
Visual Recognition: Image Formation

Raquel Urtasun

TTI Chicago

Jan 5, 2012

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 1 / 61

Today’s lecture ...

Fundamentals of image formation

You should know about this already...

... so we will go fast on it

Read about it if you are not familiar

This will be almost all the geometry we will see in this class

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 2 / 61

Material

Chapter 2 of Rich Szeliski book

Available online here

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 3 / 61

http://szeliski.org/Book/
http://szeliski.org/Book/

How is an image created?

The image formation process that produced a particular image depends on

lighting conditions

scene geometry,

surface properties

camera optics

[Source: R. Szeliski]
Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 4 / 61

Geometric primitives and transformations

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 5 / 61

What are we going to see?

Basic 2D and 3D primitives:

points

lines

planes

How 3D features are projected into 2D features

See [Hartley and Zisserman] book for more details

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 6 / 61

2D primitives: 2D points

2D points, e.g., pixel coordinate in an image, can be defined as
p = (x , y) ∈ <2

p =

[
x
y

]

2D points can also be represented using homogeneous coordinates
p̄ = (x̄ , ȳ , w̄) ∈ P2, with P2 = <3 − (0, 0, 0), the perspective 2D space.

In homogeneous coordinates vectors that differ only by scale are
equivalent.

A homogeneous vector can be converted into an inhomogeneous one by
dividing through by the last element

p̃ = (x̃ ; ỹ ; w̃) = w̃(x ; y ; 1) = w̃ p̄

with p̄ an augmented vector p̄ = (x , y , 1).

Homogeneous points whose last element is 0 are called ideal points or
points at infinity and do not have an inhomogeneous representation.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 7 / 61

2D primitives: 2D points

2D points, e.g., pixel coordinate in an image, can be defined as
p = (x , y) ∈ <2

p =

[
x
y

]

2D points can also be represented using homogeneous coordinates
p̄ = (x̄ , ȳ , w̄) ∈ P2, with P2 = <3 − (0, 0, 0), the perspective 2D space.

In homogeneous coordinates vectors that differ only by scale are
equivalent.

A homogeneous vector can be converted into an inhomogeneous one by
dividing through by the last element

p̃ = (x̃ ; ỹ ; w̃) = w̃(x ; y ; 1) = w̃ p̄

with p̄ an augmented vector p̄ = (x , y , 1).

Homogeneous points whose last element is 0 are called ideal points or
points at infinity and do not have an inhomogeneous representation.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 7 / 61

2D primitives: 2D points

2D points, e.g., pixel coordinate in an image, can be defined as
p = (x , y) ∈ <2

p =

[
x
y

]

2D points can also be represented using homogeneous coordinates
p̄ = (x̄ , ȳ , w̄) ∈ P2, with P2 = <3 − (0, 0, 0), the perspective 2D space.

In homogeneous coordinates vectors that differ only by scale are
equivalent.

A homogeneous vector can be converted into an inhomogeneous one by
dividing through by the last element

p̃ = (x̃ ; ỹ ; w̃) = w̃(x ; y ; 1) = w̃ p̄

with p̄ an augmented vector p̄ = (x , y , 1).

Homogeneous points whose last element is 0 are called ideal points or
points at infinity and do not have an inhomogeneous representation.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 7 / 61

2D primitives: 2D points

2D points, e.g., pixel coordinate in an image, can be defined as
p = (x , y) ∈ <2

p =

[
x
y

]

2D points can also be represented using homogeneous coordinates
p̄ = (x̄ , ȳ , w̄) ∈ P2, with P2 = <3 − (0, 0, 0), the perspective 2D space.

In homogeneous coordinates vectors that differ only by scale are
equivalent.

A homogeneous vector can be converted into an inhomogeneous one by
dividing through by the last element

p̃ = (x̃ ; ỹ ; w̃) = w̃(x ; y ; 1) = w̃ p̄

with p̄ an augmented vector p̄ = (x , y , 1).

Homogeneous points whose last element is 0 are called ideal points or
points at infinity and do not have an inhomogeneous representation.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 7 / 61

2D primitives: 2D points

2D points, e.g., pixel coordinate in an image, can be defined as
p = (x , y) ∈ <2

p =

[
x
y

]

2D points can also be represented using homogeneous coordinates
p̄ = (x̄ , ȳ , w̄) ∈ P2, with P2 = <3 − (0, 0, 0), the perspective 2D space.

In homogeneous coordinates vectors that differ only by scale are
equivalent.

A homogeneous vector can be converted into an inhomogeneous one by
dividing through by the last element

p̃ = (x̃ ; ỹ ; w̃) = w̃(x ; y ; 1) = w̃ p̄

with p̄ an augmented vector p̄ = (x , y , 1).

Homogeneous points whose last element is 0 are called ideal points or
points at infinity and do not have an inhomogeneous representation.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 7 / 61

2D primitives: 2D lines

2D lines l̃ = (a, b, c) can be represented in homogeneous coordinates

p̄ · l̃ = ax + by + c = 0

If we normalize such that l = (nx , ny , d) = (n, d) with ||n|| = 1, then n is
the normal, perpendicular to the line and d is its distance to the origin.

Exception is the line at infinity, i.e., l̃ = (0, 0, 1), which includes all (ideal)
points at infinity.

We can also express in polar coordinates, i.e., l = (d , θ) with
n = (cos θ, sin θ).

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 8 / 61

2D primitives: 2D lines

2D lines l̃ = (a, b, c) can be represented in homogeneous coordinates

p̄ · l̃ = ax + by + c = 0

If we normalize such that l = (nx , ny , d) = (n, d) with ||n|| = 1, then n is
the normal, perpendicular to the line and d is its distance to the origin.

Exception is the line at infinity, i.e., l̃ = (0, 0, 1), which includes all (ideal)
points at infinity.

We can also express in polar coordinates, i.e., l = (d , θ) with
n = (cos θ, sin θ).

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 8 / 61

2D primitives: 2D lines

2D lines l̃ = (a, b, c) can be represented in homogeneous coordinates

p̄ · l̃ = ax + by + c = 0

If we normalize such that l = (nx , ny , d) = (n, d) with ||n|| = 1, then n is
the normal, perpendicular to the line and d is its distance to the origin.

Exception is the line at infinity, i.e., l̃ = (0, 0, 1), which includes all (ideal)
points at infinity.

We can also express in polar coordinates, i.e., l = (d , θ) with
n = (cos θ, sin θ).

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 8 / 61

2D primitives: 2D lines

2D lines l̃ = (a, b, c) can be represented in homogeneous coordinates

p̄ · l̃ = ax + by + c = 0

If we normalize such that l = (nx , ny , d) = (n, d) with ||n|| = 1, then n is
the normal, perpendicular to the line and d is its distance to the origin.

Exception is the line at infinity, i.e., l̃ = (0, 0, 1), which includes all (ideal)
points at infinity.

We can also express in polar coordinates, i.e., l = (d , θ) with
n = (cos θ, sin θ).

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 8 / 61

2D lines and 2D points

When using homogeneous coordinates ...

We can compute the intersection of two lines

p̃ = l̃1 × l̃2

with × the cross product.

The cross product a× b is defined as a vector c that is perpendicular to
both a and b, with a direction given by the right-hand rule and a magnitude
equal to the area of the parallelogram that the vectors span.

c = |a| · |b| · sin θ · n

The line joining two points can be expressed as

l̃ = p̃1 × p̃2

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 9 / 61

2D lines and 2D points

When using homogeneous coordinates ...

