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Today's lecture ...

@ Image formation and color
@ Image Filtering

@ Additional transformations
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Material

@ Chapter 2 and 3 of Rich Szeliski book

tn:rs IM COMPUTER SCIENCE

Computer Vision

Algorithms and Applications

Richard Szeliski

@ Springer

@ Available online here
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http://szeliski.org/Book/
http://szeliski.org/Book/

How is an image created?

The image formation process that produced a particular image depends on
@ lighting conditions
@ scene geometry,
@ surface properties

@ camera optics

light {:}

source

[Source: R. Szeliski]
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Image formation and color
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From photons to RGB values

@ Sample the 2D space on a regular grid.

@ Quantize each sample, i.e., the photons arriving at each active cell are
integrated and then digitized.

[Source: D. Hoiem]
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Problems: Aliasing

@ Shannons Sampling Theorem shows that the minimum sampling

fs Z 2 fmax

@ If you haven't seen this... take a class on Fourier analysis... everyone should

have at least one!

Figure: example of a 1D signal

[Source: R. Szeliski]
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Figure: (a) Example of a 2D signal. (b—d) downsampled with different filters

[Source: R. Szeliski]
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Color Cameras

@ Each color camera integrates light according to the spectral response
function of its red, green, and blue sensors.

R — / L(\)Sk(A\)dA
G = / L(\)Se(\)dA
B — / L(3)Ss(A)dA

where X is the incoming spectrum of light at a given pixel, and Sg, Sg, Si,
are the red, green, and blue spectral sensitivities of the corresponding
sensors.
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Bayer Pattern

@ Color cameras use color filter arrays (CFAs), where alternating sensors are
covered by different colored filters.
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Bayer Pattern

@ Color cameras use color filter arrays (CFAs), where alternating sensors are
covered by different colored filters.

@ More green filters as the luminance signal is mostly determined by green
values and the visual system is much more sensitive to high frequency detail
in luminance than in chrominance.

G| R| G| R tGb | Rgb | rGb | Rgb
B G B G rgB | tGb | rgB | rGb
G|R| G| R rGb | Rgb | rGb | Rgb
B G B G rgB | rGb | rgB | rGb

[Source: R. Szeliski]
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Bayer Pattern

@ Color cameras use color filter arrays (CFAs), where alternating sensors are
covered by different colored filters.

@ More green filters as the luminance signal is mostly determined by green
values and the visual system is much more sensitive to high frequency detail
in luminance than in chrominance.

@ Demosaicing: interpolate the missing color values to have RGB values for

all pixels.
G| R|G|R 1Gb | Reb | 1Gb | Reb
B G B G rgB | tGb | rgB | rGb
G|R| G| R rGb | Rgb | rGb | Rgb
B G B G rgB | rGb | rgB | rGb

Figure: (a) Bayer Pattern. (b) interpolated RGB

[Source: R. Szeliski]
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RGB components

Figure: (a) Original image. (b) R component, (c) G component, (d) B
component.
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HSV color space

(HSV)

@ There are other color spaces that might be better from a processing
perspective: Lab, HSV, etc
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HSV components

Figure: (a) Original image. (b) H component, (c) S component, (d) V
component.
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Filtering
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Applications of Filtering

@ Enhance an image, e.g., denoise, resize.
@ Extract information, e.g., texture, edges.

@ Detect patterns, e.g., template matching.
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Noise reduction

@ Simplest thing: replace each pixel by the average of its neighbors.

@ This assumes that neighboring pixels are similar, and the noise to be
independent from pixel to pixel.

[Source: S. Marschner]
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Noise reduction

@ Simpler thing: replace each pixel by the average of its neighbors

@ This assumes that neighboring pixels are similar, and the noise to be
independent from pixel to pixel.

@ Moving average in 1D: 1,1, 1, 1, 1]/5

[Source: S. Marschner]
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Noise reduction

@ Simpler thing: replace each pixel by the average of its neighbors

@ This assumes that neighboring pixels are similar, and the noise to be
independent from pixel to pixel.

@ Non-uniform weights [1, 4, 6, 4, 1] / 16

[Source: S. Marschner]
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Moving Average in 2D

Flz, y] Gz, y]

[Source: S. Seitz]
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Moving Average in 2D

Flx,y] Gz, y]

0 10
90 | 90 | 90 | 90 | 90
90 | 90 | 90 | 90 | 90
90 | 90 | 90 | 90 | 90
%0 90 | 90 | 90
90 | 90 | 90 | 90 | 90

S0

[Source: S. Seitz]
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Moving Average in 2D

Flz,y] Gz, y]

o 10 | 20
90 [ 90 90 | 90 | 90
90 [ 90 | 90 | 90 | 90
90 [ 90 | 90 | 90 | 90
90 90 | 90 | 90
90 [ 90 | 90 | 90 | 90

[Source: S. Seitz]
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Moving Average in 2D

Flz, y] Glz, y]

50 | 90 | S0 90 | 90
90 | 90 | 90 | 90 [ 90
90 | 90 | 90 | 90 | 90
%0 90 | 90 | 90
90 | 90 | 90 | 90 | 90

S0

[Source: S. Seitz]
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Moving Average in 2D

Flx,y] Gla, y]

50 | 90 | 90 | 90 | S0
90 | 90 | 90 | 90 | 90
50 | 90 | 90 | 90 | S0
%0 90 | 90 | 90
90 | 90 | 90 | 90 | 90

90

[Source: S. Seitz]
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Moving Average in 2D

Flx, y] Glx, y]

[Source: S. Seitz]
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Linear Filtering: Correlation

@ Involves weighted combinations of pixels in small neighborhoods.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 20 /91



Linear Filtering: Correlation

@ Involves weighted combinations of pixels in small neighborhoods.

@ The output pixels value is determined as a weighted sum of input pixel values

g(i.j) =Y _f(i+k.j+1h(k1)
k,l
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Linear Filtering: Correlation

@ Involves weighted combinations of pixels in small neighborhoods.

@ The output pixels value is determined as a weighted sum of input pixel values

g(i.j) =Y _f(i+k.j+1h(k1)

k.l

@ The entries of the weight kernel or mask h(k, /) are often called the filter
coefficients.
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Linear Filtering: Correlation

Involves weighted combinations of pixels in small neighborhoods.

