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Graphical models

@ Applications
@ Representation
@ Inference

o message passing (LP relaxations)
e graph cuts

@ Learning
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Learning in graphical models
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Parameter learning

@ The MAP problem was defined as

max Z@ Vi +Z€ Ya)

Y1 sYn

@ Learn parameters w for more accurate prediction

max Zwl¢l Yi +Zwa¢a(}/a

YissYn
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Loss functions

@ Regularized loss minimization: Given input pairs (x,y) € S, minimize

(x.y)ES
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Loss functions

@ Regularized loss minimization: Given input pairs (x,y) € S, minimize

(x.y)ES

e Different learning frameworks depending on the surrogate loss /(w, x, y)

o Hinge for Structural SVMs [Tsochantaridis et al. 05, Taskar et al. 04]
o log-loss for Conditional Random Fields [Lafferty et al. 01]

@ Unified by [Hazan and Urtasun, 10]
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Recall SVM

@ In SVMs we minimize the following program
.1 2
min §||W|| + Zfi
subject to yi(b+w'x;)—1+& >0, Vi=1,...,N.

with y; € {—1,1} binary.

@ We need to extend this to reason about more complex structures, not just
binary variables.
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Structural SVM [Tsochantaridis et al., 05]

@ We want to construct a function
f(x,y) = argmaxw’ ¢(x, y)
yey

which is parameterized in terms of w, the parameters to learn.
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Structural SVM [Tsochantaridis et al., 05]

@ We want to construct a function
f(x,y) = argmaxw’ ¢(x, y)
yey

which is parameterized in terms of w, the parameters to learn.

@ We will like to minimize the empirical risk

R(Fow) = 3 Al fx. w)
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Structural SVM [Tsochantaridis et al., 05]

@ We want to construct a function
f(x,y) = argmaxw’ ¢(x, y)
yey

which is parameterized in terms of w, the parameters to learn.

@ We will like to minimize the empirical risk

R(Fow) = 3 Al fx. w)

@ This is the expected loss under the empirical distribution induced
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Structural SVM [Tsochantaridis et al., 05]

@ We want to construct a function
f(x,y) = argmaxw’ ¢(x, y)
yey

which is parameterized in terms of w, the parameters to learn.

@ We will like to minimize the empirical risk

R(Fow) = 3 Al fx. w)

@ This is the expected loss under the empirical distribution induced
® A(y;, f(x;, w)) is the "task loss” which depends on the application

e segmentation: per pixel segmentation error
o detection: intersection over the union
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Structural SVM [Tsochantaridis et al., 05]

@ We want to construct a function
f(x,y) = argmaxw’ ¢(x, y)
yey

which is parameterized in terms of w, the parameters to learn.

@ We will like to minimize the empirical risk

R(Fow) = 3 Al fx. w)

@ This is the expected loss under the empirical distribution induced
® A(y;, f(x;, w)) is the "task loss” which depends on the application

e segmentation: per pixel segmentation error
o detection: intersection over the union

o Typically, A(y,y')=0ify =y’
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Separable case

@ We will like to minimize the empirical risk

R(fw)= 1 > A0 o w)
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Separable case

@ We will like to minimize the empirical risk

R(fw)= 1 > A0 o w)

@ We will have 0 train error if we satisfy

max {w’ @(x:,y)} < w'é(x:, )
yEV\yi

since A(y;,y;) =0 and A(y;,y) > 0,Vy € Y\ yi.
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Separable case

@ We will like to minimize the empirical risk

R(fw)= 1 > A0 o w)

@ We will have 0 train error if we satisfy

max {w’ @(x:,y)} < w'é(x:, )
yEV\yi

since A(y;,y;) =0 and A(y;,y) > 0,Vy € Y\ yi.

