
Visual Recognition: Filtering and Transformations

Raquel Urtasun

TTI Chicago

Jan 10, 2012

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 1 / 91

Today’s lecture ...

Image formation and color

Image Filtering

Additional transformations

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 2 / 91

Material

Chapter 2 and 3 of Rich Szeliski book

Available online here

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 3 / 91

http://szeliski.org/Book/
http://szeliski.org/Book/

How is an image created?

The image formation process that produced a particular image depends on

lighting conditions

scene geometry,

surface properties

camera optics

[Source: R. Szeliski]
Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 4 / 91

Image formation and color

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 5 / 91

From photons to RGB values

Sample the 2D space on a regular grid.

Quantize each sample, i.e., the photons arriving at each active cell are
integrated and then digitized.

[Source: D. Hoiem]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 6 / 91

Problems: Aliasing

Shannons Sampling Theorem shows that the minimum sampling

fs ≥ 2fmax

If you haven’t seen this... take a class on Fourier analysis... everyone should
have at least one!

Figure: example of a 1D signal

[Source: R. Szeliski]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 7 / 91

And in 2D...

Figure: (a) Example of a 2D signal. (b–d) downsampled with different filters

[Source: R. Szeliski]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 8 / 91

Color Cameras

Each color camera integrates light according to the spectral response
function of its red, green, and blue sensors.

R =

∫
L(λ)SR(λ)dλ

G =

∫
L(λ)SG (λ)dλ

B =

∫
L(λ)SB(λ)dλ

where λ is the incoming spectrum of light at a given pixel, and SR ,SG ,SB ,
are the red, green, and blue spectral sensitivities of the corresponding
sensors.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 9 / 91

Bayer Pattern

Color cameras use color filter arrays (CFAs), where alternating sensors are
covered by different colored filters.

More green filters as the luminance signal is mostly determined by green
values and the visual system is much more sensitive to high frequency detail
in luminance than in chrominance.

Demosaicing: interpolate the missing color values to have RGB values for
all pixels.

Figure: (a) Bayer Pattern. (b) interpolated RGB

[Source: R. Szeliski]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 10 / 91

Bayer Pattern

Color cameras use color filter arrays (CFAs), where alternating sensors are
covered by different colored filters.

More green filters as the luminance signal is mostly determined by green
values and the visual system is much more sensitive to high frequency detail
in luminance than in chrominance.

Demosaicing: interpolate the missing color values to have RGB values for
all pixels.

Figure: (a) Bayer Pattern. (b) interpolated RGB

[Source: R. Szeliski]
Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 10 / 91

Bayer Pattern

Color cameras use color filter arrays (CFAs), where alternating sensors are
covered by different colored filters.

More green filters as the luminance signal is mostly determined by green
values and the visual system is much more sensitive to high frequency detail
in luminance than in chrominance.

Demosaicing: interpolate the missing color values to have RGB values for
all pixels.

Figure: (a) Bayer Pattern. (b) interpolated RGB

[Source: R. Szeliski]
Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 10 / 91

RGB components

Figure: (a) Original image. (b) R component, (c) G component, (d) B
component.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 11 / 91

HSV color space

(RGB) (HSV)

There are other color spaces that might be better from a processing
perspective: Lab, HSV, etc

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 12 / 91

HSV components

Figure: (a) Original image. (b) H component, (c) S component, (d) V
component.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 13 / 91

Filtering

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 14 / 91

Applications of Filtering

Enhance an image, e.g., denoise, resize.

Extract information, e.g., texture, edges.

Detect patterns, e.g., template matching.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 15 / 91

Noise reduction

Simplest thing: replace each pixel by the average of its neighbors.

This assumes that neighboring pixels are similar, and the noise to be
independent from pixel to pixel.

[Source: S. Marschner]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 16 / 91

Noise reduction

Simpler thing: replace each pixel by the average of its neighbors

This assumes that neighboring pixels are similar, and the noise to be
independent from pixel to pixel.

Moving average in 1D: [1, 1, 1, 1, 1]/5

[Source: S. Marschner]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 17 / 91

Noise reduction

Simpler thing: replace each pixel by the average of its neighbors

This assumes that neighboring pixels are similar, and the noise to be
independent from pixel to pixel.

Non-uniform weights [1, 4, 6, 4, 1] / 16

[Source: S. Marschner]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 18 / 91

Moving Average in 2D

[Source: S. Seitz]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 19 / 91

Moving Average in 2D

[Source: S. Seitz]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 19 / 91

Moving Average in 2D

[Source: S. Seitz]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 19 / 91

Moving Average in 2D

[Source: S. Seitz]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 19 / 91

Moving Average in 2D

[Source: S. Seitz]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 19 / 91

Moving Average in 2D

[Source: S. Seitz]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 19 / 91

Linear Filtering: Correlation

Involves weighted combinations of pixels in small neighborhoods.

The output pixels value is determined as a weighted sum of input pixel values

g(i , j) =
∑
k,l

f (i + k , j + l)h(k , l)

The entries of the weight kernel or mask h(k, l) are often called the filter
coefficients.

This operator is the correlation operator

g = f ⊗ h

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 20 / 91

Linear Filtering: Correlation

Involves weighted combinations of pixels in small neighborhoods.

The output pixels value is determined as a weighted sum of input pixel values

g(i , j) =
∑
k,l

f (i + k , j + l)h(k , l)

The entries of the weight kernel or mask h(k , l) are often called the filter
coefficients.

This operator is the correlation operator

g = f ⊗ h

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 20 / 91

Linear Filtering: Correlation

Involves weighted combinations of pixels in small neighborhoods.

The output pixels value is determined as a weighted sum of input pixel values

g(i , j) =
∑
k,l

f (i + k , j + l)h(k , l)

The entries of the weight kernel or mask h(k , l) are often called the filter
coefficients.

This operator is the correlation operator

g = f ⊗ h

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 20 / 91

Linear Filtering: Correlation

Involves weighted combinations of pixels in small neighborhoods.

The output pixels value is determined as a weighted sum of input pixel values

g(i , j) =
∑
k,l

f (i + k , j + l)h(k , l)

The entries of the weight kernel or mask h(k , l) are often called the filter
coefficients.

This operator is the correlation operator

g = f ⊗ h

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 20 / 91

Convolution Example

Figure: What does this filter do?

[Source: R. Szeliski]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 21 / 91

Smoothing by averaging

What if the filter size was 5 x 5 instead of 3 x 3?

[Source: K. Graumann]
Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 22 / 91

Gaussian filter

What if we want nearest neighboring pixels to have the most influence on
the output?

Removes high-frequency components from the image (low-pass filter).

[Source: S. Seitz]
Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 23 / 91

Smoothing with a Gaussian

[Source: K. Grauman]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 24 / 91

Gaussian filter: Parameters

Size of kernel or mask: Gaussian function has infinite support, but discrete
filters use finite kernels.

[Source: K. Grauman]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 25 / 91

Gaussian filter: Parameters

Variance of the Gaussian: determines extent of smoothing.

[Source: K. Grauman]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 26 / 91

Gaussian filter: Parameters

[Source: K. Grauman]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 27 / 91

Properties of the Smoothing

All values are positive.

They all sum to 1.

Amount of smoothing proportional to mask size.

Remove high-frequency components; low-pass filter.

[Source: K. Grauman]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 28 / 91

Properties of the Smoothing

All values are positive.

They all sum to 1.

Amount of smoothing proportional to mask size.