The output pixels value is determined as a weighted sum of input pixel values

g(i.j) =Y _f(i+k.j+1h(k1)
k,l

The entries of the weight kernel or mask h(k, /) are often called the filter
coefficients.

@ This operator is the correlation operator

g=1f®h

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 20 /91



Convolution Example

45| 60| 98 | 127]| 132] 133] 137|133

46 | 65| 98 | 123]| 126] 128] 131 133 69 | 95 J116]125] 129] 132
47| 65| 96 | 115] 119] 123] 135 137 o1jorjo1 68 | 92 J110]120] 126 132
471 63 | 91 |107] 113|122 138 134 * 01fj02j01 = 66 | 86 | 104 114] 124 132
50 59) 80| 97110 123] 133134 o1fjorjol 62| 78 | 94 | 108] 120] 129
49| 53| 68 | 83| 97 | 113) 128133 57| 6983 |98]112)124
50| 50| 58| 70| 84 | 102 116|126 53| 60| 71| 85]100]114
50|50 52|58 69| 86(101)120

Sxy) h(xy) g(xy)

Figure: What does this filter do?

[Source: R. Szeliski]
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Smoothing by averaging
depicts box filter:
nK white = high value, black = low value|

original filtered

@ What if the filter size was 5 x 5 instead of 3 x 37

[Source: K. Graumann]
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Gaussian filter

@ What if we want nearest neighboring pixels to have the most influence on
the output?

@ Removes high-frequency components from the image (low-pass filter).

This kernel is an
approximation of a 2d
Gaussian function:

1 2 1 1 _u2+1:2
1 h(u,v) =
2o

Flx,y]

[Source: S. Seitz]
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Smoothing with a Gaussian

[Source: K. Grauman]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 24 /91



Gaussian filter: Parameters

@ Size of kernel or mask: Gaussian function has infinite support, but discrete
filters use finite kernels.

o = 5 with
10 x 10 30 x 30
kernel kernel

[Source: K. Grauman]
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Gaussian filter: Parameters

@ Variance of the Gaussian: determines extent of smoothing.

o = 2 with o = 5 with

30 x 30 30 x 30
kernel kernel

[Source: K. Grauman]
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Gaussian filter: Parameters

[ W]
10
o
an
0 oz 30

for sigma=1:3:10
h = fspecial('gaussian‘', fsize, sigma);
out = imfilter(im, h);
imshow (out) ;
pause;
end

[Source: K. Grauman]
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Properties of the Smoothing

@ All values are positive.
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Properties of the Smoothing

@ All values are positive.

@ They all sum to 1.
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Properties of the Smoothing

@ All values are positive.
@ They all sum to 1.

@ Amount of smoothing proportional to mask size.

[Source: K. Grauman]
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Properties of the Smoothing

@ All values are positive.

@ They all sum to 1.

@ Amount of smoothing proportional to mask size.

@ Remove high-frequency components; low-pass filter.

[Source: K. Grauman]
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Example of Correlation

@ What is the result of filtering the impulse signal (image) F with the arbitrary
kernel H?

Flz,y] Gz, y]

[Source: K. Grauman]
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Convolution

@ Convolution operator

= f(i—kj—Dh(k,))=> f(k)h(i—kj—1)=Ffxh

P P

and h is then called the impulse response function.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 30 /91



Convolution

@ Convolution operator
= f(i—kj—Dh(k,))=> f(k)h(i—k,j—1)=Fxh
k! k,I

and h is then called the impulse response function.

@ Equivalent to flip the filter in both dimensions (bottom to top, right to left)
and apply cross-correlation.
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@ Correlation and convolution can both be written as a matrix-vector multiply,
if we first convert the two-dimensional images 7(/,;) and g(i,J) into
raster-ordered vectors f and g

g = Hf

with H a sparse matrix.

2 1 . 72
12 1 . 88

[72]88[62]52]37 |« Ya| o] Va] & % 121 . 62
121 52

12 37
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Correlation vs Convolution

@ Convolution

g(ij) = > f(i—kj—1Ih(k1)
k.l
G = HxF

@ Cross-correlation

g(ij) = D Fli+kj+h(k1)
k.l
G = H®F

@ For a Gaussian or box filter, how will the outputs differ?

If the input is an impulse signal, how will the outputs differ? h* 47, and
h® 47
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@ What's the result?

o

-

o
~

Original
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@ What's the result?

0(0(0
0(1]0
0(0(0
Original Filtered

(no change)
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@ What's the result?

o

o

-
v

Original
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@ What's the result?
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Correlation vs Convolution

@ The convolution is both commutative and associative.
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Correlation vs Convolution

@ The convolution is both commutative and associative.

@ The Fourier transform of two convolved images is the product of their
individual Fourier transforms.
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Correlation vs Convolution

@ The convolution is both commutative and associative.

@ The Fourier transform of two convolved images is the product of their
individual Fourier transforms.

@ Both correlation and convolution are linear shift-invariant (LSI) operators,
which obey both the superposition principle

ho(fo+f)=hof,+hofy
and the shift invariance principle
it g(i,j)="f(i+kj+1) < (hog)ij)=(hof)(i+kj+1)

which means that shifting a signal commutes with applying the operator.
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Boundary Effects

@ The results of filtering the image in this form will lead to a darkening of the
corner pixels.

@ The original image is effectively being padded with 0 values wherever the
convolution kernel extends beyond the original image boundaries.

@ A number of alternative padding or extension modes have been developed.

Zero wrap clamp mirror

blurred zero normalized zero blurred clamp blurred mirror
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Separable Filters

@ The process of performing a convolution requires K2 operations per pixel,
where K is the size of the convolution kernel.
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Separable Filters

@ The process of performing a convolution requires K2 operations per pixel,
where K is the size of the convolution kernel.

@ In many cases, this operation can be speed up by first performing a 1D
horizontal convolution followed by a 1D vertical convolution, requiring 2K
operations.
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Separable Filters

@ The process of performing a convolution requires K2 operations per pixel,
where K is the size of the convolution kernel.