@ This can be replaced by || — 1 inequalities

Vi€ {1’ 7n}7v.y € y\yl . WT¢(Xi7yi) _WT¢(XI'ay) Z 0
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Separable case

@ We will like to minimize the empirical risk

R(fw)= 1 > A0 o w)

@ We will have 0 train error if we satisfy

max {w’ @(x:,y)} < w'é(x:, )
yEV\yi

since A(y;,yi) =0 and A(y;,y) > 0,Yy € Y\ yi.
@ This can be replaced by || — 1 inequalities

Vi€ {1’ 7n}7v.y € y\yl . WT¢(Xi7yi) _WT¢(XI'ay) Z 0

@ What's the problem of this?
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Separable case

@ Satisfying the inequalities might have more than one solution.
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Separable case

@ Satisfying the inequalities might have more than one solution.

@ Select the w with the maximum margin.
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Separable case

@ Satisfying the inequalities might have more than one solution.
@ Select the w with the maximum margin.

@ We can thus form the following optimization problem
1 5
min =||lw
in 5wl

subject to w'o(xi,yi) —~w p(x,y) =1 Vie{l - n},Vy e V\y
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Separable case

@ Satisfying the inequalities might have more than one solution.
@ Select the w with the maximum margin.

@ We can thus form the following optimization problem
1 5
min =||lw
in 5wl

subject to w'o(xi,yi) —~w p(x,y) =1 Vie{l - n},Vy e V\y

@ This is a quadratic program, so it's convex
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Separable case

Satisfying the inequalities might have more than one solution.

Select the w with the maximum margin.

We can thus form the following optimization problem
1 5
min =||lw
in 5wl

subject to w'o(xi,yi) —~w p(x,y) =1 Vie{l - n},Vy e V\y

@ This is a quadratic program, so it's convex

But it involves exponentially many constraints!
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Non-separable case

Multiple formulations
@ Multi-class classification [Crammer & Singer, 03]
@ Slack re-scaling [Tsochantaridis et al. 05]
@ Margin re-scaling [Taskar et al. 04]

Let’s look at them in more details
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Multi-class classification [Crammer & Singer, 03]

@ Enforce a large margin and do a batch convex optimization

@ The minimization program is then

1, C
min §||w|| +;;fi
st wio(x, ) —wd(xi,y) >1—¢& Vie{l,---,n},Vy #y

@ Can also be written in terms of kernels
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Structured Output SVMs

@ Frame structured prediction as a multiclass problem to predict a single
element of Y and pay a penalty for mistakes
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Structured Output SVMs

@ Frame structured prediction as a multiclass problem to predict a single
element of Y and pay a penalty for mistakes

@ Not all errors are created equally, e.g. in an HMM making only one mistake
in a sequence should be penalized less than making 50 mistakes

[Source: M. Blaschko]
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Structured Output SVMs

@ Frame structured prediction as a multiclass problem to predict a single
element of Y and pay a penalty for mistakes

@ Not all errors are created equally, e.g. in an HMM making only one mistake
in a sequence should be penalized less than making 50 mistakes

@ Pay a loss proportional to the difference between true and predicted error
(task dependent)

A(yi7y)

[Source: M. Blaschko]
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Slack re-scaling

@ Re-scale the slack variables according to the loss incurred in each of the
linear constraints
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Slack re-scaling

@ Re-scale the slack variables according to the loss incurred in each of the
linear constraints

@ Violating a margin constraint involving a y # y; with high loss A(y;, y)
should be penalized more than a violation involving an output value with
smaller loss

13 / 64
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Slack re-scaling

@ Re-scale the slack variables according to the loss incurred in each of the
linear constraints

@ Violating a margin constraint involving a y # y; with high loss A(y;, y)
should be penalized more than a violation involving an output value with
smaller loss

@ The minimization program is then

1, . CL
min > lw] +;i;§;

§i

S vie L, ,n Yy eV \y
Alyiy) { )y \y

st. wio(x,y) —w! ¢(x,y) >1—
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Slack re-scaling

Re-scale the slack variables according to the loss incurred in each of the
linear constraints

Violating a margin constraint involving a y # y; with high loss A(y;, y)
should be penalized more than a violation involving an output value with
smaller loss

The minimization program is then

1, . CL
min > lw] +;i;§;

§i

S vie L, ,n Yy eV \y
Alyiy) { )y \y

st. wio(x,y) —w! ¢(x,y) >1—

The justification is that %27:1 &; is an upper-bound on the empirical risk.

