighting kernel w.

@ A can be interpreted as a tensor where the outer products of the gradients
are convolved with a weighting function.

@ Eigenvalues a notion of uncertainty

direction of the
fastest change

direction of the
slowest change

[Source: R. Szeliski]
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Eigenvalues a notion of uncertainty

@ A is symmetric

Xo O

A:U[o A\

:| UT with  Au; = \ju;

@ The eigenvalues of A reveal the amount of intensity change in the two
principal orthogonal gradient directions in the window.

@ How is this matrix for

[Source: R. Szeliski]
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Local Feature Selection Criteria

@ Shi and Tomasi, 94 proposed the smallest eigenvalue of A, i.e., )\0_1/2.
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)\0 — Oé)\l
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Local Feature Selection Criteria

@ Shi and Tomasi, 94 proposed the smallest eigenvalue of A, i.e., )\0_1/2.

@ Harris and Stephens, 88 is rotationally invariant and downweights edge-like
features where A1 > A\g

det(A) — atrace(A)? = M1 — a(Xo 4+ A\1)?

@ Triggs, 04 suggested
)\0 — Oé)\l

also reduces the response at 1D edges, where aliasing errors sometimes
inflate the smaller eigenvalue.

@ Brown et al, 05 use the harmonic mean

det(A) . AoA1
trace(A) Ao+ A1
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Type of responses

“‘edge”: “corner’: “flat” region
Ay >> 2y L, and A, are large, A, and A, are
A, >> A, Ay~ Ao small;

[Source: K. Grauman]

Raquel Urtasun (TTI-C) Visual Recognition Jan 17, 2012 45 / 88



Harris Corner detector

@ Compute A for each image window to get their cornerness scores.

@ Find points whose surrounding window gave large corner response (f >
threshold).

© Take the points of local maxima, i.e., perform non-maximum suppression.
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[Source: K. Grauman]
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1) Compute Cornerness

[Source: K. Grauman]
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2) Find High Response

[Source: K. Grauman]
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3) Non-maxima Suppresion

[Source: K. Grauman]

Raquel Urtasun (TTI-C) Visual Recognition Jan 17, 2012 50 / 88



[Source: K. Grauman]
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Another Example

[Source: K. Grauman]
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Cornerness

[Source: K. Grauman]
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Interest Points

[Source: K. Grauman]
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Properties of Harris Corner Detector

@ Rotation invariant?
2

A=wx [ /IX/ ljéy } =U [ Ao 0 ]UT with  Au; = \ju;
y Ix

@ Scale Invariant?

]
o -

All points will be Corner!
classified as edges

[Source: K. Grauman]
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Scale invariant interest points

How can we independently select interest points in each image, such that the
detections are repeatable across different scales?
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Scale invariant interest points

How can we independently select interest points in each image, such that the
detections are repeatable across different scales?

@ Extract features at a variety of scales, e.g., by using multiple resolutions in a
pyramid, and then matching features at the same level.

@ When does this work?
@ More efficient to extract features that are stable in both location and scale.

@ Find scale that gives local maxima of a function f in both position and scale.

Ja@, ,, (xo) = fU , (.Y
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Automatic Scale Selection

Function responses for increasing scale (scale signature).
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Automatic Scale Selection

Function responses for increasing scale (scale signature).
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What can the signature function be?

@ Lindeberg (1998): extrema in the Laplacian of Gaussian (LoG).

@ Lowe (2004) proposed computing a set of sub-octave Difference of Gaussian
filters looking for 3D (space+scale) maxima in the resulting structure.

Scale
(next
octave)

Scale
(first
octave)

Difference of
Gaussian Gaussian (DOG) LTI T T

[Source: R. Szeliski]
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Blob detection

@ Laplacian of Gaussian: Circularly symmetric operator for blob detection in
2D

[Source: K. Grauman]
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Blob detection in 2D: scale selection

Laplacian-of-Gaussian = blob detector

filter scales

[Source: B. Leibe]
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Characteristic Scale

@ We define the characteristic scale as the scale that produces peak of
Laplacian response

2000

BEEEE s

.
>
~

characteristic scale

[Source: S. Lazebnik]
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Example

L=

S >
[Source: K. Grauman]
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[Source: K. Grauman]
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] >
[Source: K. Grauman]
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Example

[Source: K. Grauman]
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Example
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Example

[Source: K. Grauman]
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Scale invariant interest points

Interest points are local maxima in both position

and scale.
of

r F I T FEF
O' ,
- / Scale

& Lax (0) + Ly\ (O-) *o3

OO \\

Squared filter
response maps

= List of
(x, y. 0)

Kristen Grauman
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[Source: S. Lazebnik]
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Fast approximation

(Laplacian)

(Difference of Gaussians)

I (ko)

[Source: K. Grauman]
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Lowe's DoG

@ Lowe (2004) proposed computing a set of sub-octave Difference of Gaussian
filters looking for 3D (space+scale) maxima in the resulting structure

Scale
(next
octave)

Scale
(first
octave)

Difference of
Gaussian Gaussian (DOG) LTI T T

[Source: R. Szeliski]
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Laplacian vs Hessian

@ Laplacian of Gaussians is scale invariant.
@ Simple and efficient.

@ But fires more on edges than determinant of hessian
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Properties of the ideal feature

@ Local: features are local, so robust to occlusion and clutter (no prior
segmentation).
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Properties of the ideal feature

@ Local: features are local, so robust to occlusion and clutter (no prior
segmentation).

@ Invariant: to certain transformations, e.g, scale, rotation.

@ Robust: noise, blur, discretization, compression, etc. do not have a big
impact on the feature.