@ In many cases, this operation can be speed up by first performing a 1D
horizontal convolution followed by a 1D vertical convolution, requiring 2K
operations.

@ If his is possible, then the convolution kernel is called separable.
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Separable Filters

@ The process of performing a convolution requires K2 operations per pixel,
where K is the size of the convolution kernel.

@ In many cases, this operation can be speed up by first performing a 1D
horizontal convolution followed by a 1D vertical convolution, requiring 2K
operations.

@ If his is possible, then the convolution kernel is called separable.

@ And it is the outer product of two kernels

K=vh'
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Let's play a game...

Is this separable? If yes, what's the separable version?

111 1
11 1
1
N N
11 1
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Let's play a game...

Is this separable? If yes, what's the separable version?

e 1
11 1

%

K 1
bl g el

What does this filter do?

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 37 /91



Let's play a game...

Is this separable? If yes, what's the separable version?

&sl=
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Let's play a game...

Is this separable? If yes, what's the separable version?

121
L 4|2
16

2|1

What does this filter do?
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Let's play a game...

Is this separable? If yes, what's the separable version?

1141641
4116 24|16 |4

1
srg| 612436246
4116 |24 |16 | 4
1141641
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Let's play a game...

Is this separable? If yes, what's the separable version?

16 | 24 | 16
24|36 | 24
16 | 24 | 16

bo

G~

[=>]
—lelo| e~
[ Sy N

o 1[4]6]4]1]

What does this filter do?
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Let's play a game...

Is this separable? If yes, what's the separable version?

~1]0]1
1
2oz

~1|0]1
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Let's play a game...

Is this separable? If yes, what's the separable version?

—1]o]1

1

=270
—1]of1

What does this filter do?
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Let's play a game...

Is this separable? If yes, what's the separable version?

1 [ 2] 1

1

242
1| 2] 1

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 41 /91



Let's play a game...

Is this separable? If yes, what's the separable version?

1] 2] 1

1

2[4 ]2
1] 2|1

What does this filter do?
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How can we tell if a given kernel K is indeed separable?

@ Inspection... this is what we were doing.
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How can we tell if a given kernel K is indeed separable?

@ Inspection... this is what we were doing.

@ Looking at the analytic form of it.
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How can we tell if a given kernel K is indeed separable?

@ Inspection... this is what we were doing.
@ Looking at the analytic form of it.

@ Look at the singular value decomposition (SVD), and if only one singular
value is non-zero, then it is separable

K=UsV" => gy

with ¥ = diag(o;).
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How can we tell if a given kernel K is indeed separable?

@ Inspection... this is what we were doing.
@ Looking at the analytic form of it.

@ Look at the singular value decomposition (SVD), and if only one singular
value is non-zero, then it is separable

K=UsV" => gy

with ¥ = diag(o;).

@ ,/oiu; and w/alvf are the vertical and horizontal kernels.
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Filtering: Edge detection

contours.

@ Map image from 2d array of pixels to a set of curves or line segments or

; 2} 1l - ==
{ i1 18 = = & _
= _ S
— = e
T = = =y
— .z : = =
e Tz
- LA PN Y
=TI
PR s £F 31
- £ al
-
¥ -~

o

!
V4

J

il

[Source: K. Grauman]
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Filtering: Edge detection

@ Map image from 2d array of pixels to a set of curves or line segments or

contours.

@ Look for strong gradients, post-process.

H =
i
: : ~
i i — e
: -_— H i, = TR - =
H = = i ) %] TN - ==
H = = | AT PR P8 = = =
i i _ _ 5
H | — = ——
H i = — —_—
H — i s - — -
H = H 5
i — i Y Fr WY
H | = Fi NN
: = — 1 3 R
H = I (< -
i - -
Fl ~

[Source: K. Grauman]

Figure: [Shotton et al. PAMI, 07]
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What causes an edge?

Depth discontinuity:
Reflectance change: object boundary
appearance

information, texture

Cast shadows

Change in surface
orientation: shape

[Source: K. Grauman]
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Looking more locally...

[Source: K. Grauman]
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Derivatives and Edges

@ An edge is a place of rapid change in the image intensity function.

intensity function
image (along horizontal scanline) first derivative

\

edges correspond to
extrema of derivative

[Source: S. Lazebnik]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 46 / 91



How to Implement Derivatives with Convolution

@ For 2D functions, the partial derivative is

af(x7y)_| f(X+€ay)_f(X)
ox _e—>0 €
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How to Implement Derivatives with Convolution

@ For 2D functions, the partial derivative is

af(x7y)_| f(X+€ay)_f(X)
8x _e—>0 €

@ We can approximate with finite differences

6f(x7y) ~ f(X+]-ay) — f(X)
ox 1
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How to Implement Derivatives with Convolution

@ For 2D functions, the partial derivative is

af(x7y)_| f(X+€ay)_f(X)
8x _e—>0 €

@ We can approximate with finite differences

6f(x7y) ~ f(X+]-ay) — f(X)
ox 1

@ What would be the filter to implement this using convolution?
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Partial derivatives of an image

Figure: Using correlation filters

[Source: K. Grauman]
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Finite Difference Filters

-1 JoTt 111
Prewitt: M, = [-1]o]1 M, = 0] 0
BIOE 1 -1]-1
-1 [o]1 1] 2]1
Sobel: M, = [Z]0]2 | My = [D
1|01 1| -2 |-1

Roberts: M, = NN g M, = [ 1] 0]

>> My = fspecial(‘scbel’);

>> outim = imfilter (double (im), My) ;
>> imagesc(outim) ;

>> colormap gray;

[Source: K. Grauman]
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Image Gradient

of of
Ox’ Oy

@ The gradient of an image Vf = [

I vf=[3L0]
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Image Gradient

@ The gradient of an image Vf = {af 3”}

Ox’ dy

@ The gradient points in the direction of most rapid change in intensity

v/ =[50 .I@W—[%i%’é
Vf— 0, 5]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 50 /



Image Gradient

@ The gradient of an image Vf = {%7 g—ﬂ

@ The gradient points in the direction of most rapid change in intensity

I Vf= [gio} va_[af af
Vf— 0, 5] k

@ The gradient direction (orientation of edge normal) is given by:

of ,of
6 =tan™ (8 /8x)

[Source: S. Seitz]
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Image Gradient

@ The gradient of an image Vf = {%7 g—ﬂ

@ The gradient points in the direction of most rapid change in intensity

I Vf= [gio} va_[af af
Vf— 0, 5] k

@ The gradient direction (orientation of edge normal) is given by:

of ,of
6 =tan™ (8 /8x)
of

@ The edge strength is given by the magnitude ||Vf|| = |/(Z£)? + (5,)?