Remove high-frequency components; low-pass filter.

[Source: K. Grauman]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 28 / 91

Properties of the Smoothing

All values are positive.

They all sum to 1.

Amount of smoothing proportional to mask size.

Remove high-frequency components; low-pass filter.

[Source: K. Grauman]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 28 / 91

Properties of the Smoothing

All values are positive.

They all sum to 1.

Amount of smoothing proportional to mask size.

Remove high-frequency components; low-pass filter.

[Source: K. Grauman]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 28 / 91

Example of Correlation

What is the result of filtering the impulse signal (image) F with the arbitrary
kernel H?

[Source: K. Grauman]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 29 / 91

Convolution

Convolution operator

g(i , j) =
∑
k,l

f (i − k , j − l)h(k , l) =
∑
k,l

f (k , l)h(i − k, j − l) = f ∗ h

and h is then called the impulse response function.

Equivalent to flip the filter in both dimensions (bottom to top, right to left)
and apply cross-correlation.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 30 / 91

Convolution

Convolution operator

g(i , j) =
∑
k,l

f (i − k , j − l)h(k , l) =
∑
k,l

f (k , l)h(i − k, j − l) = f ∗ h

and h is then called the impulse response function.

Equivalent to flip the filter in both dimensions (bottom to top, right to left)
and apply cross-correlation.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 30 / 91

Matrix form

Correlation and convolution can both be written as a matrix-vector multiply,
if we first convert the two-dimensional images f (i , j) and g(i , j) into
raster-ordered vectors f and g

g = Hf

with H a sparse matrix.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 31 / 91

Correlation vs Convolution

Convolution

g(i , j) =
∑
k,l

f (i − k , j − l)h(k, l)

G = H ∗ F

Cross-correlation

g(i , j) =
∑
k,l

f (i + k , j + l)h(k, l)

G = H ⊗ F

For a Gaussian or box filter, how will the outputs differ?

If the input is an impulse signal, how will the outputs differ? h ∗ δ?, and
h ⊗ δ?

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 32 / 91

Example

What’s the result?

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 33 / 91

Example

What’s the result?

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 33 / 91

Example

What’s the result?

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 33 / 91

Example

What’s the result?

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 33 / 91

Correlation vs Convolution

The convolution is both commutative and associative.

The Fourier transform of two convolved images is the product of their
individual Fourier transforms.

Both correlation and convolution are linear shift-invariant (LSI) operators,
which obey both the superposition principle

h ◦ (f0 + f1) = h ◦ fo + h ◦ f1

and the shift invariance principle

if g(i , j) = f (i + k, j + l)↔ (h ◦ g)(i , j) = (h ◦ f)(i + k, j + l)

which means that shifting a signal commutes with applying the operator.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 34 / 91

Correlation vs Convolution

The convolution is both commutative and associative.

The Fourier transform of two convolved images is the product of their
individual Fourier transforms.

Both correlation and convolution are linear shift-invariant (LSI) operators,
which obey both the superposition principle

h ◦ (f0 + f1) = h ◦ fo + h ◦ f1

and the shift invariance principle

if g(i , j) = f (i + k , j + l)↔ (h ◦ g)(i , j) = (h ◦ f)(i + k, j + l)

which means that shifting a signal commutes with applying the operator.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 34 / 91

Correlation vs Convolution

The convolution is both commutative and associative.

The Fourier transform of two convolved images is the product of their
individual Fourier transforms.

Both correlation and convolution are linear shift-invariant (LSI) operators,
which obey both the superposition principle

h ◦ (f0 + f1) = h ◦ fo + h ◦ f1

and the shift invariance principle

if g(i , j) = f (i + k , j + l)↔ (h ◦ g)(i , j) = (h ◦ f)(i + k, j + l)

which means that shifting a signal commutes with applying the operator.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 34 / 91

Boundary Effects

The results of filtering the image in this form will lead to a darkening of the
corner pixels.

The original image is effectively being padded with 0 values wherever the
convolution kernel extends beyond the original image boundaries.

A number of alternative padding or extension modes have been developed.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 35 / 91

Separable Filters

The process of performing a convolution requires K 2 operations per pixel,
where K is the size of the convolution kernel.

In many cases, this operation can be speed up by first performing a 1D
horizontal convolution followed by a 1D vertical convolution, requiring 2K
operations.

If his is possible, then the convolution kernel is called separable.

And it is the outer product of two kernels

K = vhT

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 36 / 91

Separable Filters

The process of performing a convolution requires K 2 operations per pixel,
where K is the size of the convolution kernel.

In many cases, this operation can be speed up by first performing a 1D
horizontal convolution followed by a 1D vertical convolution, requiring 2K
operations.

If his is possible, then the convolution kernel is called separable.

And it is the outer product of two kernels

K = vhT

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 36 / 91

Separable Filters

The process of performing a convolution requires K 2 operations per pixel,
where K is the size of the convolution kernel.

In many cases, this operation can be speed up by first performing a 1D
horizontal convolution followed by a 1D vertical convolution, requiring 2K
operations.

If his is possible, then the convolution kernel is called separable.

And it is the outer product of two kernels

K = vhT

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 36 / 91

Separable Filters

The process of performing a convolution requires K 2 operations per pixel,
where K is the size of the convolution kernel.

In many cases, this operation can be speed up by first performing a 1D
horizontal convolution followed by a 1D vertical convolution, requiring 2K
operations.

If his is possible, then the convolution kernel is called separable.

And it is the outer product of two kernels

K = vhT

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 36 / 91

Let’s play a game...

Is this separable? If yes, what’s the separable version?

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 37 / 91

Let’s play a game...

Is this separable? If yes, what’s the separable version?

What does this filter do?

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 37 / 91

Let’s play a game...

Is this separable? If yes, what’s the separable version?

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 38 / 91

Let’s play a game...

Is this separable? If yes, what’s the separable version?

What does this filter do?

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 38 / 91

Let’s play a game...

Is this separable? If yes, what’s the separable version?

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 39 / 91

Let’s play a game...

Is this separable? If yes, what’s the separable version?

What does this filter do?

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 39 / 91

Let’s play a game...

Is this separable? If yes, what’s the separable version?

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 40 / 91

Let’s play a game...

Is this separable? If yes, what’s the separable version?

What does this filter do?

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 40 / 91

Let’s play a game...

Is this separable? If yes, what’s the separable version?

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 41 / 91

Let’s play a game...

Is this separable? If yes, what’s the separable version?

What does this filter do?

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 41 / 91

How can we tell if a given kernel K is indeed separable?

Inspection... this is what we were doing.

Looking at the analytic form of it.

Look at the singular value decomposition (SVD), and if only one singular
value is non-zero, then it is separable

K = UΣVT =
∑
i

σiuiv
T
i

with Σ = diag(σi).
√
σ1u1 and

√
σ1vT

1 are the vertical and horizontal kernels.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 42 / 91

How can we tell if a given kernel K is indeed separable?

Inspection... this is what we were doing.

Looking at the analytic form of it.

Look at the singular value decomposition (SVD), and if only one singular
value is non-zero, then it is separable

K = UΣVT =
∑
i

σiuiv
T
i

with Σ = diag(σi).

√
σ1u1 and

√
σ1vT

1 are the vertical and horizontal kernels.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 42 / 91

How can we tell if a given kernel K is indeed separable?

Inspection... this is what we were doing.

Looking at the analytic form of it.