We can compute the intersection of two lines

p̃ = l̃1 × l̃2

with × the cross product.

The cross product a× b is defined as a vector c that is perpendicular to
both a and b, with a direction given by the right-hand rule and a magnitude
equal to the area of the parallelogram that the vectors span.

c = |a| · |b| · sin θ · n

The line joining two points can be expressed as

l̃ = p̃1 × p̃2

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 9 / 61

2D lines and 2D points

When using homogeneous coordinates ...

We can compute the intersection of two lines

p̃ = l̃1 × l̃2

with × the cross product.

The cross product a× b is defined as a vector c that is perpendicular to
both a and b, with a direction given by the right-hand rule and a magnitude
equal to the area of the parallelogram that the vectors span.

c = |a| · |b| · sin θ · n

The line joining two points can be expressed as

l̃ = p̃1 × p̃2

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 9 / 61

2D primitives: 2D conics

2D conic is a curve obtained by intersecting a cone (i.e., a right circular
conical surface) with a plane and can be written using a quadric equation

p̄Qp̄ = 0

Q expresses the type of quadric.

Useful to represent human body or basic primitives and in geometry and
camera calibration

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 10 / 61

2D primitives: 2D conics

2D conic is a curve obtained by intersecting a cone (i.e., a right circular
conical surface) with a plane and can be written using a quadric equation

p̄Qp̄ = 0

Q expresses the type of quadric.

Useful to represent human body or basic primitives and in geometry and
camera calibration

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 10 / 61

2D primitives: 2D conics

2D conic is a curve obtained by intersecting a cone (i.e., a right circular
conical surface) with a plane and can be written using a quadric equation

p̄Qp̄ = 0

Q expresses the type of quadric.

Useful to represent human body or basic primitives and in geometry and
camera calibration

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 10 / 61

3D primitives: 3D points

Point coordinates in 3D can be written using inhomogeneous coordinates
p = (x , y , z) ∈ <3.

And also in homogeneous coordinates p̃ = (x̃ , ỹ , z̃ , w̃) ∈ P3.

It is useful to denote a 3D point using the augmented vector p̄ = (x , y , z , 1)
with p̃ = w̃ x̄.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 11 / 61

3D primitives: 3D points

Point coordinates in 3D can be written using inhomogeneous coordinates
p = (x , y , z) ∈ <3.

And also in homogeneous coordinates p̃ = (x̃ , ỹ , z̃ , w̃) ∈ P3.

It is useful to denote a 3D point using the augmented vector p̄ = (x , y , z , 1)
with p̃ = w̃ x̄.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 11 / 61

3D primitives: 3D points

Point coordinates in 3D can be written using inhomogeneous coordinates
p = (x , y , z) ∈ <3.

And also in homogeneous coordinates p̃ = (x̃ , ỹ , z̃ , w̃) ∈ P3.

It is useful to denote a 3D point using the augmented vector p̄ = (x , y , z , 1)
with p̃ = w̃ x̄.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 11 / 61

3D primitives: 3D plane

In homogeneous coordinates, m̃ = (a, b, c , d), the plane is

p̄ · m̃ = ax + by + cz + d = 0

If we normalize such that m = (nx , ny , nz , d) = (n, d) with ||n|| = 1, then n
is the normal, perpendicular to the plane, and d is its distance to the origin.

The plane at infinity m̄ = (0, 0, 0, 1), containing all the points at infinity,
cannot be normalized.

We can express in spherical coordinates n̄ = (cos θ, cosφ, sin θ cosφ, sinφ)

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 12 / 61

3D primitives: 3D plane

In homogeneous coordinates, m̃ = (a, b, c , d), the plane is

p̄ · m̃ = ax + by + cz + d = 0

If we normalize such that m = (nx , ny , nz , d) = (n, d) with ||n|| = 1, then n
is the normal, perpendicular to the plane, and d is its distance to the origin.

The plane at infinity m̄ = (0, 0, 0, 1), containing all the points at infinity,
cannot be normalized.

We can express in spherical coordinates n̄ = (cos θ, cosφ, sin θ cosφ, sinφ)

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 12 / 61

3D primitives: 3D plane

In homogeneous coordinates, m̃ = (a, b, c , d), the plane is

p̄ · m̃ = ax + by + cz + d = 0

If we normalize such that m = (nx , ny , nz , d) = (n, d) with ||n|| = 1, then n
is the normal, perpendicular to the plane, and d is its distance to the origin.

The plane at infinity m̄ = (0, 0, 0, 1), containing all the points at infinity,
cannot be normalized.

We can express in spherical coordinates n̄ = (cos θ, cosφ, sin θ cosφ, sinφ)

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 12 / 61

3D primitives: 3D plane

In homogeneous coordinates, m̃ = (a, b, c , d), the plane is

p̄ · m̃ = ax + by + cz + d = 0

If we normalize such that m = (nx , ny , nz , d) = (n, d) with ||n|| = 1, then n
is the normal, perpendicular to the plane, and d is its distance to the origin.

The plane at infinity m̄ = (0, 0, 0, 1), containing all the points at infinity,
cannot be normalized.

We can express in spherical coordinates n̄ = (cos θ, cosφ, sin θ cosφ, sinφ)

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 12 / 61

3D primitives: 3D line

One possible representation is to use two points on the line, (p,q), then any
point can be expressed as a linear combination of these two points

r = (1− λ)p + λq

If 0 ≤ λ ≤ 1, then we get the line segment joining p and q.

In homogeneous coordinates,

r̃ = µp̃ + λq̃

When a point is at infinity, i.e., q̃ = (dx , dy , dz , 0) = (d, 0), then r = p + λd

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 13 / 61

3D primitives: 3D line

One possible representation is to use two points on the line, (p,q), then any
point can be expressed as a linear combination of these two points

r = (1− λ)p + λq

If 0 ≤ λ ≤ 1, then we get the line segment joining p and q.

In homogeneous coordinates,

r̃ = µp̃ + λq̃

When a point is at infinity, i.e., q̃ = (dx , dy , dz , 0) = (d, 0), then r = p + λd

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 13 / 61

3D primitives: 3D line

One possible representation is to use two points on the line, (p,q), then any
point can be expressed as a linear combination of these two points

r = (1− λ)p + λq

If 0 ≤ λ ≤ 1, then we get the line segment joining p and q.

In homogeneous coordinates,

r̃ = µp̃ + λq̃

When a point is at infinity, i.e., q̃ = (dx , dy , dz , 0) = (d, 0), then r = p + λd

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 13 / 61

3D primitives: 3D line

One possible representation is to use two points on the line, (p,q), then any
point can be expressed as a linear combination of these two points

r = (1− λ)p + λq

If 0 ≤ λ ≤ 1, then we get the line segment joining p and q.

In homogeneous coordinates,

r̃ = µp̃ + λq̃

When a point is at infinity, i.e., q̃ = (dx , dy , dz , 0) = (d, 0), then r = p + λd

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 13 / 61

3D primitives: 3D conics

Can be written using a quadric equation

p̄Qp̄ = 0

Q expresses the type of quadric.

Useful to represent human body in 3D or basic primitives

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 14 / 61

2D Transformations

Translation: can be written as p′ = p + t, or

p′ =
[

I t
]

p̄

with I the 2× 2 identity matrix, or

p̄′ =

[
I t

0T 1

]
p̄

where 0 is the zero vector

Which representation is more useful?