[Source: S. Seitz]
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Effects of noise

@ Consider a single row or column of the image.

@ Plotting intensity as a function of position gives a signal.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

L)

0 200 400 600 800 1000 1200

1400 1600 1800 2000

[Source: S. Seitz]
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Effects of noise

@ Smooth first, and look for picks in %(h x f).
Sigma = 50

B j b

L R 1
1200 1400 1600 1800 2000

~
Signal

h 1 I 1 1
200 400 600 800 1000

=
Kernel

o

>
*
-
Convolution

S ; ; ;
0 200 400 600 800

S SR A R A
1000 1200 1400 1600 1800 2000

ion

L(h* 1)

Differentiati
o
© T

e L
1200 1400 1600 1800 2000

200 400 600 800 1000

[Source: S. Seitz]
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Derivative theorem of convolution

@ Differentiation property of convolution

Raquel Urtasun (TTI-C)

Kernel Signal

Canvolution

0 Oh
(e f) = ()« f
B Sigma =50

| | 1 L 1 i i
0 200 400 600 800 1400 1600 180D

2000

L L L I L I I
600 800 1000 1200 1400 1600 180D

Visual Recognition

I IR ] 1 i T
0 200 400 600 800 1000 1200 1400 1600 180D

2000

2012

53 / 91



Derivative of Gaussians

@ We have the following equivalence

(leg)@h=1%(g® h)

x-direction y-dii'ection
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Laplacian of Gaussians

@ Edge by detecting zero-crossings of bottom graph

Sigma = A0

=]
2|
f 2
(2]

[Source: S. Seitz]
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2D Edge Filtering

W R .
1
f:”"?:':"'f:‘o"\':“:}:‘ Laplacian of Gaussian

Gaussian derivative of Gaussian
u2+vz 8
ho(u,v) = ! e 207 —ha(u,v)
A 2ra2” dx '

&f

. . 2
with V2 the Laplacian operator V2f = 9% + 5

[Source: S. Seitz]
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Effect of o on derivatives

The detected structures differ depending on the Gaussian's scale parameter:
@ Larger values: larger scale edges detected.

@ Smaller values: finer features detected.

o =1 pixel o = 3 pixels

[Source: K. Grauman]
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Derivatives

@ Use opposite signs to get response in regions of high contrast.
@ They sum to 0 so that there is no response in constant regions.

@ High absolute value at points of high contrast.

[Source: K. Grauman]

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 58 / 91



Band-pass filters

@ The Sobel and corner filters are band-pass and oriented filters.
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filter ) )
1 X“+y
G(X7y7a) = ﬁ exp (_ 20_2 )

and taking the first or second derivatives.
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Band-pass filters

@ The Sobel and corner filters are band-pass and oriented filters.

@ More sophisticated filters can be obtained by convolving with a Gaussian

filter ) )
1 X“+y
G(X7y7a) = H exp (_ 20_2 )

and taking the first or second derivatives.

@ These filters are band-pass filters: they filter low and high frequencies.
@ The second derivative of a two-dimensional image is the laplacian operator
B 0*f  0°f

2
F=2!
v (9x2+8y2
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Band-pass filters

@ The Sobel and corner filters are band-pass and oriented filters.

@ More sophisticated filters can be obtained by convolving with a Gaussian

filter ) )
1 X“+y
G(X7y7a) = W exp (_ 202 )

and taking the first or second derivatives.

@ These filters are band-pass filters: they filter low and high frequencies.
@ The second derivative of a two-dimensional image is the laplacian operator
0*f  0°f
Vf=o5+ -
Ox2 + Oy?

@ Blurring an image with a Gaussian and then taking its Laplacian is equivalent
to convolving directly with the Laplacian of Gaussian (LoG) filter,

(x2+y2 2

2
\Y fG(X7y7U): ot _O'2> G(X7y7U)
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Band-pass filters

@ The directional or oriented filter can obtained by smoothing with a

Gaussian (or some other filter) and then taking a directional derivative

o
Vu:%

u-V(Gxf)=Vu(Gxf)=(V,G)xf
with u = (cos#,sin 8).

@ The Sobel operator is a simple approximation of this:

—1]o]1
1
=270

~1]0
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Steerable Filters

@ Oriented filters are used in many vision and image processing tasks: texture
analysis, edge detection, image data compression, motion analysis.
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@ Oriented filters are used in many vision and image processing tasks: texture
analysis, edge detection, image data compression, motion analysis.

@ One approach to finding the response of a filter at many orientations is to
apply many versions of the same filter, each different from the others by
some small rotation in angle.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 61 /91



Steerable Filters

@ Oriented filters are used in many vision and image processing tasks: texture
analysis, edge detection, image data compression, motion analysis.

@ One approach to finding the response of a filter at many orientations is to
apply many versions of the same filter, each different from the others by
some small rotation in angle.

@ More efficient is to apply a few filters corresponding to a few angles and
interpolate between the responses.
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Steerable Filters

@ Oriented filters are used in many vision and image processing tasks: texture
analysis, edge detection, image data compression, motion analysis.

@ One approach to finding the response of a filter at many orientations is to
apply many versions of the same filter, each different from the others by
some small rotation in angle.

@ More efficient is to apply a few filters corresponding to a few angles and
interpolate between the responses.

@ One then needs to know how many filters are required and how to properly
interpolate between the responses.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 61 /91



Steerable Filters

@ Oriented filters are used in many vision and image processing tasks: texture
analysis, edge detection, image data compression, motion analysis.

@ One approach to finding the response of a filter at many orientations is to
apply many versions of the same filter, each different from the others by
some small rotation in angle.