Look at the singular value decomposition (SVD), and if only one singular
value is non-zero, then it is separable

K = UΣVT =
∑
i

σiuiv
T
i

with Σ = diag(σi).
√
σ1u1 and

√
σ1vT

1 are the vertical and horizontal kernels.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 42 / 91

How can we tell if a given kernel K is indeed separable?

Inspection... this is what we were doing.

Looking at the analytic form of it.

Look at the singular value decomposition (SVD), and if only one singular
value is non-zero, then it is separable

K = UΣVT =
∑
i

σiuiv
T
i

with Σ = diag(σi).
√
σ1u1 and

√
σ1vT

1 are the vertical and horizontal kernels.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 42 / 91

Filtering: Edge detection

Map image from 2d array of pixels to a set of curves or line segments or
contours.

Look for strong gradients, post-process.

Figure: [Shotton et al. PAMI, 07]

[Source: K. Grauman]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 43 / 91

Filtering: Edge detection

Map image from 2d array of pixels to a set of curves or line segments or
contours.

Look for strong gradients, post-process.

Figure: [Shotton et al. PAMI, 07]

[Source: K. Grauman]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 43 / 91

What causes an edge?

[Source: K. Grauman]
Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 44 / 91

Looking more locally...

[Source: K. Grauman]
Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 45 / 91

Derivatives and Edges

An edge is a place of rapid change in the image intensity function.

[Source: S. Lazebnik]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 46 / 91

How to Implement Derivatives with Convolution

For 2D functions, the partial derivative is

∂f (x , y)

∂x
= lim
ε→0

f (x + ε, y)− f (x)

ε

We can approximate with finite differences

∂f (x , y)

∂x
≈ f (x + 1, y)− f (x)

1

What would be the filter to implement this using convolution?

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 47 / 91

How to Implement Derivatives with Convolution

For 2D functions, the partial derivative is

∂f (x , y)

∂x
= lim
ε→0

f (x + ε, y)− f (x)

ε

We can approximate with finite differences

∂f (x , y)

∂x
≈ f (x + 1, y)− f (x)

1

What would be the filter to implement this using convolution?

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 47 / 91

How to Implement Derivatives with Convolution

For 2D functions, the partial derivative is

∂f (x , y)

∂x
= lim
ε→0

f (x + ε, y)− f (x)

ε

We can approximate with finite differences

∂f (x , y)

∂x
≈ f (x + 1, y)− f (x)

1

What would be the filter to implement this using convolution?

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 47 / 91

Partial derivatives of an image

Figure: Using correlation filters

[Source: K. Grauman]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 48 / 91

Finite Difference Filters

[Source: K. Grauman]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 49 / 91

Image Gradient

The gradient of an image ∇f =
[
∂f
∂x ,

∂f
∂y

]
The gradient points in the direction of most rapid change in intensity

The gradient direction (orientation of edge normal) is given by:

θ = tan−1

(
∂f

∂y
/
∂f

∂x

)
The edge strength is given by the magnitude ||∇f || =

√
(∂f∂x)2 + (∂f∂y)2

[Source: S. Seitz]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 50 / 91

Image Gradient

The gradient of an image ∇f =
[
∂f
∂x ,

∂f
∂y

]
The gradient points in the direction of most rapid change in intensity

The gradient direction (orientation of edge normal) is given by:

θ = tan−1

(
∂f

∂y
/
∂f

∂x

)

The edge strength is given by the magnitude ||∇f || =
√

(∂f∂x)2 + (∂f∂y)2

[Source: S. Seitz]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 50 / 91

Image Gradient

The gradient of an image ∇f =
[
∂f
∂x ,

∂f
∂y

]
The gradient points in the direction of most rapid change in intensity

The gradient direction (orientation of edge normal) is given by:

θ = tan−1

(
∂f

∂y
/
∂f

∂x

)
The edge strength is given by the magnitude ||∇f || =

√
(∂f∂x)2 + (∂f∂y)2

[Source: S. Seitz]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 50 / 91

Image Gradient

The gradient of an image ∇f =
[
∂f
∂x ,

∂f
∂y

]
The gradient points in the direction of most rapid change in intensity

The gradient direction (orientation of edge normal) is given by:

θ = tan−1

(
∂f

∂y
/
∂f

∂x

)
The edge strength is given by the magnitude ||∇f || =

√
(∂f∂x)2 + (∂f∂y)2

[Source: S. Seitz]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 50 / 91

Effects of noise

Consider a single row or column of the image.

Plotting intensity as a function of position gives a signal.

[Source: S. Seitz]
Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 51 / 91

Effects of noise

Smooth first, and look for picks in ∂
∂x (h ∗ f).

[Source: S. Seitz]
Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 52 / 91

Derivative theorem of convolution

Differentiation property of convolution

∂

∂x
(h ∗ f) = (

∂h

∂x
) ∗ f

[Source: S. Seitz]Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 53 / 91

Derivative of Gaussians

We have the following equivalence

(I ⊗ g)⊗ h = I ⊗ (g ⊗ h)

[Source: K. Grauman]
Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 54 / 91

Laplacian of Gaussians

Edge by detecting zero-crossings of bottom graph

[Source: S. Seitz]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 55 / 91

2D Edge Filtering

with ∇2 the Laplacian operator ∇2f = ∂2f
∂x2 + ∂2f

∂y2

[Source: S. Seitz]
Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 56 / 91

Effect of σ on derivatives

The detected structures differ depending on the Gaussian’s scale parameter:

Larger values: larger scale edges detected.

Smaller values: finer features detected.

[Source: K. Grauman]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 57 / 91

Derivatives

Use opposite signs to get response in regions of high contrast.

They sum to 0 so that there is no response in constant regions.

High absolute value at points of high contrast.

[Source: K. Grauman]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 58 / 91

Band-pass filters

The Sobel and corner filters are band-pass and oriented filters.

More sophisticated filters can be obtained by convolving with a Gaussian
filter

G (x , y , σ) =
1

2πσ2
exp

(
−x2 + y2

2σ2

)
and taking the first or second derivatives.

These filters are band-pass filters: they filter low and high frequencies.

The second derivative of a two-dimensional image is the laplacian operator

∇2f =
∂2f

∂x2
+
∂2f

∂y2

Blurring an image with a Gaussian and then taking its Laplacian is equivalent
to convolving directly with the Laplacian of Gaussian (LoG) filter,

∇2fG (x , y , σ) =

(
x2 + y2

σ4
− 2

σ2

)
G (x , y , σ)

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 59 / 91

Band-pass filters

The Sobel and corner filters are band-pass and oriented filters.

More sophisticated filters can be obtained by convolving with a Gaussian
filter

G (x , y , σ) =
1

2πσ2
exp

(
−x2 + y2

2σ2

)
and taking the first or second derivatives.

These filters are band-pass filters: they filter low and high frequencies.

The second derivative of a two-dimensional image is the laplacian operator

∇2f =
∂2f

∂x2
+
∂2f

∂y2

Blurring an image with a Gaussian and then taking its Laplacian is equivalent
to convolving directly with the Laplacian of Gaussian (LoG) filter,

∇2fG (x , y , σ) =

(
x2 + y2

σ4
− 2

σ2

)
G (x , y , σ)

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 59 / 91

Band-pass filters

The Sobel and corner filters are band-pass and oriented filters.

More sophisticated filters can be obtained by convolving with a Gaussian
filter

G (x , y , σ) =
1

2πσ2
exp

(
−x2 + y2

2σ2

)
and taking the first or second derivatives.