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 15 / 61

2D Transformations

Translation: can be written as p′ = p + t, or

p′ =
[

I t
]

p̄

with I the 2× 2 identity matrix, or

p̄′ =

[
I t

0T 1

]
p̄

where 0 is the zero vector

Which representation is more useful?

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 15 / 61

2D Transformations

2D Rigid Body Motion: can be written as p′ = Rp + t, or

p′ =
[

R t
]

p̄

with

R =

[
cos θ − sin θ
sin θ cos θ

]
is an orthonormal rotation matrix RRT = I, and |R| = 1

Can also be written in homogeneous coordinates.

Also called 2D Euclidean transformation

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 16 / 61

2D Transformations

Similarity transform: is p′ = sRp + t, with s an scale factor.

Also written as

p′ =
[
sR t

]
p̄ =

[
a −b tx
b a ty

]
p̄

where we no longer require that a2 + b2 = 1.

Preserves angles between lines.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 17 / 61

2D Transformations

Affine is p′ = Ap̄, with A an arbitrary 2× 3 matrix, i.e.,

p′ =

[
a00 a01 a02
a10 a11 a12

]
p̄

Parallel lines remain parallel under affine transformations.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 18 / 61

2D Transformations

Projective operates on homogeneous coordinates

p̄′ = H̄p̄

with H̄ an arbitrary 3× 3 matrix.

Also known as perspective transform or homography.

H̄ is homogeneous, i.e., it is only defined up to a scale.

Two H̄ matrices that differ only by scale are equivalent.

Perspective transformations preserve straight lines.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 19 / 61

Hierarchy of Transformations

A set of (potentially restricted) 3× 3 matrices operating on 2D
homogeneous coordinate vectors.

They form a nested set of groups, i.e., they are closed under composition
and have an inverse that is a member of the same group.

Each (simpler) group is a subset of the more complex group below it.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 20 / 61

Hierarchy of 2D Transformations

They can be applied in series

Other transformations exist, e.g., stretch/squash

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 21 / 61

Hierarchy of 3D Transformations

Same as the 2D hierarchy.

Check the book chapter for the exact definition.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 22 / 61

Representing Rotations

Representing 2D rotations in Euler angles is not a problem.

However, it is a problem in 3D.

Alternative representations: axis angles, quaternions.

Let’s see some of this representations.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 23 / 61

Euler angles: definition

The most popular parameterization of orientation space.

A general rotation is described as a sequence of rotations about three
mutually orthogonal coordinate axes fixed in the space.

The rotations are applied to the space and not to the axis.

Figure: Principal rotation matrices: Rotation along the x-axis. [Souce:
Watt 95]

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 24 / 61

Euler angles: definition

The most popular parameterization of orientation space.

A general rotation is described as a sequence of rotations about three
mutually orthogonal coordinate axes fixed in the space.

The rotations are applied to the space and not to the axis.

Figure: Principal rotation matrices: Rotation along the y-axis. [Souce:
Watt 95]

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 24 / 61

Euler angles: definition

The most popular parameterization of orientation space.

A general rotation is described as a sequence of rotations about three
mutually orthogonal coordinate axes fixed in the space.

The rotations are applied to the space and not to the axis.

Figure: Principal rotation matrices: Rotation along the z-axis. [Souce:
Watt 95]

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 24 / 61

Euler angles: composition

General rotations can be done by composing rotations over these axis.

For example, let’s create a rotation matrix R(θx , θy , θz) in terms of the joint
angles θx , θy , θz .

R(θx , θy , θz) = Rx · Ry · Rz =


cycz cy sz −sy 0

sxsycz − cxsz sxsy sz + cxcz sxcy 0
cxsycz + sxsz cxsy sz − sxcz cxcy 0

0 0 0 1


with si = sin(θi), and ci = cos(θi).

Matrix multiplication is not conmutative, the order is important

Rx · Ry · Rz 6= Rz · Ry · Rx

Rotations are assumed to be relative to fixed world axes, rather than local to
the object.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 25 / 61

Euler angles: composition

General rotations can be done by composing rotations over these axis.

For example, let’s create a rotation matrix R(θx , θy , θz) in terms of the joint
angles θx , θy , θz .

R(θx , θy , θz) = Rx · Ry · Rz =


cycz cy sz −sy 0

sxsycz − cxsz sxsy sz + cxcz sxcy 0
cxsycz + sxsz cxsy sz − sxcz cxcy 0

0 0 0 1


with si = sin(θi), and ci = cos(θi).

Matrix multiplication is not conmutative, the order is important

Rx · Ry · Rz 6= Rz · Ry · Rx

Rotations are assumed to be relative to fixed world axes, rather than local to
the object.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 25 / 61

Euler angles: composition

General rotations can be done by composing rotations over these axis.

For example, let’s create a rotation matrix R(θx , θy , θz) in terms of the joint
angles θx , θy , θz .

R(θx , θy , θz) = Rx · Ry · Rz =


cycz cy sz −sy 0

sxsycz − cxsz sxsy sz + cxcz sxcy 0
cxsycz + sxsz cxsy sz − sxcz cxcy 0

0 0 0 1


with si = sin(θi), and ci = cos(θi).

Matrix multiplication is not conmutative, the order is important

Rx · Ry · Rz 6= Rz · Ry · Rx

Rotations are assumed to be relative to fixed world axes, rather than local to
the object.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 25 / 61

Euler angles: composition

General rotations can be done by composing rotations over these axis.

For example, let’s create a rotation matrix R(θx , θy , θz) in terms of the joint
angles θx , θy , θz .

R(θx , θy , θz) = Rx · Ry · Rz =


cycz cy sz −sy 0

sxsycz − cxsz sxsy sz + cxcz sxcy 0
cxsycz + sxsz cxsy sz − sxcz cxcy 0

0 0 0 1


with si = sin(θi), and ci = cos(θi).

Matrix multiplication is not conmutative, the order is important

Rx · Ry · Rz 6= Rz · Ry · Rx

Rotations are assumed to be relative to fixed world axes, rather than local to
the object.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 25 / 61

Euler angles: drawbacks I

Gimbal lock: This results when two axes effectively line up, resulting in a
temporary loss of a degree of freedom.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 26 / 61

Euler angles: drawbacks I

Gimbal lock: This results when two axes effectively line up, resulting in a
temporary loss of a degree of freedom. This is a singularity in the
parameterization. θ1 and θ3 become associated with the same DOF.

R(θ1,
π

2
, θ3) =


0 0 −1 0

sin(θ1 − θ3) cos(θ1 − θ3) 0 0
cos(θ1 − θ3) sin(θ1 − θ3) 0 0

0 0 0 1



Figure: Singular locations of the Euler angles parametrization (at β = ±π/2)

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 26 / 61

Euler angles: drawbacks II

The parameterization is non-linear.
The parameterization is modular R(θ) = R(θ + 2πn), with n ∈ Z .

The parameterization is not unique

∃[θ4, θ5, θ6] such that R(θ1, θ2, θ3) = R(θ4, θ5, θ6)

with θi 6= θ3+i for all i ∈ {1, 2, 3}.

Figure: Example of two routes for the animation of the block letter R [Watt]

.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 27 / 61

Euler angles: drawbacks II

The parameterization is non-linear.
The parameterization is modular R(θ) = R(θ + 2πn), with n ∈ Z .
The parameterization is not unique

∃[θ4, θ5, θ6] such that R(θ1, θ2, θ3) = R(θ4, θ5, θ6)

with θi 6= θ3+i for all i ∈ {1, 2, 3}.