@ More efficient is to apply a few filters corresponding to a few angles and
interpolate between the responses.

@ One then needs to know how many filters are required and how to properly
interpolate between the responses.

@ With the correct filter set and the correct interpolation rule, it is possible to
determine the response of a filter of arbitrary orientation without explicitly
applying that filter.
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Steerable Filters

@ Oriented filters are used in many vision and image processing tasks: texture
analysis, edge detection, image data compression, motion analysis.

@ One approach to finding the response of a filter at many orientations is to
apply many versions of the same filter, each different from the others by
some small rotation in angle.

@ More efficient is to apply a few filters corresponding to a few angles and
interpolate between the responses.

@ One then needs to know how many filters are required and how to properly
interpolate between the responses.

@ With the correct filter set and the correct interpolation rule, it is possible to
determine the response of a filter of arbitrary orientation without explicitly
applying that filter.

@ Steerable filters are a class of filters in which a filter of arbitrary orientation
is synthesized as a linear combination of a set of basis filters.
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Example of Steerable Filter

@ 2D symmetric Gaussian with 0 = 1 and assume constant is 1

G(vavo-) = exp (_X2 +y2)
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@ 2D symmetric Gaussian with 0 = 1 and assume constant is 1

G(vavo-) = exp (_X2 +y2)

@ The directional derivative operator is steerable.
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Example of Steerable Filter

@ 2D symmetric Gaussian with 0 = 1 and assume constant is 1

G(vavo-) = exp (_X2 +y2)

@ The directional derivative operator is steerable.

@ The first derivative

0

GY = Ix exp (—X2 + y2) = —2xexp (—X2 + y2)
X

and the same function rotated 90 degrees is

G0 = % exp (—x* + %) = =2y exp (—x* + y?)
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Example of Steerable Filter

@ 2D symmetric Gaussian with 0 = 1 and assume constant is 1

G(vavo-) = exp (_X2 +y2)

@ The directional derivative operator is steerable.

@ The first derivative

GY = % exp (—x* 4+ y%) = —2xexp (—x* + y?)

and the same function rotated 90 degrees is

G0 = % exp (—x* + %) = =2y exp (—x* + y?)

@ A filter of arbitrary orientation 6 can be synthesized by taking a linear
combination of G and G}°

GY = cosHG? + sin GO

G and G7° are the basis filters and cos @ and sin 6 are the interpolation
functions
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More on steerable filters

@ Because convolution is a linear operation, we can synthesize an image
filtered at an arbitrary orientation by taking linear combinations of the
images filtered with G? and G;°

if RO=GY«/ and RY®=G° then RY = cosOR? + sinOR°
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More on steerable filters

@ Because convolution is a linear operation, we can synthesize an image
filtered at an arbitrary orientation by taking linear combinations of the
images filtered with G? and G;°

if RO=GY«/ and RY®=G° then RY = cosOR? + sinOR°

@ Check yourself that this is the case.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 63 /91



More on steerable filters

@ Because convolution is a linear operation, we can synthesize an image
filtered at an arbitrary orientation by taking linear combinations of the
images filtered with G? and G;°

if RO=GY«/ and RY®=G° then RY = cosOR? + sinOR°

@ Check yourself that this is the case.

@ See [Freeman & Adelson, 91] for the conditions on when a filter is steerable
and how many basis are necessary.
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a ) c
d e f o

Figure 2-1: Example of steerable filters. (a) (i”,'o. first derivative with respect
to « (horizontal) of a Gaussian. (b) (4%, which is (Y7, rotated by 90°. From a
linear combination of these two filters, one can create (%, an arbitrary rotation
of the first derivative of a Gaussian. (¢) (%, formed by £G4 + @(:"i’“u. The
same linear combinations nsed to synthesize 4 from the basis filters will also
synthesize the response of an image to ({ from the responses of the image to
the basis filters: (d) Image of circular disk. (e) GY° (at a smaller scale than
pictured above] convolved with the disk, (d}. (f) (i",’“n convolved with (d}. (g)
(:f?l)n 1

convolved with (d], obtained from ; [image ¢] +*§j [image f].

[Source: W. Freeman 91]
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Template matching

@ Filters as templates: filters look like the effects they are intended to find.

@ Use normalized cross-correlation score to find a given pattern (template) in
the image.

@ Normalization needed to control for relative brightnesses.

h

Scene

Template (mask)

[Source: K. Grauman]
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Template matching

[Source: K. Grauman]
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Template matching

@ What if the template is not identical to some subimage in the scene?

@ Match can be meaningful, if scale, orientation, and general appearance is
right.

@ How can | find the right scale?

Template

Scene

[Source: K. Grauman]
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Other transformations
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Integral Images

@ If an image is going to be repeatedly convolved with different box filters, it
is useful to compute the summed area table.
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Integral Images

@ If an image is going to be repeatedly convolved with different box filters, it
is useful to compute the summed area table.

@ It is the running sum of all the pixel values from the origin
i g
s(ij) =D D k1)

k=0 /=0
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Integral Images

@ If an image is going to be repeatedly convolved with different box filters, it
is useful to compute the summed area table.

@ It is the running sum of all the pixel values from the origin
i g
s(ij) =D D k1)

k=0 /=0

@ This can be efficiently computed using a recursive (raster-scan) algorithm

s(i,j))=s(i—=1,))+s(i,j—1)—s(i—1,j— 1)+ f(i,))
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Integral Images

@ If an image is going to be repeatedly convolved with different box filters, it
is useful to compute the summed area table.

@ It is the running sum of all the pixel values from the origin

s(i) =Y. fk,1)

k=0 /=0

@ This can be efficiently computed using a recursive (raster-scan) algorithm

s(i,j))=s(i—=1,))+s(i,j—1)—s(i—1,j— 1)+ f(i,))

@ The image s(/,j) is called an integral image and can actually be computed
using only two additions per pixel if separate row sums are used.
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Integral Images

@ If an image is going to be repeatedly convolved with different box filters, it
is useful to compute the summed area table.