These filters are band-pass filters: they filter low and high frequencies.

The second derivative of a two-dimensional image is the laplacian operator

∇2f =
∂2f

∂x2
+
∂2f

∂y2

Blurring an image with a Gaussian and then taking its Laplacian is equivalent
to convolving directly with the Laplacian of Gaussian (LoG) filter,

∇2fG (x , y , σ) =

(
x2 + y2

σ4
− 2

σ2

)
G (x , y , σ)

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 59 / 91

Band-pass filters

The Sobel and corner filters are band-pass and oriented filters.

More sophisticated filters can be obtained by convolving with a Gaussian
filter

G (x , y , σ) =
1

2πσ2
exp

(
−x2 + y2

2σ2

)
and taking the first or second derivatives.

These filters are band-pass filters: they filter low and high frequencies.

The second derivative of a two-dimensional image is the laplacian operator

∇2f =
∂2f

∂x2
+
∂2f

∂y2

Blurring an image with a Gaussian and then taking its Laplacian is equivalent
to convolving directly with the Laplacian of Gaussian (LoG) filter,

∇2fG (x , y , σ) =

(
x2 + y2

σ4
− 2

σ2

)
G (x , y , σ)

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 59 / 91

Band-pass filters

The Sobel and corner filters are band-pass and oriented filters.

More sophisticated filters can be obtained by convolving with a Gaussian
filter

G (x , y , σ) =
1

2πσ2
exp

(
−x2 + y2

2σ2

)
and taking the first or second derivatives.

These filters are band-pass filters: they filter low and high frequencies.

The second derivative of a two-dimensional image is the laplacian operator

∇2f =
∂2f

∂x2
+
∂2f

∂y2

Blurring an image with a Gaussian and then taking its Laplacian is equivalent
to convolving directly with the Laplacian of Gaussian (LoG) filter,

∇2fG (x , y , σ) =

(
x2 + y2

σ4
− 2

σ2

)
G (x , y , σ)

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 59 / 91

Band-pass filters

The directional or oriented filter can obtained by smoothing with a
Gaussian (or some other filter) and then taking a directional derivative
∇u = ∂

∂u
u · ∇(G ∗ f) = ∇u(G ∗ f) = (∇uG) ∗ f

with u = (cos θ, sin θ).

The Sobel operator is a simple approximation of this:

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 60 / 91

Steerable Filters

Oriented filters are used in many vision and image processing tasks: texture
analysis, edge detection, image data compression, motion analysis.

One approach to finding the response of a filter at many orientations is to
apply many versions of the same filter, each different from the others by
some small rotation in angle.

More efficient is to apply a few filters corresponding to a few angles and
interpolate between the responses.

One then needs to know how many filters are required and how to properly
interpolate between the responses.

With the correct filter set and the correct interpolation rule, it is possible to
determine the response of a filter of arbitrary orientation without explicitly
applying that filter.

Steerable filters are a class of filters in which a filter of arbitrary orientation
is synthesized as a linear combination of a set of basis filters.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 61 / 91

Steerable Filters

Oriented filters are used in many vision and image processing tasks: texture
analysis, edge detection, image data compression, motion analysis.

One approach to finding the response of a filter at many orientations is to
apply many versions of the same filter, each different from the others by
some small rotation in angle.

More efficient is to apply a few filters corresponding to a few angles and
interpolate between the responses.

One then needs to know how many filters are required and how to properly
interpolate between the responses.

With the correct filter set and the correct interpolation rule, it is possible to
determine the response of a filter of arbitrary orientation without explicitly
applying that filter.

Steerable filters are a class of filters in which a filter of arbitrary orientation
is synthesized as a linear combination of a set of basis filters.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 61 / 91

Steerable Filters

Oriented filters are used in many vision and image processing tasks: texture
analysis, edge detection, image data compression, motion analysis.

One approach to finding the response of a filter at many orientations is to
apply many versions of the same filter, each different from the others by
some small rotation in angle.

More efficient is to apply a few filters corresponding to a few angles and
interpolate between the responses.

One then needs to know how many filters are required and how to properly
interpolate between the responses.

With the correct filter set and the correct interpolation rule, it is possible to
determine the response of a filter of arbitrary orientation without explicitly
applying that filter.

Steerable filters are a class of filters in which a filter of arbitrary orientation
is synthesized as a linear combination of a set of basis filters.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 61 / 91

Steerable Filters

Oriented filters are used in many vision and image processing tasks: texture
analysis, edge detection, image data compression, motion analysis.

One approach to finding the response of a filter at many orientations is to
apply many versions of the same filter, each different from the others by
some small rotation in angle.

More efficient is to apply a few filters corresponding to a few angles and
interpolate between the responses.

One then needs to know how many filters are required and how to properly
interpolate between the responses.

With the correct filter set and the correct interpolation rule, it is possible to
determine the response of a filter of arbitrary orientation without explicitly
applying that filter.

Steerable filters are a class of filters in which a filter of arbitrary orientation
is synthesized as a linear combination of a set of basis filters.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 61 / 91

Steerable Filters

Oriented filters are used in many vision and image processing tasks: texture
analysis, edge detection, image data compression, motion analysis.

One approach to finding the response of a filter at many orientations is to
apply many versions of the same filter, each different from the others by
some small rotation in angle.

More efficient is to apply a few filters corresponding to a few angles and
interpolate between the responses.

One then needs to know how many filters are required and how to properly
interpolate between the responses.

With the correct filter set and the correct interpolation rule, it is possible to
determine the response of a filter of arbitrary orientation without explicitly
applying that filter.

Steerable filters are a class of filters in which a filter of arbitrary orientation
is synthesized as a linear combination of a set of basis filters.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 61 / 91

Steerable Filters

Oriented filters are used in many vision and image processing tasks: texture
analysis, edge detection, image data compression, motion analysis.

One approach to finding the response of a filter at many orientations is to
apply many versions of the same filter, each different from the others by
some small rotation in angle.

More efficient is to apply a few filters corresponding to a few angles and
interpolate between the responses.

One then needs to know how many filters are required and how to properly
interpolate between the responses.

With the correct filter set and the correct interpolation rule, it is possible to
determine the response of a filter of arbitrary orientation without explicitly
applying that filter.

Steerable filters are a class of filters in which a filter of arbitrary orientation
is synthesized as a linear combination of a set of basis filters.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 61 / 91

Example of Steerable Filter

2D symmetric Gaussian with σ = 1 and assume constant is 1

G (x , y , σ) = exp
(
−x2 + y2

)
The directional derivative operator is steerable.

The first derivative

G 0
1 =

∂

∂x
exp

(
−x2 + y2

)
= −2x exp

(
−x2 + y2

)
and the same function rotated 90 degrees is

G 90
1 =

∂

∂y
exp

(
−x2 + y2

)
= −2y exp

(
−x2 + y2

)
A filter of arbitrary orientation θ can be synthesized by taking a linear
combination of G 0

1 and G 90
1

G θ1 = cos θG 0
1 + sin θG 90

1

G 0
1 and G 90

1 are the basis filters and cos θ and sin θ are the interpolation
functions

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 62 / 91

Example of Steerable Filter

2D symmetric Gaussian with σ = 1 and assume constant is 1

G (x , y , σ) = exp
(
−x2 + y2

)
The directional derivative operator is steerable.