Easy to proof
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Margin re-scaling

@ In this case the minimization problem is formulated as
.1 s C ‘
min §||WH + ;;&
st w o(xi,yi) —w d(xi,y) > Alyi,y) =& Vie{l,--- n},VyeV\y

@ The justification is that %Z?Zl & is an upper-bound on the empirical risk.

@ Also easy to proof.
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Algorithm 1 Algorithm for solving SVMp and the loss re-scaling formulations SVM] and SVM3 .
1: Input: (X1,¥1)s- ... (%n,¥n).C. €
2 Sje—0Oforalli=1,...,n
3: repeat
4: fori=1,....,ndo

5: /* prepare cost function for optimization */
set up cost function
1—{8¥i(y),w) (SVMp)
(1— (@3¥i(y). W) A(¥i.¥) SVM;*)
H(y) = { Alyiy) — B¥i(y),w) VML)

(I—S‘Pr(‘)\w‘)\//\(va.v) SVM")
VALY — (8%i(y (SVM;™)

where w = Z;Zres’ GWJS‘PJU‘).
6: /* find cutting plane */
compute ¥ = argmazyco-H(y)

VE * determine value of current slack variable */
compute & = max{0, maxyes, H(y)}
8: if H(¥) = &; 4 ¢ then
9: /* add constraint to the working set */
S5i— SU{¥}
10a: * Vaariant (a): perform full op!‘imi:ﬂtion */
5 +— optimize the dual of SVMp , SV or 5V Eover 5,.8=1;5.
10b: * Variant (b): perform subspace ascent */
s, +— optimize the dual of SVMp , SVM] or SVMJ over S§;
12: end if
13:  end for

14: until no S; has changed during iteration
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Constraint Generation

@ To find the most violated constraint, we need to maximize w.r.t. y for
margin rescaling

w’o(xi,y) + A(yi,y)

and for slack rescaling

{wTo(xi,y) +1—wo(x,yi)}Ayi,y)
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Constraint Generation

@ To find the most violated constraint, we need to maximize w.r.t. y for
margin rescaling

w’o(xi,y) + A(yi,y)

and for slack rescaling

{wTo(xi,y) +1—wo(x,yi)}Ayi,y)

@ For arbitrary output spaces, we would need to iterate over all elements in Y
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Constraint Generation

@ To find the most violated constraint, we need to maximize w.r.t. y for
margin rescaling

w’o(xi,y) + A(yi,y)

and for slack rescaling

{wTo(xi,y) +1—wo(x,yi)}Ayi,y)

@ For arbitrary output spaces, we would need to iterate over all elements in Y

@ Use Graph-cuts or message passing
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Constraint Generation

@ To find the most violated constraint, we need to maximize w.r.t. y for
margin rescaling
w'o(x;, y) + Alyi,y)

and for slack rescaling

{wTo(xi,y) +1—wo(x,yi)}Ayi,y)

@ For arbitrary output spaces, we would need to iterate over all elements in Y
@ Use Graph-cuts or message passing

@ When the MAP cannot be computed exactly, but only approximately, this
algorithm does not behave well [Fidley et al., 08]
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One Slack Formulation

@ Margin rescaling
.1 , C
min 5wl + ¢

s.t. WT¢(Xiayl') _WT¢(Xi7}/) Z A(Yn}/) _5 Vi e {la 7”}7Vy S y\y:
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One Slack Formulation

@ Margin rescaling

1, ., C
min Slw+ S
s.t. WT¢(Xiayl') _WT¢(Xi7}/) > A(Yn}/) _5 Vi e {la 7”}7Vy € y\)’:

@ Slack rescaling

min §||W|| +;§

st wTo(x, i) — wTd(xi,y) > 1 A(f,.,y) Vie (L n}YyeY\y

March 6, 2012 17 / 64
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One Slack Formulation

@ Margin rescaling

1, ., C
min Slw+ S
s.t. WT¢(Xiayl') _WT¢(Xi7}/) > A(Yn}/) _5 Vi e {la 7”}7Vy € y\)’:

@ Slack rescaling

min §||W|| +;§

st wTo(x, i) — wTd(xi,y) > 1 A(f,.,y) Vie (L n}YyeY\y

@ Same optima as previous formulation [Joachims et al, 09]
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Example: Handwritten Recognition

@ Predict text from image of handwritten characters
arg maxy w f(fM.y) = “brace”

@ Equivalently:

w f([WA, “brace”) > w f([fHM, “azaaa”
WTf(,-“brace") > WTf(lm,“aaaab")

w  f([JPR. “brace”) > w ' f([YIR, “zzzzz”

@ lterate

e Estimate model parameters w using active constraint set
o Generate the next constraint

[Source: B. Taskar]
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Conditional Random Fields

@ Regularized loss minimization: Given input pairs (x, y) € S, minimize

A C
Z K(w,x,y) + ;”WHS,
(x,y)ES
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Conditional Random Fields

@ Regularized loss minimization: Given input pairs (x, y) € S, minimize

A C
Z K(w,x,y) + ;”WHS,

(x,y)ES

@ CREF loss: The conditional distribution is

ey W) = Z(Xl e (K. 9) + W 0(x.9)

=) exp Uy, §) +w d(x,9))
yey

where ¢(y, ) is a prior distribution and Z(x, y) the partition function, and

Zh (w,x,y)=In———.
¢ Pxy (Vi W)
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CRF learning

@ In CRFs one aims to minimize the regularized negative log-likelihood of the
conditional distribution

(CRF) min< Y InZ(x,y)—d'w+ E||w||f; :
w P
(x.y)eS

where (x,y) € S ranges over the training pairs and
d= ) ®(xy)
(x.y)es

is the vector of empirical means.
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CRF learning

@ In CRFs one aims to minimize the regularized negative log-likelihood of the
conditional distribution

(CRF) min< Y InZ(x,y)—d'w+ E||w||f; :
w P
(x.y)eS

where (x,y) € S ranges over the training pairs and

d= ) ®(xy)

(x.y)es
is the vector of empirical means.

@ In coordinate descent methods, each coordinate w, is iteratively updated in
the direction of the negative gradient, for some step size 7.
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CRF learning

@ In CRFs one aims to minimize the regularized negative log-likelihood of the
conditional distribution

C
(CRF) min > InZ(xy)—d'w+ ;||w||g :
(x,y)ES
where (x,y) € S ranges over the training pairs and

d= ) ®(xy)
(x,y)ES
is the vector of empirical means.

@ In coordinate descent methods, each coordinate w, is iteratively updated in
the direction of the negative gradient, for some step size 7.

@ The gradient of the log-partition function corresponds to the probability
distribution p(§|x, y;w), and the direction of descent takes the form

> > pFlx,yiw)e(x, §) — dp + |w, [P sign(w,).

(x.y)ES ¥
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CRF learning

@ In CRFs one aims to minimize the regularized negative log-likelihood of the
conditional distribution

C
(CRF) min > InZ(xy)—d'w+ ;||w||g :
(x,y)ES
where (x,y) € S ranges over the training pairs and

d= ) ®(xy)
(x,y)ES
is the vector of empirical means.

@ In coordinate descent methods, each coordinate w, is iteratively updated in
the direction of the negative gradient, for some step size 7.

@ The gradient of the log-partition function corresponds to the probability
distribution p(§|x, y;w), and the direction of descent takes the form

> > pFlx,yiw)e(x, §) — dp + |w, [P sign(w,).
(x.y)es ¥

@ Problem: Requires computing the partition function!