Figure: Example of two routes for the animation of the block letter R [Watt]

.
Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 27 / 61

Euler angles: drawbacks II

The parameterization is non-linear.
The parameterization is modular R(θ) = R(θ + 2πn), with n ∈ Z .
The parameterization is not unique

∃[θ4, θ5, θ6] such that R(θ1, θ2, θ3) = R(θ4, θ5, θ6)

with θi 6= θ3+i for all i ∈ {1, 2, 3}.

Figure: Example of two routes for the animation of the block letter R [Watt]

.
Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 27 / 61

Axis Angles

A rotation can be represented by a rotation axis n, and an angle θ.

Or equivalently by a 3D vector w = θn.

It’s a minimal representation.

It has a singularity... when does it happen?

Figure: Rotation around an axis n by an angle θ

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 28 / 61

Axis Angles

A rotation can be represented by a rotation axis n, and an angle θ.

Or equivalently by a 3D vector w = θn.

It’s a minimal representation.

It has a singularity... when does it happen?

Figure: Rotation around an axis n by an angle θ

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 28 / 61

Axis Angles

A rotation can be represented by a rotation axis n, and an angle θ.

Or equivalently by a 3D vector w = θn.

It’s a minimal representation.

It has a singularity... when does it happen?

Figure: Rotation around an axis n by an angle θ

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 28 / 61

Axis Angles

A rotation can be represented by a rotation axis n, and an angle θ.

Or equivalently by a 3D vector w = θn.

It’s a minimal representation.

It has a singularity... when does it happen?

Figure: Rotation around an axis n by an angle θ

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 28 / 61

Quaternions

Quaternions were invented by W.R.Hamilton in 1843.

A quaternion has 4 components

q = [qw , qx , qy , qz]T

They are extensions of complex numbers a + ib to a 3D imaginary space, ijk.

q = qw + qx i + qy j + qzk

With the additional properties

i2 = j2 = ijk = −1

i = jk = −kj, j = ki = −ik, k = ij = −ji

To represent rotations, only unit length quaternions are used

||q||2 =
√
q2w + q2x + q2y + q2z

This forms the surface of a 4D hypersphere of radius 1.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 29 / 61

Quaternions

Quaternions were invented by W.R.Hamilton in 1843.

A quaternion has 4 components

q = [qw , qx , qy , qz]T

They are extensions of complex numbers a + ib to a 3D imaginary space, ijk.

q = qw + qx i + qy j + qzk

With the additional properties

i2 = j2 = ijk = −1

i = jk = −kj, j = ki = −ik, k = ij = −ji

To represent rotations, only unit length quaternions are used

||q||2 =
√
q2w + q2x + q2y + q2z

This forms the surface of a 4D hypersphere of radius 1.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 29 / 61

Quaternions

Quaternions were invented by W.R.Hamilton in 1843.

A quaternion has 4 components

q = [qw , qx , qy , qz]T

They are extensions of complex numbers a + ib to a 3D imaginary space, ijk.

q = qw + qx i + qy j + qzk

With the additional properties

i2 = j2 = ijk = −1

i = jk = −kj, j = ki = −ik, k = ij = −ji

To represent rotations, only unit length quaternions are used

||q||2 =
√
q2w + q2x + q2y + q2z

This forms the surface of a 4D hypersphere of radius 1.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 29 / 61

Quaternions

Quaternions were invented by W.R.Hamilton in 1843.

A quaternion has 4 components

q = [qw , qx , qy , qz]T

They are extensions of complex numbers a + ib to a 3D imaginary space, ijk.

q = qw + qx i + qy j + qzk

With the additional properties

i2 = j2 = ijk = −1

i = jk = −kj, j = ki = −ik, k = ij = −ji

To represent rotations, only unit length quaternions are used

||q||2 =
√
q2w + q2x + q2y + q2z

This forms the surface of a 4D hypersphere of radius 1.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 29 / 61

Quaternions

Quaternions were invented by W.R.Hamilton in 1843.

A quaternion has 4 components

q = [qw , qx , qy , qz]T

They are extensions of complex numbers a + ib to a 3D imaginary space, ijk.

q = qw + qx i + qy j + qzk

With the additional properties

i2 = j2 = ijk = −1

i = jk = −kj, j = ki = −ik, k = ij = −ji

To represent rotations, only unit length quaternions are used

||q||2 =
√
q2w + q2x + q2y + q2z

This forms the surface of a 4D hypersphere of radius 1.
Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 29 / 61

Quaternions

Quaternions were invented by W.R.Hamilton in 1843.

A quaternion has 4 components

q = [qw , qx , qy , qz]T

They are extensions of complex numbers a + ib to a 3D imaginary space, ijk.

q = qw + qx i + qy j + qzk

With the additional properties

i2 = j2 = ijk = −1

i = jk = −kj, j = ki = −ik, k = ij = −ji

To represent rotations, only unit length quaternions are used

||q||2 =
√
q2w + q2x + q2y + q2z

This forms the surface of a 4D hypersphere of radius 1.
Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 29 / 61

Quaternions

Figure: Unit quaternions live on the unit sphere ||q|| = 1. Smooth trajectory
through 3 quaternions. The antipodal point to q2, namely −q2, represents the
same rotation.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 30 / 61

Quaternions

Quaternions form a group whose underlying set is the four dimensional
vector space R4, with a multiplication operator ◦ that combines both the
dot product and cross product of vectors.

The identity rotation is encoded as q = [1, 0, 0, 0]T .

The quaternion q = [qw , qx , qy , qz]T encodes a rotation of θ = 2 cos−1(qw)
along the unit axis v̂ = [qx , qy , qz].

Also a quaternion can represent a rotation by an angle θ around the v̂ axis as

q = [cos
θ

2
, sin

θ

2
v̂]

with v̂ = v
|v| .

If v̂ is unit length, then q will also be.

Proof: simple exercise.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 31 / 61

Quaternions

Quaternions form a group whose underlying set is the four dimensional
vector space R4, with a multiplication operator ◦ that combines both the
dot product and cross product of vectors.

The identity rotation is encoded as q = [1, 0, 0, 0]T .

The quaternion q = [qw , qx , qy , qz]T encodes a rotation of θ = 2 cos−1(qw)
along the unit axis v̂ = [qx , qy , qz].

Also a quaternion can represent a rotation by an angle θ around the v̂ axis as

q = [cos
θ

2
, sin

θ

2
v̂]

with v̂ = v
|v| .

If v̂ is unit length, then q will also be.

Proof: simple exercise.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 31 / 61

Quaternions

Quaternions form a group whose underlying set is the four dimensional
vector space R4, with a multiplication operator ◦ that combines both the
dot product and cross product of vectors.

The identity rotation is encoded as q = [1, 0, 0, 0]T .

The quaternion q = [qw , qx , qy , qz]T encodes a rotation of θ = 2 cos−1(qw)
along the unit axis v̂ = [qx , qy , qz].

Also a quaternion can represent a rotation by an angle θ around the v̂ axis as

q = [cos
θ

2
, sin

θ

2
v̂]

with v̂ = v
|v| .

If v̂ is unit length, then q will also be.

Proof: simple exercise.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 31 / 61

Quaternions

Quaternions form a group whose underlying set is the four dimensional
vector space R4, with a multiplication operator ◦ that combines both the
dot product and cross product of vectors.

The identity rotation is encoded as q = [1, 0, 0, 0]T .

The quaternion q = [qw , qx , qy , qz]T encodes a rotation of θ = 2 cos−1(qw)
along the unit axis v̂ = [qx , qy , qz].