The first derivative

G 0
1 =

∂

∂x
exp

(
−x2 + y2

)
= −2x exp

(
−x2 + y2

)
and the same function rotated 90 degrees is

G 90
1 =

∂

∂y
exp

(
−x2 + y2

)
= −2y exp

(
−x2 + y2

)

A filter of arbitrary orientation θ can be synthesized by taking a linear
combination of G 0

1 and G 90
1

G θ1 = cos θG 0
1 + sin θG 90

1

G 0
1 and G 90

1 are the basis filters and cos θ and sin θ are the interpolation
functions

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 62 / 91

Example of Steerable Filter

2D symmetric Gaussian with σ = 1 and assume constant is 1

G (x , y , σ) = exp
(
−x2 + y2

)
The directional derivative operator is steerable.

The first derivative

G 0
1 =

∂

∂x
exp

(
−x2 + y2

)
= −2x exp

(
−x2 + y2

)
and the same function rotated 90 degrees is

G 90
1 =

∂

∂y
exp

(
−x2 + y2

)
= −2y exp

(
−x2 + y2

)
A filter of arbitrary orientation θ can be synthesized by taking a linear
combination of G 0

1 and G 90
1

G θ1 = cos θG 0
1 + sin θG 90

1

G 0
1 and G 90

1 are the basis filters and cos θ and sin θ are the interpolation
functions

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 62 / 91

Example of Steerable Filter

2D symmetric Gaussian with σ = 1 and assume constant is 1

G (x , y , σ) = exp
(
−x2 + y2

)
The directional derivative operator is steerable.

The first derivative

G 0
1 =

∂

∂x
exp

(
−x2 + y2

)
= −2x exp

(
−x2 + y2

)
and the same function rotated 90 degrees is

G 90
1 =

∂

∂y
exp

(
−x2 + y2

)
= −2y exp

(
−x2 + y2

)
A filter of arbitrary orientation θ can be synthesized by taking a linear
combination of G 0

1 and G 90
1

G θ1 = cos θG 0
1 + sin θG 90

1

G 0
1 and G 90

1 are the basis filters and cos θ and sin θ are the interpolation
functions

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 62 / 91

More on steerable filters

Because convolution is a linear operation, we can synthesize an image
filtered at an arbitrary orientation by taking linear combinations of the
images filtered with G 0

1 and G 90
1

if R0
1 = G 0

1 ∗ I and R90
1 = G 90

1 ∗ I then Rθ1 = cos θR0
1 + sin θR90

1

Check yourself that this is the case.

See [Freeman & Adelson, 91] for the conditions on when a filter is steerable
and how many basis are necessary.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 63 / 91

More on steerable filters

Because convolution is a linear operation, we can synthesize an image
filtered at an arbitrary orientation by taking linear combinations of the
images filtered with G 0

1 and G 90
1

if R0
1 = G 0

1 ∗ I and R90
1 = G 90

1 ∗ I then Rθ1 = cos θR0
1 + sin θR90

1

Check yourself that this is the case.

See [Freeman & Adelson, 91] for the conditions on when a filter is steerable
and how many basis are necessary.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 63 / 91

More on steerable filters

Because convolution is a linear operation, we can synthesize an image
filtered at an arbitrary orientation by taking linear combinations of the
images filtered with G 0

1 and G 90
1

if R0
1 = G 0

1 ∗ I and R90
1 = G 90

1 ∗ I then Rθ1 = cos θR0
1 + sin θR90

1

Check yourself that this is the case.

See [Freeman & Adelson, 91] for the conditions on when a filter is steerable
and how many basis are necessary.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 63 / 91

[Source: W. Freeman 91]
Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 64 / 91

Template matching

Filters as templates: filters look like the effects they are intended to find.

Use normalized cross-correlation score to find a given pattern (template) in
the image.

Normalization needed to control for relative brightnesses.

[Source: K. Grauman]
Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 65 / 91

Template matching

[Source: K. Grauman]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 66 / 91

More complex Scenes

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 67 / 91

Template matching

What if the template is not identical to some subimage in the scene?

Match can be meaningful, if scale, orientation, and general appearance is
right.

How can I find the right scale?

[Source: K. Grauman]
Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 68 / 91

Other transformations

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 69 / 91

Integral Images

If an image is going to be repeatedly convolved with different box filters, it
is useful to compute the summed area table.

It is the running sum of all the pixel values from the origin

s(i , j) =
i∑

k=0

j∑
l=0

f (k , l)

This can be efficiently computed using a recursive (raster-scan) algorithm

s(i , j) = s(i − 1, j) + s(i , j − 1)− s(i − 1, j − 1) + f (i , j)

The image s(i , j) is called an integral image and can actually be computed
using only two additions per pixel if separate row sums are used.

To find the summed area (integral) inside a rectangle [i0, i1]× [j0, j1] we
simply combine four samples from the summed area table.

S([i0, i1]× [j0, j1]) = s(i1, j1)− s(i1, j0 − 1)− s(i0 − 1, j1) + s(i0 − 1, j0 − 1)

Summed area tables have been used in face detection [Viola & Jones, 04]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 70 / 91

Integral Images

If an image is going to be repeatedly convolved with different box filters, it
is useful to compute the summed area table.

It is the running sum of all the pixel values from the origin

s(i , j) =
i∑

k=0

j∑
l=0

f (k , l)

This can be efficiently computed using a recursive (raster-scan) algorithm

s(i , j) = s(i − 1, j) + s(i , j − 1)− s(i − 1, j − 1) + f (i , j)

The image s(i , j) is called an integral image and can actually be computed
using only two additions per pixel if separate row sums are used.

To find the summed area (integral) inside a rectangle [i0, i1]× [j0, j1] we
simply combine four samples from the summed area table.

S([i0, i1]× [j0, j1]) = s(i1, j1)− s(i1, j0 − 1)− s(i0 − 1, j1) + s(i0 − 1, j0 − 1)

Summed area tables have been used in face detection [Viola & Jones, 04]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 70 / 91

Integral Images

If an image is going to be repeatedly convolved with different box filters, it
is useful to compute the summed area table.

It is the running sum of all the pixel values from the origin

s(i , j) =
i∑

k=0

j∑
l=0

f (k , l)

This can be efficiently computed using a recursive (raster-scan) algorithm

s(i , j) = s(i − 1, j) + s(i , j − 1)− s(i − 1, j − 1) + f (i , j)

The image s(i , j) is called an integral image and can actually be computed
using only two additions per pixel if separate row sums are used.

To find the summed area (integral) inside a rectangle [i0, i1]× [j0, j1] we
simply combine four samples from the summed area table.

S([i0, i1]× [j0, j1]) = s(i1, j1)− s(i1, j0 − 1)− s(i0 − 1, j1) + s(i0 − 1, j0 − 1)

Summed area tables have been used in face detection [Viola & Jones, 04]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 70 / 91

Integral Images

If an image is going to be repeatedly convolved with different box filters, it
is useful to compute the summed area table.

It is the running sum of all the pixel values from the origin

s(i , j) =
i∑

k=0

j∑
l=0

f (k , l)

This can be efficiently computed using a recursive (raster-scan) algorithm

s(i , j) = s(i − 1, j) + s(i , j − 1)− s(i − 1, j − 1) + f (i , j)

The image s(i , j) is called an integral image and can actually be computed
using only two additions per pixel if separate row sums are used.

To find the summed area (integral) inside a rectangle [i0, i1]× [j0, j1] we
simply combine four samples from the summed area table.