@ It is the running sum of all the pixel values from the origin
i g
s(ij) =D D k1)

k=0 /=0

@ This can be efficiently computed using a recursive (raster-scan) algorithm

s(i,j))=s(i—=1,))+s(i,j—1)—s(i—1,j— 1)+ f(i,))

@ The image s(/,j) is called an integral image and can actually be computed
using only two additions per pixel if separate row sums are used.

@ To find the summed area (integral) inside a rectangle [io, 1] X [fo, /1] we
simply combine four samples from the summed area table.

S([io, i1] < [jo,j1]) = s(ir,j1) = s(ir,Jo — 1) — s(io — 1,j1) +s(io — 1,jo — 1)

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 70 /91



Integral Images

@ If an image is going to be repeatedly convolved with different box filters, it
is useful to compute the summed area table.

@ It is the running sum of all the pixel values from the origin
i g
s(ij) =D D k1)

k=0 /=0

@ This can be efficiently computed using a recursive (raster-scan) algorithm

s(i,j))=s(i—=1,))+s(i,j—1)—s(i—1,j— 1)+ f(i,))

@ The image s(/,j) is called an integral image and can actually be computed
using only two additions per pixel if separate row sums are used.

@ To find the summed area (integral) inside a rectangle [io, 1] X [fo, /1] we
simply combine four samples from the summed area table.

S([io, i1] < [jo,j1]) = s(ir,j1) = s(ir,Jo — 1) — s(io — 1,j1) +s(io — 1,jo — 1)

@ Summed area tables have been used in face detection [Viola & Jones, 04]
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Example of Integral Images

3217213 s|i2]14]17 3|5 |12fz4]17

1s|1|3]a 4 (11|19 24]31 4 [11f19f24]31

sl1f3]s5]1 17] 28| 38 | 46 9 | 17| 28] 3846

1l3f2f1]e6 13| 2437|4862 13 |24(37]48] 62

2(af1fals 15[30 44| 59|81 15[30[ 44| 59|81
() S= 24 (b) s= 28 (c) S= 24

Figure 3.17 Summed area tables: (a) original image; (b) summed area table; (c) computation
of area sum. Each value in the summed area table s(z, j) (red) is computed recursively from
its three adjacent (blue) neighbors (3.31). Area sums S (green) are computed by combining
the four values at the rectangle corners (purple) (3.32). Positive values are shown in bold and
negative values in italics.
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Non-linear filters: Median filter

@ We have seen linear filters, i.e., their response to a sum of two signals is the
same as the sum of the individual responses.
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Non-linear filters: Median filter

@ We have seen linear filters, i.e., their response to a sum of two signals is the
same as the sum of the individual responses.

@ Median filter: Non linear filter that selects the median value from each
pixels neighborhood.
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Non-linear filters: Median filter

@ We have seen linear filters, i.e., their response to a sum of two signals is the
same as the sum of the individual responses.

@ Median filter: Non linear filter that selects the median value from each
pixels neighborhood.

@ Robust to outliers, but not good for Gaussian noise.
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Non-linear filters: Median filter

@ We have seen linear filters, i.e., their response to a sum of two signals is the
same as the sum of the individual responses.

@ Median filter: Non linear filter that selects the median value from each
pixels neighborhood.

@ Robust to outliers, but not good for Gaussian noise.

@ o-trimmed mean: averages together all of the pixels except for the «
fraction that are the smallest and the largest.
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Example of non-linear filters

1211 ]2]4 1[211]2]4
211]13]5]|8 2111358
113]17]6]9 113]17]6]|9
314|867 314|867
41517]18]|°9 415]17]18]9
(Median filter) (a-trimmed mean)
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Bilateral Filtering

@ Weighted filter kernel with a better outlier rejection.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 74 /91



Bilateral Filtering

@ Weighted filter kernel with a better outlier rejection.

@ Instead of rejecting a fixed percentage, we reject (in a soft way) pixels whose
values differ too much from the central pixel value.
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Bilateral Filtering

@ Weighted filter kernel with a better outlier rejection.

@ Instead of rejecting a fixed percentage, we reject (in a soft way) pixels whose
values differ too much from the central pixel value.

@ The output pixel value depends on a weighted combination of neighboring

pixel values o
>k Flk Dw(isj, k. 1)
Zk,l W(i>j7 ka I)

g(i,j) =
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Bilateral Filtering

@ Weighted filter kernel with a better outlier rejection.

@ Instead of rejecting a fixed percentage, we reject (in a soft way) pixels whose
values differ too much from the central pixel value.

@ The output pixel value depends on a weighted combination of neighboring

pixel values o
>k Flk Dw(isj, k. 1)
Zk,l W(i>j7 ka I)

g(i,j) =

@ Data-dependent bilateral weight function

i o) = o (~EHELUZ 1P WG~ MDY

2 2
204 207

composed of the domain kernel and the range kernel.
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Example Bilateral Filtering

(d) @ (H

Figure: Bilateral filtering [Durand & Dorsey, 02]. (a) noisy step edge input. (b)
domain filter (Gaussian). (c) range filter (similarity to center pixel value). (d)
bilateral filter. (e) filtered step edge output. (f) 3D distance between pixels

[Source: R. Szeliski]
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Distance Transform

@ Useful to quickly precomputing the distance to a curve or a set of points.
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Distance Transform

@ Useful to quickly precomputing the distance to a curve or a set of points.

o Let d(k, /) be some distance metric between pixel offsets, e.g., Manhattan

distance
d(k, 1) = [k + 1]

d(k,)) = VK2 + P2

or Euclidean distance
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Distance Transform

@ Useful to quickly precomputing the distance to a curve or a set of points.

o Let d(k, /) be some distance metric between pixel offsets, e.g., Manhattan

distance
d(k, 1) = [k + 1]

d(k,)) = VK2 + P2

or Euclidean distance

@ The distance transform D(i,j) of a binary image b(/,) is defined as

DY — ki
(i,J) cmin (i—k,j—=1)

it is the distance to the nearest pixel whose value is 0.
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Distance Transform Algorithm

@ The Manhattan distance can be computed using a forward and backward
pass of a simple raster-scan algorithm.
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Distance Transform Algorithm

@ The Manhattan distance can be computed using a forward and backward
pass of a simple raster-scan algorithm.