Also a quaternion can represent a rotation by an angle θ around the v̂ axis as

q = [cos
θ

2
, sin

θ

2
v̂]

with v̂ = v
|v| .

If v̂ is unit length, then q will also be.

Proof: simple exercise.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 31 / 61

Quaternions

Quaternions form a group whose underlying set is the four dimensional
vector space R4, with a multiplication operator ◦ that combines both the
dot product and cross product of vectors.

The identity rotation is encoded as q = [1, 0, 0, 0]T .

The quaternion q = [qw , qx , qy , qz]T encodes a rotation of θ = 2 cos−1(qw)
along the unit axis v̂ = [qx , qy , qz].

Also a quaternion can represent a rotation by an angle θ around the v̂ axis as

q = [cos
θ

2
, sin

θ

2
v̂]

with v̂ = v
|v| .

If v̂ is unit length, then q will also be.

Proof: simple exercise.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 31 / 61

Quaternions

Quaternions form a group whose underlying set is the four dimensional
vector space R4, with a multiplication operator ◦ that combines both the
dot product and cross product of vectors.

The identity rotation is encoded as q = [1, 0, 0, 0]T .

The quaternion q = [qw , qx , qy , qz]T encodes a rotation of θ = 2 cos−1(qw)
along the unit axis v̂ = [qx , qy , qz].

Also a quaternion can represent a rotation by an angle θ around the v̂ axis as

q = [cos
θ

2
, sin

θ

2
v̂]

with v̂ = v
|v| .

If v̂ is unit length, then q will also be.

Proof: simple exercise.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 31 / 61

Quaternion to rotational matrix

To convert a quaternion q = [qw , qx , qy , qz] to a rotational matrix
simply compute

1− 2q2y − 2q2z 2qxqy + 2qwqz 2qxqz − 2qwqy 0
2qxqy − 2qwqz 1− 2q2x − 2q2z 2qyqz + 2qwqx 0
2qxqz + 2qwqy 2qyqz − 2qwqx 1− 2q2x − 2q2y 0

0 0 0 1


A matrix can also easily be converted to quaternion. See references
for the exact algorithm.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 32 / 61

Interpretation of quaternions

Any incremental movement along one of the orthogonal axes in curved space
corresponds to an incremental rotation along an axis in real space (distances
along the hypersphere correspond to angles in 3D space).

Moving in some arbitrary direction corresponds to rotating around some
arbitrary axis.

If you move too far in one direction, you come back to where you started
(corresponding to rotating 360 degrees around any one axis).

A distance of x along the surface of the hypersphere corresponds to a
rotation of angle 2x radians.

This means that moving along a 90 degree arc on the hypersphere
corresponds to rotating an object by 180 degrees.

Traveling 180 degrees corresponds to a 360 degree rotation, thus getting you
back to where you started.

This implies that q and -q correspond to the same orientation.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 33 / 61

Interpretation of quaternions

Any incremental movement along one of the orthogonal axes in curved space
corresponds to an incremental rotation along an axis in real space (distances
along the hypersphere correspond to angles in 3D space).

Moving in some arbitrary direction corresponds to rotating around some
arbitrary axis.

If you move too far in one direction, you come back to where you started
(corresponding to rotating 360 degrees around any one axis).

A distance of x along the surface of the hypersphere corresponds to a
rotation of angle 2x radians.

This means that moving along a 90 degree arc on the hypersphere
corresponds to rotating an object by 180 degrees.

Traveling 180 degrees corresponds to a 360 degree rotation, thus getting you
back to where you started.

This implies that q and -q correspond to the same orientation.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 33 / 61

Interpretation of quaternions

Any incremental movement along one of the orthogonal axes in curved space
corresponds to an incremental rotation along an axis in real space (distances
along the hypersphere correspond to angles in 3D space).

Moving in some arbitrary direction corresponds to rotating around some
arbitrary axis.

If you move too far in one direction, you come back to where you started
(corresponding to rotating 360 degrees around any one axis).

A distance of x along the surface of the hypersphere corresponds to a
rotation of angle 2x radians.

This means that moving along a 90 degree arc on the hypersphere
corresponds to rotating an object by 180 degrees.

Traveling 180 degrees corresponds to a 360 degree rotation, thus getting you
back to where you started.

This implies that q and -q correspond to the same orientation.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 33 / 61

Interpretation of quaternions

Any incremental movement along one of the orthogonal axes in curved space
corresponds to an incremental rotation along an axis in real space (distances
along the hypersphere correspond to angles in 3D space).

Moving in some arbitrary direction corresponds to rotating around some
arbitrary axis.

If you move too far in one direction, you come back to where you started
(corresponding to rotating 360 degrees around any one axis).

A distance of x along the surface of the hypersphere corresponds to a
rotation of angle 2x radians.

This means that moving along a 90 degree arc on the hypersphere
corresponds to rotating an object by 180 degrees.

Traveling 180 degrees corresponds to a 360 degree rotation, thus getting you
back to where you started.

This implies that q and -q correspond to the same orientation.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 33 / 61

Interpretation of quaternions

Any incremental movement along one of the orthogonal axes in curved space
corresponds to an incremental rotation along an axis in real space (distances
along the hypersphere correspond to angles in 3D space).

Moving in some arbitrary direction corresponds to rotating around some
arbitrary axis.

If you move too far in one direction, you come back to where you started
(corresponding to rotating 360 degrees around any one axis).

A distance of x along the surface of the hypersphere corresponds to a
rotation of angle 2x radians.

This means that moving along a 90 degree arc on the hypersphere
corresponds to rotating an object by 180 degrees.

Traveling 180 degrees corresponds to a 360 degree rotation, thus getting you
back to where you started.

This implies that q and -q correspond to the same orientation.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 33 / 61

Interpretation of quaternions

Any incremental movement along one of the orthogonal axes in curved space
corresponds to an incremental rotation along an axis in real space (distances
along the hypersphere correspond to angles in 3D space).

Moving in some arbitrary direction corresponds to rotating around some
arbitrary axis.

If you move too far in one direction, you come back to where you started
(corresponding to rotating 360 degrees around any one axis).

A distance of x along the surface of the hypersphere corresponds to a
rotation of angle 2x radians.

This means that moving along a 90 degree arc on the hypersphere
corresponds to rotating an object by 180 degrees.

Traveling 180 degrees corresponds to a 360 degree rotation, thus getting you
back to where you started.

This implies that q and -q correspond to the same orientation.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 33 / 61

Interpretation of quaternions

Any incremental movement along one of the orthogonal axes in curved space
corresponds to an incremental rotation along an axis in real space (distances
along the hypersphere correspond to angles in 3D space).

Moving in some arbitrary direction corresponds to rotating around some
arbitrary axis.

If you move too far in one direction, you come back to where you started
(corresponding to rotating 360 degrees around any one axis).

A distance of x along the surface of the hypersphere corresponds to a
rotation of angle 2x radians.

This means that moving along a 90 degree arc on the hypersphere
corresponds to rotating an object by 180 degrees.

Traveling 180 degrees corresponds to a 360 degree rotation, thus getting you
back to where you started.

This implies that q and -q correspond to the same orientation.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 33 / 61

Quaternion operations: dot product

The dot product of quaternions is simple their vector dot product

p · q = pwqw + pxqx + pyqy + pzqz = |p||q| cosφ

The angle between two quaternions in 4D space is half the angle one
would need to rotate from one orientation to the other in 3D space.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 34 / 61

Quaternion operations: multiplication

Multiplication on quaternions can be done by expanding them into
complex numbers

pq =< s · t − v ·wT , sw + tv + v ×w >

where p = [s, v]T , and q = [t,w].