S([i0, i1]× [j0, j1]) = s(i1, j1)− s(i1, j0 − 1)− s(i0 − 1, j1) + s(i0 − 1, j0 − 1)

Summed area tables have been used in face detection [Viola & Jones, 04]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 70 / 91

Integral Images

If an image is going to be repeatedly convolved with different box filters, it
is useful to compute the summed area table.

It is the running sum of all the pixel values from the origin

s(i , j) =
i∑

k=0

j∑
l=0

f (k , l)

This can be efficiently computed using a recursive (raster-scan) algorithm

s(i , j) = s(i − 1, j) + s(i , j − 1)− s(i − 1, j − 1) + f (i , j)

The image s(i , j) is called an integral image and can actually be computed
using only two additions per pixel if separate row sums are used.

To find the summed area (integral) inside a rectangle [i0, i1]× [j0, j1] we
simply combine four samples from the summed area table.

S([i0, i1]× [j0, j1]) = s(i1, j1)− s(i1, j0 − 1)− s(i0 − 1, j1) + s(i0 − 1, j0 − 1)

Summed area tables have been used in face detection [Viola & Jones, 04]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 70 / 91

Integral Images

If an image is going to be repeatedly convolved with different box filters, it
is useful to compute the summed area table.

It is the running sum of all the pixel values from the origin

s(i , j) =
i∑

k=0

j∑
l=0

f (k , l)

This can be efficiently computed using a recursive (raster-scan) algorithm

s(i , j) = s(i − 1, j) + s(i , j − 1)− s(i − 1, j − 1) + f (i , j)

The image s(i , j) is called an integral image and can actually be computed
using only two additions per pixel if separate row sums are used.

To find the summed area (integral) inside a rectangle [i0, i1]× [j0, j1] we
simply combine four samples from the summed area table.

S([i0, i1]× [j0, j1]) = s(i1, j1)− s(i1, j0 − 1)− s(i0 − 1, j1) + s(i0 − 1, j0 − 1)

Summed area tables have been used in face detection [Viola & Jones, 04]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 70 / 91

Example of Integral Images

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 71 / 91

Non-linear filters: Median filter

We have seen linear filters, i.e., their response to a sum of two signals is the
same as the sum of the individual responses.

Median filter: Non linear filter that selects the median value from each
pixels neighborhood.

Robust to outliers, but not good for Gaussian noise.

α-trimmed mean: averages together all of the pixels except for the α
fraction that are the smallest and the largest.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 72 / 91

Non-linear filters: Median filter

We have seen linear filters, i.e., their response to a sum of two signals is the
same as the sum of the individual responses.

Median filter: Non linear filter that selects the median value from each
pixels neighborhood.

Robust to outliers, but not good for Gaussian noise.

α-trimmed mean: averages together all of the pixels except for the α
fraction that are the smallest and the largest.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 72 / 91

Non-linear filters: Median filter

We have seen linear filters, i.e., their response to a sum of two signals is the
same as the sum of the individual responses.

Median filter: Non linear filter that selects the median value from each
pixels neighborhood.

Robust to outliers, but not good for Gaussian noise.

α-trimmed mean: averages together all of the pixels except for the α
fraction that are the smallest and the largest.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 72 / 91

Non-linear filters: Median filter

We have seen linear filters, i.e., their response to a sum of two signals is the
same as the sum of the individual responses.

Median filter: Non linear filter that selects the median value from each
pixels neighborhood.

Robust to outliers, but not good for Gaussian noise.

α-trimmed mean: averages together all of the pixels except for the α
fraction that are the smallest and the largest.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 72 / 91

Example of non-linear filters

(Median filter) (α-trimmed mean)

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 73 / 91

Bilateral Filtering

Weighted filter kernel with a better outlier rejection.

Instead of rejecting a fixed percentage, we reject (in a soft way) pixels whose
values differ too much from the central pixel value.

The output pixel value depends on a weighted combination of neighboring
pixel values

g(i , j) =

∑
k,l f (k, l)w(i , j , k, l)∑

k,l w(i , j , k, l)

Data-dependent bilateral weight function

w(i , j , k, l) = exp

(
− (i − k)2 + (j − l)2

2σ2
d

− ||f (i , j)− f (k, l)||2

2σ2
r

)
composed of the domain kernel and the range kernel.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 74 / 91

Bilateral Filtering

Weighted filter kernel with a better outlier rejection.

Instead of rejecting a fixed percentage, we reject (in a soft way) pixels whose
values differ too much from the central pixel value.

The output pixel value depends on a weighted combination of neighboring
pixel values

g(i , j) =

∑
k,l f (k , l)w(i , j , k , l)∑

k,l w(i , j , k , l)

Data-dependent bilateral weight function

w(i , j , k, l) = exp

(
− (i − k)2 + (j − l)2

2σ2
d

− ||f (i , j)− f (k, l)||2

2σ2
r

)
composed of the domain kernel and the range kernel.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 74 / 91

Bilateral Filtering

Weighted filter kernel with a better outlier rejection.

Instead of rejecting a fixed percentage, we reject (in a soft way) pixels whose
values differ too much from the central pixel value.

The output pixel value depends on a weighted combination of neighboring
pixel values

g(i , j) =

∑
k,l f (k , l)w(i , j , k , l)∑

k,l w(i , j , k , l)

Data-dependent bilateral weight function

w(i , j , k , l) = exp

(
− (i − k)2 + (j − l)2

2σ2
d

− ||f (i , j)− f (k, l)||2

2σ2
r

)
composed of the domain kernel and the range kernel.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 74 / 91

Bilateral Filtering

Weighted filter kernel with a better outlier rejection.

Instead of rejecting a fixed percentage, we reject (in a soft way) pixels whose
values differ too much from the central pixel value.

The output pixel value depends on a weighted combination of neighboring
pixel values

g(i , j) =

∑
k,l f (k , l)w(i , j , k , l)∑

k,l w(i , j , k , l)

Data-dependent bilateral weight function

w(i , j , k , l) = exp

(
− (i − k)2 + (j − l)2

2σ2
d

− ||f (i , j)− f (k, l)||2

2σ2
r

)
composed of the domain kernel and the range kernel.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 74 / 91

Example Bilateral Filtering

Figure: Bilateral filtering [Durand & Dorsey, 02]. (a) noisy step edge input. (b)
domain filter (Gaussian). (c) range filter (similarity to center pixel value). (d)
bilateral filter. (e) filtered step edge output. (f) 3D distance between pixels

[Source: R. Szeliski]
Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 75 / 91

Distance Transform

Useful to quickly precomputing the distance to a curve or a set of points.

Let d(k, l) be some distance metric between pixel offsets, e.g., Manhattan
distance

d(k , l) = |k |+ |l |

or Euclidean distance
d(k , l) =

√
k2 + l2

The distance transform D(i , j) of a binary image b(i , j) is defined as

D(i , j) = min
k,l ;b(k,l)=0

d(i − k , j − l)

it is the distance to the nearest pixel whose value is 0.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 76 / 91

Distance Transform

Useful to quickly precomputing the distance to a curve or a set of points.

Let d(k, l) be some distance metric between pixel offsets, e.g., Manhattan
distance

d(k , l) = |k |+ |l |

or Euclidean distance
d(k , l) =

√
k2 + l2

The distance transform D(i , j) of a binary image b(i , j) is defined as

D(i , j) = min
k,l ;b(k,l)=0

d(i − k , j − l)

it is the distance to the nearest pixel whose value is 0.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 76 / 91

Distance Transform

Useful to quickly precomputing the distance to a curve or a set of points.