@ Forward pass:, each non-zero pixel in b is replaced by the minimum of 1 +
the distance of its north or west neighbor.

ofofofof1]o]o ofofofof1]o]o oflofofof1]o]o ofofofof1]o]o
oflof1|1f1o]o olo|1]|1]z2]ofo olo[1]1]2]0]0 oloft|1]1]o]0
of1|1]af1]1]o 012 310 o|1]2]2|3|1]0 o1 10
ol1|1]afa|1]o0 01 3 0| 1]2]2 1] 0 o1 110
oft|1]1]ofofo o|1]2 olo]o o1 1|ofo]o
olo|1]ofo|o]o oflo[1]ofo]0]0 olof|1]ofo|o]0
olololololo]o of[ofo]ofo]o]o olofofofofo]o
(a) (b) (c) (d

[Source: R. Szeliski]
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Distance Transform Algorithm

@ The Manhattan distance can be computed using a forward and backward
pass of a simple raster-scan algorithm.

@ Forward pass:, each non-zero pixel in b is replaced by the minimum of 1 +
the distance of its north or west neighbor.

@ Backward pass: the same, but the minimum is both over the current value
D and 1 + the distance of the south and east neighbors.

ofofofof1]o]o ofofofof1]o]o oflofofof1]o]o ofofofof1]o]o
oflof1|1f1o]o olo|1]|1]z2]ofo olo[1]1]2]0]0 oloft|1]1]o]0
of1|1]af1]1]o 012 310 o|1]2]2|3|1]0 o1 10
ol1|1]afa|1]o0 01 3 0| 1]2]2 1] 0 o1 110
oft|1]1]ofofo o|1]2 olo]o o1 1|ofo]o
olo|1]ofo|o]o oflo[1]ofo]0]0 olof|1]ofo|o]0
olololololo]o of[ofo]ofo]o]o olofofofofo]o
(a) (b) (c) (d

Figure: City block distance transform: (a) original binary image; (b) top to bottom (forward)
raster sweep: green values are used to compute the orange value; (c) bottom to top (backward)
raster sweep: green values are merged with old orange value; (d) final distance transform.

[Source: R. Szeliski]
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Example of Distance Transform

@ More complicated in the Euclidean case.

@ Example of a distance transform

-

@ The ridges is the skeleton or medial axis.

@ Extension: Signed distance transform.

[Source: P. Felzenszwalb]
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Fourier Transform

@ Fourier analysis could be used to analyze the frequency characteristics of
various filters.
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Fourier Transform

@ Fourier analysis could be used to analyze the frequency characteristics of

various filters.

@ How can we analyze what a given filter does to high, medium, and low
frequencies?
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Fourier Transform

@ Fourier analysis could be used to analyze the frequency characteristics of
various filters.

@ How can we analyze what a given filter does to high, medium, and low
frequencies?

@ Pass a sinusoid of known frequency through the filter and to observe by how
much it is attenuated

s(x) = sin(2rfx + ¢;) = sin(wx + ¢;)

with frequency f, angular frequency w and phase ¢;.
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Fourier Transform

@ Fourier analysis could be used to analyze the frequency characteristics of
various filters.

@ How can we analyze what a given filter does to high, medium, and low
frequencies?

@ Pass a sinusoid of known frequency through the filter and to observe by how
much it is attenuated

s(x) = sin(2rfx + ¢;) = sin(wx + ¢;)

with frequency f, angular frequency w and phase ¢;.

@ If we convolve the sinusoidal signal s(x) with a filter whose impulse response
is h(x), we get another sinusoid of the same frequency but different
magnitude and phase

o(x) = h(x) * s(x) = Asin(wx + ¢,)
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Filtering and Fourier

@ Convolution can be expressed as a weighted summation of shifted input
signals (sinusoids); so it is just a single sinusoid at that frequency.

o(x) = h(x) * s(x) = Asin(wx + ¢,)

A is the gain or magnitude of the filter, while the phase difference
A¢p = ¢, — ¢;i is the shift or phase

<
S

h(x) >
s(x) o(x)

Y

Figure 3.24 The Fourier Transform as the response of a filter h(z) to an input sinusoid
s(z) = e1“* yielding an output sinusoid o(z) = h(z) * s(x) = Aefwr+9,
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Complex notation

@ The sinusoid is express as s(x) = /% = coswx + jsinwx and the filter
sinusoid as _
0(x) = h(x) * s(x) = A<+
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Complex notation

@ The sinusoid is express as s(x) = /% = coswx + jsinwx and the filter
sinusoid as _
o(x) = h(x) * s(x) = Ael*+
@ The Fourier transform pair is

h(x) «— H(w)
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Complex notation

@ The sinusoid is express as s(x) = /% = coswx + jsinwx and the filter
sinusoid as _
o(x) = h(x) * s(x) = Ael*+
@ The Fourier transform pair is

h(x) «— H(w)

@ The Fourier transform in continuous domain

H(w) = / " h(x)e % dx

— 00
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Complex notation

@ The sinusoid is express as s(x) = /% = coswx + jsinwx and the filter
sinusoid as _
0(x) = h(x) * s(x) = A<+

@ The Fourier transform pair is

h(x) «— H(w)

@ The Fourier transform in continuous domain

H(w) = / " h(x)e % dx

— 00

@ The Fourier transform in discrete domain

H(k) = Z h(x)e %

where N is the length of the signal.
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Complex notation

The sinusoid is express as s(x) = e/“* = coswx + jsinwx and the filter
sinusoid as _

o(x) = h(x) * s(x) = A" ¢
The Fourier transform pair is

h(x) +— H(w)

The Fourier transform in continuous domain

H(w) = / " h(x)e % dx

— 00

The Fourier transform in discrete domain

H(k) = 2 h(x)e %

where N is the length of the signal.