If p represents a rotation and q represents a rotation, then pq
represents p rotated by q.

Note that two unit quaternions multiplied together will result in
another unit quaternion.

Quaternions extend the planar rotations of complex numbers to 3D
rotations in space.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 35 / 61

Quaternion operations: multiplication

Multiplication on quaternions can be done by expanding them into
complex numbers

pq =< s · t − v ·wT , sw + tv + v ×w >

where p = [s, v]T , and q = [t,w].

If p represents a rotation and q represents a rotation, then pq
represents p rotated by q.

Note that two unit quaternions multiplied together will result in
another unit quaternion.

Quaternions extend the planar rotations of complex numbers to 3D
rotations in space.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 35 / 61

Quaternion operations: multiplication

Multiplication on quaternions can be done by expanding them into
complex numbers

pq =< s · t − v ·wT , sw + tv + v ×w >

where p = [s, v]T , and q = [t,w].

If p represents a rotation and q represents a rotation, then pq
represents p rotated by q.

Note that two unit quaternions multiplied together will result in
another unit quaternion.

Quaternions extend the planar rotations of complex numbers to 3D
rotations in space.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 35 / 61

Quaternion operations: multiplication

Multiplication on quaternions can be done by expanding them into
complex numbers

pq =< s · t − v ·wT , sw + tv + v ×w >

where p = [s, v]T , and q = [t,w].

If p represents a rotation and q represents a rotation, then pq
represents p rotated by q.

Note that two unit quaternions multiplied together will result in
another unit quaternion.

Quaternions extend the planar rotations of complex numbers to 3D
rotations in space.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 35 / 61

Quaternion operations: others

Inverse of a quaternion q = [s, v]T

q−1 =
1

|q|2
[s,−v]T

Any multiple of a quaternion gives the same rotation because the
effects of the magnitude are divided out.

Very good for interpolation, Slerp.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 36 / 61

Redundancy of the parameterizations

The parameterizations that we have seen:

Rotational matrix: 9 DOF. It has 6 extra DOF.
Axis angles: 3 DOF for the scaled version and 4 DOF for the
non-scaled. The latter has one extra DOF.
Quaternions: 4 DOF, 1 extra DOF.

From the Euler theorem we know that an arbitrary rotation can be
described with only 3 DOF, so those parameters extra are redundant.

For rotational matrix, we can impose additional constraints if the
matrix represent a rigid transform.

|a| = |b| = |c | = 1

a = b × c, b = c × a, c = a× b

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 37 / 61

Redundancy of the parameterizations

The parameterizations that we have seen:

Rotational matrix: 9 DOF. It has 6 extra DOF.
Axis angles: 3 DOF for the scaled version and 4 DOF for the
non-scaled. The latter has one extra DOF.
Quaternions: 4 DOF, 1 extra DOF.

From the Euler theorem we know that an arbitrary rotation can be
described with only 3 DOF, so those parameters extra are redundant.

For rotational matrix, we can impose additional constraints if the
matrix represent a rigid transform.

|a| = |b| = |c | = 1

a = b × c, b = c × a, c = a× b

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 37 / 61

Redundancy of the parameterizations

The parameterizations that we have seen:

Rotational matrix: 9 DOF. It has 6 extra DOF.
Axis angles: 3 DOF for the scaled version and 4 DOF for the
non-scaled. The latter has one extra DOF.
Quaternions: 4 DOF, 1 extra DOF.

From the Euler theorem we know that an arbitrary rotation can be
described with only 3 DOF, so those parameters extra are redundant.

For rotational matrix, we can impose additional constraints if the
matrix represent a rigid transform.

|a| = |b| = |c | = 1

a = b × c, b = c × a, c = a× b

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 37 / 61

Which rotation representation is better?

The axis/angle representation is minimal, and hence does not require any
additional constraints.

If the angle is expressed in degrees, it is easier to understand the pose, and
easier to express exact rotations and derivatives are easy to compute.

Quaternions do not have discontinuities. It is also easier to interpolate
between rotations and to chain rigid transformations.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 38 / 61

Which rotation representation is better?

The axis/angle representation is minimal, and hence does not require any
additional constraints.

If the angle is expressed in degrees, it is easier to understand the pose, and
easier to express exact rotations and derivatives are easy to compute.

Quaternions do not have discontinuities. It is also easier to interpolate
between rotations and to chain rigid transformations.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 38 / 61

Which rotation representation is better?

The axis/angle representation is minimal, and hence does not require any
additional constraints.

If the angle is expressed in degrees, it is easier to understand the pose, and
easier to express exact rotations and derivatives are easy to compute.

Quaternions do not have discontinuities. It is also easier to interpolate
between rotations and to chain rigid transformations.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 38 / 61

3D to 2D projections

How are 3D primitives projected onto the image plane?

We can do this using a linear 3D to 2D projection matrix

Different types. The most commonly used:

Orthography
Perspective

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 39 / 61

Orthographic Projection

An orthographic projection simply drops the z component of p = (x , y , z) to
obtain the 2D point q

q =
[

I | 0
]

p

Using homogeneous coordinates

q̄ =

 1 0 0 0
0 1 0 0
0 0 0 1

 p̄

Is an approximate model for long focal length lenses and objects whose
depth is shallow relative to their distance to the camera.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 40 / 61

Orthographic Projection

An orthographic projection simply drops the z component of p = (x , y , z) to
obtain the 2D point q

q =
[

I | 0
]

p

Using homogeneous coordinates

q̄ =

 1 0 0 0
0 1 0 0
0 0 0 1

 p̄

Is an approximate model for long focal length lenses and objects whose
depth is shallow relative to their distance to the camera.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 40 / 61

Orthographic Projection

An orthographic projection simply drops the z component of p = (x , y , z) to
obtain the 2D point q

q =
[

I | 0
]

p

Using homogeneous coordinates

q̄ =

 1 0 0 0
0 1 0 0
0 0 0 1

 p̄

Is an approximate model for long focal length lenses and objects whose
depth is shallow relative to their distance to the camera.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 40 / 61

Orthographic Projection

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 41 / 61

Scaled Orthographic Projection

Scaled orthography is actually more commonly used to fit to the image

q =
[
sI | 0

]
p

This model is equivalent to first projecting the world points onto a local
fronto-parallel image plane and then scaling this image using regular
perspective projection.

The scaling can be the same for all parts of the scene or it can be different
for objects that are being modeled independently.

It is a popular model for reconstructing the 3D shape of objects far away
from the camera,

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 42 / 61

Scaled Orthographic Projection

Scaled orthography is actually more commonly used to fit to the image

q =
[
sI | 0

]
p

This model is equivalent to first projecting the world points onto a local
fronto-parallel image plane and then scaling this image using regular
perspective projection.

The scaling can be the same for all parts of the scene or it can be different
for objects that are being modeled independently.

It is a popular model for reconstructing the 3D shape of objects far away
from the camera,

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 42 / 61

Scaled Orthographic Projection

Scaled orthography is actually more commonly used to fit to the image

q =
[
sI | 0

]
p

This model is equivalent to first projecting the world points onto a local
fronto-parallel image plane and then scaling this image using regular
perspective projection.

The scaling can be the same for all parts of the scene or it can be different
for objects that are being modeled independently.