@ Distinctive: individual features can be matched to a large database of
objects.

@ Quantity: many features can be generated for even small objects.
@ Accurate: precise localization.

o Efficient: close to real-time performance.
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A lot of other interest point detectors

@ Hessian

@ Lowe: DoG

@ Lindeberg: scale selection

@ Miikolajczyk & Schmid: Hessian/Harris-Laplacian/Affine
@ Tuyttelaars & Van Gool: EBR and IBR

@ Matas: MSER

@ Kadir & Brrady: Salient Regions

@ Speeded-Up Robust Features (SURF) of Bay et al.
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Evaluation criteria: repeatability

@ Repeatability rate: percentage of detected that have correct corresponding
points

@ What's the problem of this?

#correspondences = 3
#detected = 5
Repeatability=60%

[Source: T. Tuyttellaars]
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Evaluation criteria: repeatability

@ Two points are in correspondence if the intersection over union is bigger
than a certain threshold.

[Source: T. Tuyttellaars]
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Local features

@ Detection: ldentify the interest points.
@ Description: Extract vector feature descriptor around each interest point.

@ Matching: Determine correspondence between descriptors in two views.

[Source: K. Grauman]
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The ideal feature descriptor

Repeatable (invariant/robust)

Distinctive

Compact

Efficient
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Invariances

Multiple View
Geometry
inen

dies wsion

- . e.g. scale,

translation,

- rotation

[Source: T. Tuytelaars]

Raquel Urtasun (TTI-C) Visual Recognition Jan 17, 2012



Invariances

[Source: T. Tuytelaars]
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Raw Pixels as Local Descriptrs

@ The simplest way is to write down the list of intensities to form a feature
vector, and normalize them (i.e., mean 0, variance 1).

@ But this is very sensitive to even small shifts, rotations.

region A region B

(I |

-— =3

>

 -—
vector a vector b

[Source: K. Grauman]
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SIFT descriptor [Lowe 2004]

@ Compute the gradient at each pixel in a 16 x 16 window around the

detected keypoint, using the appropriate level of the Gaussian pyramid at
which the keypoint was detected.

@ Doweight gradients by a Gaussian fall-off function (blue circle) to reduce the
influence of gradients far from the center.

@ In each 4 x 4 quadrant, compute a gradient orientation histogram using 8

orientation histogram bins.

(a) image gradients (b) keypoint descriptor

[Source: R. Szeliski]
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SIFT descriptor [Lowe 2004]

@ To reduce the effects of location and dominant orientation misestimation,
each of the original 256 weighted gradient magnitudes is softly added to
2 x 2 x 2 histogram bins using trilinear interpolation.

@ The resulting 128 non-negative values form a raw version of the SIFT
descriptor vector.

@ To reduce the effects of contrast or gain (additive variations are already
removed by the gradient), the 128-D vector is normalized to unit length.

@ To further make the descriptor robust to other photometric variations,
values are clipped to 0.2 and the resulting vector is once again renormalized
to unit length.

@ Great engineering effort!
@ Why subpatches?

@ Why does SIFT have some illumination invariance?
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SIFT descriptor [Lowe 2004]

Extraordinarily robust matching technique
@ Changes in viewpoint: up to about 60 degree out of plane rotation
@ Changes in illumination: sometimes even day vs. night
@ Fast and efficientcan run in real time
°

Lots of code available

P4 l

[Source: S. Seitz]
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Example

Figure: NASA Mars Rover images with SIFT feature matches

[Source: N. Snavely]
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SIFT properties

Invariant to
@ Scale
@ Rotation
Partially invariant to
@ lllumination changes
@ Camera viewpoint

@ Occlusion, clutter
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Making descriptor rotation invariant

@ Rotate patch according to its dominant gradient orientation

@ This puts the patches into a canonical orientation

Figure: Figure from M. Brown

[Source: K. Grauman]
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Gradient location-orientation histogram (GLOH)

@ Developed by Mikolajczyk and Schmid (2005): variant on SIFT that uses a
log-polar binning structure instead of the four quadrants.

@ The spatial bins are 11, and 15, with eight angular bins (except for the
central region), for a total of 17 spatial bins and 16 orientation bins.

@ The 272D histogram is then projected onto a 128D descriptor using PCA
trained on a large database.

(a) image gradients (b) keypoint descriptor

[Source: R. Szeliski]
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Other Descriptors

@ Steerable filters

@ moment invariants,
@ complex filters

@ shape contexts,,

e PCA-SIFT,

e HOG,

@ SURF

o DAISY
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Local features

@ Detection: ldentify the interest points.
@ Description: Extract vector feature descriptor around each interest point.

@ Matching: Determine correspondence between descriptors in two views.

[Source: K. Grauman]
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Matching local features

Once we have extracted features and their descriptors, we need to match the
features between these images.

@ Matching strategy: which correspondences are passed on to the next stage

@ Devise efficient data structures and algorithms to perform this matching

Figure: Images from K. Grauman
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Matching local features

@ To generate candidate matches, find patches that have the most similar
appearance (e.g., lowest SSD)

@ Simplest approach: compare them all, take the closest (or closest k, or
within a thresholded distance)

[Source: K. Grauman]
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Ambiguous matches

@ At what SSD value do we have a good match?

@ To add robustness, consider ratio of distance to best match to distance to
second best match

o If low, first match looks good.
e If high, could be ambiguous match.

%
i

[Source: K. Grauman]
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Matching SIFT Descriptors

@ Nearest neighbor (Euclidean distance)

@ Threshold ratio of nearest to 2nd nearest descriptor

0.8
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Figure: Images from D. Lowe

[Source: K. Grauman]
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