The discrete form is known as the Discrete Fourier Transform (DFT).
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Properties Fourier Transform

Property Signal Transform
superposition filz) + fa(x) Fi(w) + Fa(w)
shift flz — ) F(w)edweo
reversal fl—xz) F*(w)
convolution flz)xh(z) F(w)H(w)
correlation flz)® hz) F(w)H*(w)
multiplication f(z)h(z) F(w) = H(w)
differentiation f(z) jwF(w)
domain scaling flaz) 1/aF(w/a)
real images flz)=f*2) < Flw)=F(-w)
Parseval’s Theorem > _[f(z)]* = S IF(w)]?

[Source: R. Szeliski]
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Name Signal Transform

impulse . . é(x) o 1 .
shifted - p .
impulse ———— 8z —u) = e—iwe — 7
box filter ] box(x/a) o asinc(aw)
tent ’ tent(x/a) o asinc? (aw)
Gaussian ~ __ | _ G(w;a) o @G’[w; ]
Laplacian i | VG (z: VI 20 -1
of Gaussian ~ +———— b —=lClzio) o = wio™) ST
Gabor e .. . cos(wyz)CG(z;0) o J@G’{uiwg; a
unsharp ] (14 ~)8(x) (1+~)— ]
mask — —7G(z;0) = @G(w: o 1) . )
windowed - reos(x/(aW)) .
sinc e sinc(z/a) o (see Figure 3.29) . B

[Source: R. Szeliski]
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Name

Kernel

Transform

Plot

box-3

box-5

linear

(1 +2cosw)

+(1+ 2cosw + 2cos 2w)

1(1+cosw)

binomial w n L(1 4 cosw)?

Sobel

corner

&l

sinw

11— cosw)

[Source: R. Szeliski]
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2D Fourier Transform

@ Same as 1D, but in 2D. Now the sinusoid is

s(x,y) = sin(wxx + wyy)
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2D Fourier Transform

@ Same as 1D, but in 2D. Now the sinusoid is

s(x,y) = sin(wxx + wyy)

@ The 2D Fourier in continuous domain is then

H(mey):/ / h(x, y)e ™ “=FrY dxdy

and in the discrete domain

1 M—

~ MN
x=0

._.
2
._.

H(kx, k h 7271_1 kxx+kyy

i
o

where M and N are the width and height of the image.
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2D Fourier Transform

@ Same as 1D, but in 2D. Now the sinusoid is

s(x,y) = sin(wxx + wyy)

@ The 2D Fourier in continuous domain is then

H(mey):/ / h(x, y)e ™ “=FrY dxdy

and in the discrete domain

1 M—

~ MN
x=0

._.
2
._.

H(kx, k h 7271_1 kxx+kyy

i
o

where M and N are the width and height of the image.

@ All the properties carry over to 2D.
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Example of 2D Fourier Transform

[Source: A. Jepson]
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Pyramids

@ We might want to change resolution of an image before processing.
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Pyramids

@ We might want to change resolution of an image before processing.

@ We might not know which scale we want, e.g., when searching for a face in
an image.
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@ We might want to change resolution of an image before processing.

@ We might not know which scale we want, e.g., when searching for a face in
an image.

@ In this case, we will generate a full pyramid of different image sizes.
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@ We might want to change resolution of an image before processing.

@ We might not know which scale we want, e.g., when searching for a face in
an image.

@ In this case, we will generate a full pyramid of different image sizes.

@ Can also be used to accelerate the search, by first finding at the coarser level
of the pyramid and then at the full resolution.

Raquel Urtasun (TTI-C) Visual Recognition Jan 10, 2012 87 /91



Image Pyramid

AN
/ [\ \
coarse E\ =2
AN
/
medium / \ \ =1
AN
/]
/ \ \
fine =0
/ 7 o o
Vs o o o o o o &

[Source: R. Szeliski]
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Interpolation and Decimation

@ To interpolate (or upsample) an image to a higher resolution, we need to
select an interpolation kernel with which to convolve the image

g(i.j) =" _f(k,I)h(i — rk,j — rl)
k.l

with r the up-sampling rate.
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Interpolation and Decimation

@ To interpolate (or upsample) an image to a higher resolution, we need to
select an interpolation kernel with which to convolve the image

g(i.j) =" _f(k,I)h(i — rk,j — rl)
k.l

with r the up-sampling rate.

@ The linear interpolator (corresponding to the tent kernel) produces
interpolating piecewise linear curves.
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Interpolation and Decimation

@ To interpolate (or upsample) an image to a higher resolution, we need to
select an interpolation kernel with which to convolve the image

g(i.j) =" _f(k,I)h(i — rk,j — rl)
k.l

with r the up-sampling rate.

@ The linear interpolator (corresponding to the tent kernel) produces
interpolating piecewise linear curves.

@ More complex kernels, e.g., B-splines.
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Interpolation and Decimation

@ To interpolate (or upsample) an image to a higher resolution, we need to
select an interpolation kernel with which to convolve the image

g(i.j) =" _f(k,I)h(i — rk,j — rl)
k.l

with r the up-sampling rate.

@ The linear interpolator (corresponding to the tent kernel) produces
interpolating piecewise linear curves.

@ More complex kernels, e.g., B-splines.

@ Decimation: reduces resolution

g(i)y =2 f(k, (i —k/r.j—1/r)

with r the down-sampling rate.
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Interpolation and Decimation

@ To interpolate (or upsample) an image to a higher resolution, we need to
select an interpolation kernel with which to convolve the image

g(i.j) =" _f(k,I)h(i — rk,j — rl)
k.l

with r the up-sampling rate.

@ The linear interpolator (corresponding to the tent kernel) produces
interpolating piecewise linear curves.

@ More complex kernels, e.g., B-splines.

@ Decimation: reduces resolution

g(i)y =2 f(k, (i —k/r.j—1/r)

with r the down-sampling rate.

@ Different filters exist as well.
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Multi-Resolution Representations

The most used one is the Laplacian pyramid:

@ We first blur and subsample the original image by a factor of two and store
this in the next level of the pyramid.

@ They then subtract this low-pass version from the original to yield the
band-pass Laplacian image.

@ The pyramid has perfect reconstruction: the Laplacian images plus the
base-level Gaussian are sufficient to exactly reconstruct the original image.

@ Wavelets are alternative pyramids. We will not see them here.

space: -

frequency:

low-pass lower-pass

[Source: R. Szeliski]
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Next class ... some image features
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