Raquel Urtasun (TTI-C) Visual Recognition March 6, 2012 20 / 64



Loss functions

@ Regularized loss minimization: Given input pairs (x,y) € S, minimize

A C
Z K(w,x,y) + ;”WHS,

(x,y)ES

Raquel Urtasun (TTI-C) Visual Recognition March 6, 2012



Loss functions

@ Regularized loss minimization: Given input pairs (x,y) € S, minimize

A C
Z K(w,x,y) + ;”WHS,

(x,y)ES

@ In structure SVMs

Zhinge(wax7y) = r;]ea:));( {g(yaj\/) + WT(D(X,_)’}) - WTCD(X)y)}
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Loss functions

@ Regularized loss minimization: Given input pairs (x,y) € S, minimize

A C
Z K(w,x,y) + ;HWHS,

(x,y)eS
@ In structure SVMs

Zhinge(wax7y) - r;]ea:));( {g(yaj\/) + WTCD(X,_)’}) - WTCD(X)y)}

@ CREF loss: The conditional distribution is

Py (51 W) = ﬁ exp ((y,9) + w' &(x,9))

Zexp (v, 9) +w'o(x, 7))

yey
where {(y,¥) is a prior distribution and Z(x, y) the partition function, and
_ 1
Liog(W, X, y) =In ————.
el ) =10 )
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Relation between loss functions

@ The CRF program is

D> InZ(xy)—d'w+ EIIWII,‘S} ;

x,y)ES

(CRF) mvjn {
(

where (x,y) € S ranges over training pairs and d = 3, )5 ®(x,y) is the
vector of empirical means, and

Z(x,y) = Y exp (U, 9) +w T O(x,9))
yey

Raquel Urtasun (TTI-C) Visual Recognition March 6, 2012 22 / 64



Relation between loss functions

@ The CRF program is

C
. _ T ~ P
(CRF) nun{ E InZ(x,y)—d'w+ p||w||p},
(x,y)eS

where (x,y) € S ranges over training pairs and d = 3, )5 ®(x,y) is the
vector of empirical means, and

Z(x,y) = Y exp (U, 9) +w T O(x,9))
yey

@ In structured SVMs

w

(structured SVM) min { Z ;r:nea3>}< {K(y,f/) +wT¢(x,)“/)} —d w4+ §||w||g} ,
(x.y)eS
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A family of structure prediction problems

[T. Hazan and R. Urtasun, NIPS 2010]

@ One parameter extension of CRFs and structured SVMs

C
min Z InZe(x,y) —d w4+ —[lwl[B &,
(y)ES p
d is the empirical means, and

InZc(x,y) =¢€ln Z exp (E(Y»)A’) + :IT¢'(X,)“/))
Jey
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A family of structure prediction problems

[T. Hazan and R. Urtasun, NIPS 2010]

@ One parameter extension of CRFs and structured SVMs

C
min Z InZe(x,y) —d w4+ —[lwl[B &,
(y)ES p
d is the empirical means, and

InZc(x,y) =¢€ln Z exp (E(Y»}A’) + :IT¢'(X,)“/))
Jey

@ CRF if e =1, Structured SVM if € = 0 respectively.
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A family of structure prediction problems

[T. Hazan and R. Urtasun, NIPS 2010]

@ One parameter extension of CRFs and structured SVMs

C
min Z InZe(x,y) —d w4+ —[lwl[B &,
(y)ES p
d is the empirical means, and

InZc(x,y) =¢€ln Z exp (E(Y»}A’) + :IT¢'(X,)“/))
Jey

@ CRF if e =1, Structured SVM if € = 0 respectively.