Let d(k, l) be some distance metric between pixel offsets, e.g., Manhattan
distance

d(k , l) = |k |+ |l |

or Euclidean distance
d(k , l) =

√
k2 + l2

The distance transform D(i , j) of a binary image b(i , j) is defined as

D(i , j) = min
k,l ;b(k,l)=0

d(i − k , j − l)

it is the distance to the nearest pixel whose value is 0.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 76 / 91

Distance Transform Algorithm

The Manhattan distance can be computed using a forward and backward
pass of a simple raster-scan algorithm.

Forward pass:, each non-zero pixel in b is replaced by the minimum of 1 +
the distance of its north or west neighbor.

Backward pass: the same, but the minimum is both over the current value
D and 1 + the distance of the south and east neighbors.

Figure: City block distance transform: (a) original binary image; (b) top to bottom (forward)
raster sweep: green values are used to compute the orange value; (c) bottom to top (backward)
raster sweep: green values are merged with old orange value; (d) final distance transform.

[Source: R. Szeliski]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 77 / 91

Distance Transform Algorithm

The Manhattan distance can be computed using a forward and backward
pass of a simple raster-scan algorithm.

Forward pass:, each non-zero pixel in b is replaced by the minimum of 1 +
the distance of its north or west neighbor.

Backward pass: the same, but the minimum is both over the current value
D and 1 + the distance of the south and east neighbors.

Figure: City block distance transform: (a) original binary image; (b) top to bottom (forward)
raster sweep: green values are used to compute the orange value; (c) bottom to top (backward)
raster sweep: green values are merged with old orange value; (d) final distance transform.

[Source: R. Szeliski]
Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 77 / 91

Distance Transform Algorithm

The Manhattan distance can be computed using a forward and backward
pass of a simple raster-scan algorithm.

Forward pass:, each non-zero pixel in b is replaced by the minimum of 1 +
the distance of its north or west neighbor.

Backward pass: the same, but the minimum is both over the current value
D and 1 + the distance of the south and east neighbors.

Figure: City block distance transform: (a) original binary image; (b) top to bottom (forward)
raster sweep: green values are used to compute the orange value; (c) bottom to top (backward)
raster sweep: green values are merged with old orange value; (d) final distance transform.

[Source: R. Szeliski]
Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 77 / 91

Example of Distance Transform

More complicated in the Euclidean case.

Example of a distance transform

The ridges is the skeleton or medial axis.

Extension: Signed distance transform.

[Source: P. Felzenszwalb]
Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 78 / 91

Fourier Transform

Fourier analysis could be used to analyze the frequency characteristics of
various filters.

How can we analyze what a given filter does to high, medium, and low
frequencies?

Pass a sinusoid of known frequency through the filter and to observe by how
much it is attenuated

s(x) = sin(2πfx + φi) = sin(ωx + φi)

with frequency f , angular frequency ω and phase φi .

If we convolve the sinusoidal signal s(x) with a filter whose impulse response
is h(x), we get another sinusoid of the same frequency but different
magnitude and phase

o(x) = h(x) ∗ s(x) = A sin(ωx + φo)

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 79 / 91

Fourier Transform

Fourier analysis could be used to analyze the frequency characteristics of
various filters.

How can we analyze what a given filter does to high, medium, and low
frequencies?

Pass a sinusoid of known frequency through the filter and to observe by how
much it is attenuated

s(x) = sin(2πfx + φi) = sin(ωx + φi)

with frequency f , angular frequency ω and phase φi .

If we convolve the sinusoidal signal s(x) with a filter whose impulse response
is h(x), we get another sinusoid of the same frequency but different
magnitude and phase

o(x) = h(x) ∗ s(x) = A sin(ωx + φo)

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 79 / 91

Fourier Transform

Fourier analysis could be used to analyze the frequency characteristics of
various filters.

How can we analyze what a given filter does to high, medium, and low
frequencies?

Pass a sinusoid of known frequency through the filter and to observe by how
much it is attenuated

s(x) = sin(2πfx + φi) = sin(ωx + φi)

with frequency f , angular frequency ω and phase φi .

If we convolve the sinusoidal signal s(x) with a filter whose impulse response
is h(x), we get another sinusoid of the same frequency but different
magnitude and phase

o(x) = h(x) ∗ s(x) = A sin(ωx + φo)

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 79 / 91

Fourier Transform

Fourier analysis could be used to analyze the frequency characteristics of
various filters.

How can we analyze what a given filter does to high, medium, and low
frequencies?

Pass a sinusoid of known frequency through the filter and to observe by how
much it is attenuated

s(x) = sin(2πfx + φi) = sin(ωx + φi)

with frequency f , angular frequency ω and phase φi .

If we convolve the sinusoidal signal s(x) with a filter whose impulse response
is h(x), we get another sinusoid of the same frequency but different
magnitude and phase

o(x) = h(x) ∗ s(x) = A sin(ωx + φo)

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 79 / 91

Filtering and Fourier

Convolution can be expressed as a weighted summation of shifted input
signals (sinusoids); so it is just a single sinusoid at that frequency.

o(x) = h(x) ∗ s(x) = A sin(ωx + φo)

A is the gain or magnitude of the filter, while the phase difference
∆φ = φo − φi i is the shift or phase

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 80 / 91

Complex notation

The sinusoid is express as s(x) = e jωx = cosωx + j sinωx and the filter
sinusoid as

o(x) = h(x) ∗ s(x) = Ae jωx+φ

The Fourier transform pair is

h(x)←→ H(ω)

The Fourier transform in continuous domain

H(ω) =

∫ ∞
−∞

h(x)e−jωxdx

The Fourier transform in discrete domain

H(k) =
1

N

N−1∑
x=0

h(x)e−j
2πkx
N

where N is the length of the signal.

The discrete form is known as the Discrete Fourier Transform (DFT).

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 81 / 91

Complex notation

The sinusoid is express as s(x) = e jωx = cosωx + j sinωx and the filter
sinusoid as

o(x) = h(x) ∗ s(x) = Ae jωx+φ

The Fourier transform pair is

h(x)←→ H(ω)

The Fourier transform in continuous domain

H(ω) =

∫ ∞
−∞

h(x)e−jωxdx

The Fourier transform in discrete domain

H(k) =
1

N

N−1∑
x=0

h(x)e−j
2πkx
N

where N is the length of the signal.

The discrete form is known as the Discrete Fourier Transform (DFT).

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 81 / 91

Complex notation

The sinusoid is express as s(x) = e jωx = cosωx + j sinωx and the filter
sinusoid as

o(x) = h(x) ∗ s(x) = Ae jωx+φ

The Fourier transform pair is

h(x)←→ H(ω)

The Fourier transform in continuous domain

H(ω) =

∫ ∞
−∞

h(x)e−jωxdx

The Fourier transform in discrete domain

H(k) =
1

N

N−1∑
x=0

h(x)e−j
2πkx
N

where N is the length of the signal.

The discrete form is known as the Discrete Fourier Transform (DFT).

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 81 / 91

Complex notation

The sinusoid is express as s(x) = e jωx = cosωx + j sinωx and the filter
sinusoid as

o(x) = h(x) ∗ s(x) = Ae jωx+φ

The Fourier transform pair is

h(x)←→ H(ω)

The Fourier transform in continuous domain

H(ω) =

∫ ∞
−∞

h(x)e−jωxdx

The Fourier transform in discrete domain

H(k) =
1

N

N−1∑
x=0

h(x)e−j
2πkx
N

where N is the length of the signal.