It is a popular model for reconstructing the 3D shape of objects far away
from the camera,

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 42 / 61

Scaled Orthographic Projection

Scaled orthography is actually more commonly used to fit to the image

q =
[
sI | 0

]
p

This model is equivalent to first projecting the world points onto a local
fronto-parallel image plane and then scaling this image using regular
perspective projection.

The scaling can be the same for all parts of the scene or it can be different
for objects that are being modeled independently.

It is a popular model for reconstructing the 3D shape of objects far away
from the camera,

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 42 / 61

Scaled Orthographic Projection

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 43 / 61

Perspective Projection

Points are projected onto the image plane by dividing them by their z
coordinate, i.e.,

q = Pz(p) =

 x/z
y/z

1


In homogeneous coordinates, the projection has a simple linear form,

q̄ =

 1 0 0 0
0 1 0 0
0 0 1 0

 p̄

We have dropped the w component, thus it is not possible to recover the
distance of the 3D point from the image.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 44 / 61

Perspective Projection

Points are projected onto the image plane by dividing them by their z
coordinate, i.e.,

q = Pz(p) =

 x/z
y/z

1


In homogeneous coordinates, the projection has a simple linear form,

q̄ =

 1 0 0 0
0 1 0 0
0 0 1 0

 p̄

We have dropped the w component, thus it is not possible to recover the
distance of the 3D point from the image.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 44 / 61

Perspective Projection

Points are projected onto the image plane by dividing them by their z
coordinate, i.e.,

q = Pz(p) =

 x/z
y/z

1


In homogeneous coordinates, the projection has a simple linear form,

q̄ =

 1 0 0 0
0 1 0 0
0 0 1 0

 p̄

We have dropped the w component, thus it is not possible to recover the
distance of the 3D point from the image.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 44 / 61

Perspective Projection

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 45 / 61

Perspective Projection

[Source: S. Seitz]

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 46 / 61

Camera Intrinsics

Once we projected the 3D point through an ideal pinhole using a projection
matrix, we must still transform the result according to the pixel sensor
spacing and the relative position of the sensor plane to the origin.

Image sensors return pixel values indexed by integer pixel coord (xs , ys).

To map pixels to 3D coordinates, we first scale the (xs , ys) by the pixel
spacings (sx , sy).

We then describe the orientation of the sensor relative to the camera
projection center Oc with an origin cs and a 3D rotation Rs .

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 47 / 61

Camera Intrinsics

Once we projected the 3D point through an ideal pinhole using a projection
matrix, we must still transform the result according to the pixel sensor
spacing and the relative position of the sensor plane to the origin.

Image sensors return pixel values indexed by integer pixel coord (xs , ys).

To map pixels to 3D coordinates, we first scale the (xs , ys) by the pixel
spacings (sx , sy).

We then describe the orientation of the sensor relative to the camera
projection center Oc with an origin cs and a 3D rotation Rs .

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 47 / 61

Camera Intrinsics

Once we projected the 3D point through an ideal pinhole using a projection
matrix, we must still transform the result according to the pixel sensor
spacing and the relative position of the sensor plane to the origin.

Image sensors return pixel values indexed by integer pixel coord (xs , ys).

To map pixels to 3D coordinates, we first scale the (xs , ys) by the pixel
spacings (sx , sy).

We then describe the orientation of the sensor relative to the camera
projection center Oc with an origin cs and a 3D rotation Rs .

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 47 / 61

Camera Intrinsics

Once we projected the 3D point through an ideal pinhole using a projection
matrix, we must still transform the result according to the pixel sensor
spacing and the relative position of the sensor plane to the origin.

Image sensors return pixel values indexed by integer pixel coord (xs , ys).

To map pixels to 3D coordinates, we first scale the (xs , ys) by the pixel
spacings (sx , sy).

We then describe the orientation of the sensor relative to the camera
projection center Oc with an origin cs and a 3D rotation Rs .

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 47 / 61

Camera Intrinsics

We then describe the orientation of the sensor relative to the camera
projection center Oc with an origin cs and a 3D rotation Rs .

The combined 2D to 3D projection can then be written as

p̄ =
[

Rs | cs
]  sx 0 0

0 sy 0
0 0 1

 xs
ys
1

 = Ms p̄s

The matrix Ms has 8 unknowns: 3 rotation, 3 translation, 2 scaling.

We have ignored the possible skewing between the axes.

In general only 7 dof, since the distance of the sensor from the origin cannot
be teased apart from the sensor spacing

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 48 / 61

Camera Intrinsics

We then describe the orientation of the sensor relative to the camera
projection center Oc with an origin cs and a 3D rotation Rs .

The combined 2D to 3D projection can then be written as

p̄ =
[

Rs | cs
]  sx 0 0

0 sy 0
0 0 1

 xs
ys
1

 = Ms p̄s

The matrix Ms has 8 unknowns: 3 rotation, 3 translation, 2 scaling.

We have ignored the possible skewing between the axes.

In general only 7 dof, since the distance of the sensor from the origin cannot
be teased apart from the sensor spacing

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 48 / 61

Camera Intrinsics

We then describe the orientation of the sensor relative to the camera
projection center Oc with an origin cs and a 3D rotation Rs .

The combined 2D to 3D projection can then be written as

p̄ =
[

Rs | cs
]  sx 0 0

0 sy 0
0 0 1

 xs
ys
1

 = Ms p̄s

The matrix Ms has 8 unknowns: 3 rotation, 3 translation, 2 scaling.

We have ignored the possible skewing between the axes.

In general only 7 dof, since the distance of the sensor from the origin cannot
be teased apart from the sensor spacing

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 48 / 61

Camera Intrinsics

We then describe the orientation of the sensor relative to the camera
projection center Oc with an origin cs and a 3D rotation Rs .

The combined 2D to 3D projection can then be written as

p̄ =
[

Rs | cs
]  sx 0 0

0 sy 0
0 0 1

 xs
ys
1

 = Ms p̄s

The matrix Ms has 8 unknowns: 3 rotation, 3 translation, 2 scaling.

We have ignored the possible skewing between the axes.

In general only 7 dof, since the distance of the sensor from the origin cannot
be teased apart from the sensor spacing

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 48 / 61

Camera Calibration

We know some 3D points and we want to obtain the camera intrinsics and
extrinsics.

The relationship between the 3D pixel center p and the 3D camera-centered
point pc is given by an unknown scaling s, i.e., p = spc .

We can therefore write the complete projection as

p̄s = αM−1s pc = Kpc

with K the calibration matrix that describes the camera intrinsic
parameters.

Combining with the external parameters we have

p̄s = K
[

R | t
]

pw = Ppw

with P = K[R|t] the camera matrix.

Problem of identification, so K is assumed upper-triangular when estimated
from 3D measurements.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 49 / 61

Camera Calibration

We know some 3D points and we want to obtain the camera intrinsics and
extrinsics.

The relationship between the 3D pixel center p and the 3D camera-centered
point pc is given by an unknown scaling s, i.e., p = spc .

x

X?
X?

X?

We can therefore write the complete projection as

p̄s = αM−1s pc = Kpc

with K the calibration matrix that describes the camera intrinsic
parameters.

Combining with the external parameters we have

p̄s = K
[

R | t
]

pw = Ppw

with P = K[R|t] the camera matrix.

Problem of identification, so K is assumed upper-triangular when estimated
from 3D measurements.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 49 / 61

Camera Calibration

We know some 3D points and we want to obtain the camera intrinsics and
extrinsics.

The relationship between the 3D pixel center p and the 3D camera-centered
point pc is given by an unknown scaling s, i.e., p = spc .

We can therefore write the complete projection as

p̄s = αM−1s pc = Kpc

with K the calibration matrix that describes the camera intrinsic
parameters.

Combining with the external parameters we have

p̄s = K
[

R | t
]

pw = Ppw

with P = K[R|t] the camera matrix.

Problem of identification, so K is assumed upper-triangular when estimated
from 3D measurements.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 49 / 61

Camera Calibration

We know some 3D points and we want to obtain the camera intrinsics and
extrinsics.

The relationship between the 3D pixel center p and the 3D camera-centered
point pc is given by an unknown scaling s, i.e., p = spc .

We can therefore write the complete projection as

p̄s = αM−1s pc = Kpc

with K the calibration matrix that describes the camera intrinsic
parameters.

Combining with the external parameters we have

p̄s = K
[

R | t
]

pw = Ppw

with P = K[R|t] the camera matrix.

Problem of identification, so K is assumed upper-triangular when estimated
from 3D measurements.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 49 / 61

Camera Calibration

We know some 3D points and we want to obtain the camera intrinsics and
extrinsics.

The relationship between the 3D pixel center p and the 3D camera-centered
point pc is given by an unknown scaling s, i.e., p = spc .

We can therefore write the complete projection as

p̄s = αM−1s pc = Kpc

with K the calibration matrix that describes the camera intrinsic
parameters.

Combining with the external parameters we have

p̄s = K
[

R | t
]

pw = Ppw

with P = K[R|t] the camera matrix.

Problem of identification, so K is assumed upper-triangular when estimated
from 3D measurements.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 49 / 61

Camera Calibration

Thus it is typically assumed to be

K =

 fx s cx
0 fy cy
0 0 1

pw = Ppw

with typically fx = fy and s = 0.

[Source: R. Szeliski]
Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 50 / 61

Camera Matrix

We can put intrinsics and extrinsics together in a 3× 4 camera matrix

P = K[R|t]

Or in homogeneous coordinates we have an invertible matrix

P̄ =

[
K 0
0T 1

] [
R t
0T 1

]
= K̄E

with E a 3D rigid body (Euclidean) transformation.

We can map a 3D point in homogeneous coordinates into the image plane as

ps ∼ P̄p̄w

After multiplication by P̄, the vector is divided by the third element of the
vector to obtain the normalized form ps = (xs , ys , 1, d).

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 51 / 61

Camera Matrix

We can put intrinsics and extrinsics together in a 3× 4 camera matrix

P = K[R|t]

Or in homogeneous coordinates we have an invertible matrix

P̄ =

[
K 0
0T 1

] [
R t
0T 1

]
= K̄E

with E a 3D rigid body (Euclidean) transformation.

We can map a 3D point in homogeneous coordinates into the image plane as

ps ∼ P̄p̄w

After multiplication by P̄, the vector is divided by the third element of the
vector to obtain the normalized form ps = (xs , ys , 1, d).

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 51 / 61

Camera Matrix

We can put intrinsics and extrinsics together in a 3× 4 camera matrix

P = K[R|t]

Or in homogeneous coordinates we have an invertible matrix

P̄ =

[
K 0
0T 1

] [
R t
0T 1

]
= K̄E

with E a 3D rigid body (Euclidean) transformation.

We can map a 3D point in homogeneous coordinates into the image plane as

ps ∼ P̄p̄w

After multiplication by P̄, the vector is divided by the third element of the
vector to obtain the normalized form ps = (xs , ys , 1, d).

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 51 / 61

Camera Matrix

We can put intrinsics and extrinsics together in a 3× 4 camera matrix

P = K[R|t]

Or in homogeneous coordinates we have an invertible matrix

P̄ =

[
K 0
0T 1

] [
R t
0T 1

]
= K̄E

with E a 3D rigid body (Euclidean) transformation.

We can map a 3D point in homogeneous coordinates into the image plane as

ps ∼ P̄p̄w

After multiplication by P̄, the vector is divided by the third element of the
vector to obtain the normalized form ps = (xs , ys , 1, d).

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 51 / 61

Photometric image formation

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 52 / 61

Lighting: Point Source

To produce an image, the scene must be illuminated with one or more light
sources.

A point light source originates at a single location in space.

In addition to its location, a point light source has an intensity and a color
spectrum, i.e., a distribution over wavelengths L(λ).

The intensity of a light source falls off with the square of the distance
between the source and the object being lit, because the same light is being
spread over a larger (spherical) area.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 53 / 61

Lighting: More complex sources

A more complex light distribution can often be represented using an
environment map.

This representation maps incident light directions v to color values (or
wavelengths λ)

L(v, λ)

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 54 / 61

Reflectance and shading

When light hits an objects surface, it is scattered and reflected.

The Bidirectional Reflectance Distribution Function (BRDF) is a 4D
function f (θi , φi , θr , φr , λ) that describes how much of each wavelength λ
arriving at an incident direction vi is emitted in a reflected direction vr .

It is reciprocal, we can exchange vi and vr .

Figure: (a) Light scatters when it hits a surface. (b) The BRDF is parameterized
by the angles that the incident, vi and reflected, vr , light ray directions make with
the surface coordinate frame (dx , dy ,n).

[Source: R. Szeliski]
Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 55 / 61

BRDF and light

For an isotropic material fr (θi , θr , |φi − φr |, λ) or fr (vi , vr ,n, λ)

The amount of light exiting a surface point p in a direction vr under a given
lighting condition is

Lr (vr , λ) =

∫
Li (vi , λ)fr (vi , vr ,n, λ)max(0, cos θi)dvi

If the light sources are a discrete set of point light sources, then the integral
is a sum

Lr (vr , λ) =
∑
i

Li (λ)fr (vi , vr ,n, λ)max(0, cos θi)dvi

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 56 / 61

Diffuse Reflection

Also known as Lambertian or matte reflection.

Scatters light uniformly in all directions and is the phenomenon we most
normally associate with shading.

In this case the BRDF is constant

fr (vi , vr ,n, λ) = fr (λ)

The amount of light depends on the angle between the incident light
direction and the surface normal, θi . The shading equation for diffuse
reflection is then

Ld(vr , λ) =
∑
i

Li (λ)fd(λ)max(0, vi · n)

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 57 / 61

Specularities

The second major component of the BRDF is specular reflection, which
depends on the direction of the outgoing light.

Incident light rays are reflected in a direction that is rotated by 180 around
the surface normal n.

The amount of light reflected in a given direction vr thus depends on the
angle between the view direction vr and the specular direction si .

[Source: R. Szeliski]
Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 58 / 61

Phong Model

Combines the diffuse and specular components of reflection with another
term, which he called the ambient illumination.

This term accounts for the fact that objects are generally illuminated not
only by point light sources but also by a general diffuse illumination
corresponding to inter-reflection (e.g., the walls in a room) or distant
sources such as the sky.

The ambient term does not depend on surface orientation, but depends on
the color of both the ambient illumination and the object

L = ka(λ)La(λ) + kd(λ)
∑
i

Li (λ)max(0, vi · n) + Ls

There exists more models, we just mentioned the most used ones.

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 59 / 61

Typical Shading

Figure: Diffuse (smooth shading) and specular (shiny highlight) reflection, as well
as darkening in the grooves and creases due to reduced light visibility and
interreflections. Photo from the Caltech Vision Lab

[Source: R. Szeliski]
Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 60 / 61

Next class ... some image fundamentals

Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 61 / 61

	Introduction