The discrete form is known as the Discrete Fourier Transform (DFT).

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 81 / 91

Complex notation

The sinusoid is express as s(x) = e jωx = cosωx + j sinωx and the filter
sinusoid as

o(x) = h(x) ∗ s(x) = Ae jωx+φ

The Fourier transform pair is

h(x)←→ H(ω)

The Fourier transform in continuous domain

H(ω) =

∫ ∞
−∞

h(x)e−jωxdx

The Fourier transform in discrete domain

H(k) =
1

N

N−1∑
x=0

h(x)e−j
2πkx
N

where N is the length of the signal.

The discrete form is known as the Discrete Fourier Transform (DFT).

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 81 / 91

Properties Fourier Transform

[Source: R. Szeliski]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 82 / 91

[Source: R. Szeliski]
Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 83 / 91

[Source: R. Szeliski]
Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 84 / 91

2D Fourier Transform

Same as 1D, but in 2D. Now the sinusoid is

s(x , y) = sin(ωxx + ωyy)

The 2D Fourier in continuous domain is then

H(ωx , ωy) =

∫ ∞
−∞

∫ ∞
−∞

h(x , y)e−jωxx+ωy ydxdy

and in the discrete domain

H(kx , ky) =
1

MN

M−1∑
x=0

N−1∑
y=0

h(x , y)e−2πj
kx x+ky y

MN

where M and N are the width and height of the image.

All the properties carry over to 2D.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 85 / 91

2D Fourier Transform

Same as 1D, but in 2D. Now the sinusoid is

s(x , y) = sin(ωxx + ωyy)

The 2D Fourier in continuous domain is then

H(ωx , ωy) =

∫ ∞
−∞

∫ ∞
−∞

h(x , y)e−jωxx+ωy ydxdy

and in the discrete domain

H(kx , ky) =
1

MN

M−1∑
x=0

N−1∑
y=0

h(x , y)e−2πj
kx x+ky y

MN

where M and N are the width and height of the image.

All the properties carry over to 2D.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 85 / 91

2D Fourier Transform

Same as 1D, but in 2D. Now the sinusoid is

s(x , y) = sin(ωxx + ωyy)

The 2D Fourier in continuous domain is then

H(ωx , ωy) =

∫ ∞
−∞

∫ ∞
−∞

h(x , y)e−jωxx+ωy ydxdy

and in the discrete domain

H(kx , ky) =
1

MN

M−1∑
x=0

N−1∑
y=0

h(x , y)e−2πj
kx x+ky y

MN

where M and N are the width and height of the image.

All the properties carry over to 2D.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 85 / 91

Example of 2D Fourier Transform

[Source: A. Jepson]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 86 / 91

Pyramids

We might want to change resolution of an image before processing.

We might not know which scale we want, e.g., when searching for a face in
an image.

In this case, we will generate a full pyramid of different image sizes.

Can also be used to accelerate the search, by first finding at the coarser level
of the pyramid and then at the full resolution.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 87 / 91

Pyramids

We might want to change resolution of an image before processing.

We might not know which scale we want, e.g., when searching for a face in
an image.

In this case, we will generate a full pyramid of different image sizes.

Can also be used to accelerate the search, by first finding at the coarser level
of the pyramid and then at the full resolution.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 87 / 91

Pyramids

We might want to change resolution of an image before processing.

We might not know which scale we want, e.g., when searching for a face in
an image.

In this case, we will generate a full pyramid of different image sizes.

Can also be used to accelerate the search, by first finding at the coarser level
of the pyramid and then at the full resolution.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 87 / 91

Pyramids

We might want to change resolution of an image before processing.

We might not know which scale we want, e.g., when searching for a face in
an image.

In this case, we will generate a full pyramid of different image sizes.

Can also be used to accelerate the search, by first finding at the coarser level
of the pyramid and then at the full resolution.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 87 / 91

Image Pyramid

[Source: R. Szeliski]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 88 / 91

Interpolation and Decimation

To interpolate (or upsample) an image to a higher resolution, we need to
select an interpolation kernel with which to convolve the image

g(i , j) =
∑
k,l

f (k , l)h(i − rk, j − rl)

with r the up-sampling rate.

The linear interpolator (corresponding to the tent kernel) produces
interpolating piecewise linear curves.

More complex kernels, e.g., B-splines.

Decimation: reduces resolution

g(i , j) =
∑
k,l

f (k, l)h(i − k/r , j − l/r)

with r the down-sampling rate.

Different filters exist as well.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 89 / 91

Interpolation and Decimation

To interpolate (or upsample) an image to a higher resolution, we need to
select an interpolation kernel with which to convolve the image

g(i , j) =
∑
k,l

f (k , l)h(i − rk, j − rl)

with r the up-sampling rate.

The linear interpolator (corresponding to the tent kernel) produces
interpolating piecewise linear curves.

More complex kernels, e.g., B-splines.

Decimation: reduces resolution

g(i , j) =
∑
k,l

f (k, l)h(i − k/r , j − l/r)

with r the down-sampling rate.

Different filters exist as well.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 89 / 91

Interpolation and Decimation

To interpolate (or upsample) an image to a higher resolution, we need to
select an interpolation kernel with which to convolve the image

g(i , j) =
∑
k,l

f (k , l)h(i − rk, j − rl)

with r the up-sampling rate.

The linear interpolator (corresponding to the tent kernel) produces
interpolating piecewise linear curves.

More complex kernels, e.g., B-splines.

Decimation: reduces resolution

g(i , j) =
∑
k,l

f (k , l)h(i − k/r , j − l/r)

with r the down-sampling rate.

Different filters exist as well.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 89 / 91

Interpolation and Decimation

To interpolate (or upsample) an image to a higher resolution, we need to
select an interpolation kernel with which to convolve the image

g(i , j) =
∑
k,l

f (k , l)h(i − rk, j − rl)

with r the up-sampling rate.

The linear interpolator (corresponding to the tent kernel) produces
interpolating piecewise linear curves.

More complex kernels, e.g., B-splines.

Decimation: reduces resolution

g(i , j) =
∑
k,l

f (k , l)h(i − k/r , j − l/r)

with r the down-sampling rate.

Different filters exist as well.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 89 / 91

Interpolation and Decimation

To interpolate (or upsample) an image to a higher resolution, we need to
select an interpolation kernel with which to convolve the image

g(i , j) =
∑
k,l

f (k , l)h(i − rk, j − rl)

with r the up-sampling rate.

The linear interpolator (corresponding to the tent kernel) produces
interpolating piecewise linear curves.

More complex kernels, e.g., B-splines.

Decimation: reduces resolution

g(i , j) =
∑
k,l

f (k , l)h(i − k/r , j − l/r)

with r the down-sampling rate.

Different filters exist as well.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 89 / 91

Multi-Resolution Representations

The most used one is the Laplacian pyramid:

We first blur and subsample the original image by a factor of two and store
this in the next level of the pyramid.

They then subtract this low-pass version from the original to yield the
band-pass Laplacian image.

The pyramid has perfect reconstruction: the Laplacian images plus the
base-level Gaussian are sufficient to exactly reconstruct the original image.

Wavelets are alternative pyramids. We will not see them here.

[Source: R. Szeliski]
Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 90 / 91

Next class ... some image features

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 91 / 91

	Introduction