@ Introduces the notion of loss in CRFs.
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A family of structure prediction problems

[T. Hazan and R. Urtasun, NIPS 2010]

@ One parameter extension of CRFs and structured SVMs

C
min Z InZe(x,y) —d w4+ —[lwl[B &,
(y)ES p
d is the empirical means, and

InZc(x,y) =¢€ln Z exp (E(Y»}A’) + :IT¢'(X,)“/))
Jey

@ CRF if e =1, Structured SVM if € = 0 respectively.

@ Introduces the notion of loss in CRFs.
@ Dual takes the form

1—q
max Z (eH(px,y) + Z Px,y(}?)e(yﬁf’)) - Cq

pry(N)EBy A o >

q

Do D Py()e(x9) —d

(x,y)ESyEY

q

over the probability simplex over ).
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Primal-Dual approximated learning algorithm

[T. Hazan and R. Urtasun, NIPS 2010]

@ In many applications the features decompose

G0 9n) = D b () + D bralx, o).

vEVy x a€k, x
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Primal-Dual approximated learning algorithm

[T. Hazan and R. Urtasun, NIPS 2010]

@ In many applications the features decompose

G0 9n) = D b () + D bralx, o).

vEVy x a€k, x

@ Using this we can write the approximate program as

Lolys ) + ey, , Wrdrv (6 9v) = Zaenw) Ax,y»\/ﬂ&(?v))

€cy

min Z ecy InZexp <
v

A W
oy (x,y)ES,v

+3 eca InZexp(

Zr:aeE, qubr,a(x,?a)JrZVeN(a) Ax,y,v—»a(?v)) T
(y)ES, Jou

eca
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Primal-Dual approximated learning algorithm

[T. Hazan and R. Urtasun, NIPS 2010]

@ In many applications the features decompose

G0 9n) = D b () + D bralx, o).

vEVy x a€k, x

@ Using this we can write the approximate program as

Lolys ) + ey, , Wrdrv (6 9v) = Zaenw) Ax,y»\/ﬂ&(?v))

€cy

min Z ecy InZexp <
v

A W
oy (x,y)ES,v

+ Z €cy In Zexp

(x,y)ES,a Yo

(Zr:aeE, qubr,a(x,?a)JrZVeN(a) Ax,y,v—»a(?v)) T

eca

@ Coordinate descent algorithm that alternates between sending messages and
updating parameters.
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Primal-Dual approximated learning algorithm

[T. Hazan and R. Urtasun, NIPS 2010]

@ In many applications the features decompose

G0 9n) = D b () + D bralx, o).

vEVy x a€k, x

@ Using this we can write the approximate program as

Lolys ) + ey, , Wrdrv (6 9v) = Zaenw) Ax,y»\/ﬂ&(?v))

€cy

min Z ecy InZexp <
v

A W
oy (x,y)ES,v

+ Z €cy In Zexp

(x,y)ES,a Yo

(Zr:aeE, qubr,a(x,?a)JrZVeN(a) Ax,y,v—»a(?v)) T

eca

@ Coordinate descent algorithm that alternates between sending messages and
updating parameters.

@ Advantage: doesn't need the MAP or marginal at each gradient step.
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[T. Hazan and R. Urtasun, NIPS 2010]

@ In many applications the features decompose
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@ Coordinate descent algorithm that alternates between sending messages and
updating parameters.

@ Advantage: doesn't need the MAP or marginal at each gradient step.
@ Can learn a large set of parameters.

@ Code will be available soon, including parallel implementation.
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Learning algorithm

Message-Passing algorithm for Approximated Structured Prediction:
Set €y (ﬁu) = exp (Ey,u(gu)) and similarly ¢’r,uw (ﬂ{’r,cx-

1. Fort=1,2,...

(a) For every v = 1,..n, every (x,y) € 8, every a € N(v), every fi, £ Vy doe

m:‘y,cx—,u(yﬁu) = H (ﬁpa r, ycx H nm,y,u—-a@u)
ragE, weEN(a)\v 1feca
Cor fEu
nr,y,u—aa’(yﬁv) o g‘,l.v (1"“!}) H 5€:U(ml 1"“"') H nlz,y.g—'u(ﬁu) /ml‘.y,a—au(yhu)
rveVe BeN(v)
(b) For every r = 1,...,d do:

For every (z,y) € S, every v € Voa, @ € Erg, every diy € Mo, fla € Va set:
N _ . _ " _ N 1/eco
b yw(lu) o< (f'y,r (4) Hr:uev,_, ‘ﬂfu () HQEN (v) ”m,;,Uaa(yu))

N -6 N . 1/eca
ba.‘.y,cx(ya) x (Hr:QEE,‘I (Prra(l‘, Ja) HueN(u) n:::.y.u—'c:(yu))

br— 6. — 7 E by (b)) Sr (2, G0) + Z bey,a(Ua)Pral(T, da) —cr + C - |9r‘p71 - sign(é,)

(=) ES wEVE z.du (xw)ES,aEBr z i
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Examples in computer vision
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@ Depth estimation

@ Multi-label prediction

@ Object detection

@ Non-maxima supression

@ Segmentation

@ Sentence generation

@ Holistic scene understanding
@ 2D pose estimation

@ Non-rigid shape estimation

@ 3D scene understanding
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For each application ...

. what do we need to decide?

@ Random variables

Graphical model

@ Potentials

@ Loss for learning
@ Learning algorithm

@ Inference algorithm

Let's look at some examples
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Depth Estimation

Image — left(a) Image — right(b)

* Images rectified

* Ignore occlusion for now

Energy:

E(d): {0,...D-1}» —R
Labels: d (depth/shift)

[Source: P. Kohli]
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Stereo matching pairwise

Energy:
E(d): {0,...D-1}» - R
E(d)=26;(d)+X 6;; (dirdj)
i i.jeN,

Unary:
6;(dj) = (rj""f-di)

"SAD; Sum of absolute differences”
(many others possible, NCC,...)

—"""ETR i left

Pairwise:

9, (d.d)) = 9(|drdj|)

[Source: P. Kohli]
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Stereo matching: energy

6; (diﬂdj) = g(ldi_djl)

No truncation
(global min.)

[Source: P. Kohli]
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Stereo matching: energy

8; (di-dj) = g(ldi-djl)

|di'dj| -

discontinuity preserving potentials
[Blake&Zisserman’83,'87]

No truncation with truncation
(global min.) (NP hard optimization)

[Source: P. Kohli]
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More on pairwise [O. Veksler]

8; (di:dj) = g(ldi-djl)

Left image

Potts model

(Potts model) Smooth disparities

[Source: P. Kohli]
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Graph Structure

No MRF No horizontal links
Pixel independent (WTA)  Efficient since independent chains

Pairwise MRF Ground truth
[Boykov et al. ‘01]

@ see http://vision.middlebury.edu/stereo/
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Learning and inference

@ There is only one parameter to learn: importance of pairwise with respect to
unitary!

@ Sum of square differences: outliers are more important
@ % of pixels that have disparity error bigger than e.

@ The latter is how typically stereo algorithms are scored
@ Which inference method will you choose?

@ And for learning?
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Example: Object Detection

@ We can formulate object localization as a regression from an image to a
bounding box
g: X =Y
@ X is the space of all images

@ ) is the space of all bounding boxes
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Joint Kernel Between bboxes

@ Note: x|, (the image restricted to the box region) is again an
image.

Compare two images‘ with boxes by comparing the images within
the boxes:

Bt ((2,9), (2", 7)) = i (& 2/

y’a)

@ Any common image kernel is applicable:
» linear on cluster histograms: k(h, ') =", h;h!,
N2
» x*-kernel: kyz(h,h') = exp (—% > Uz_:,;,) )

» pyramid matching kernel, ...

The resulting joint kernel is positive definite.

[Source: M. Blascko]
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Restriction Kernel example

) - (- D)

is large.

is small.

could also be large.

@ Note: This behaves differently from the common tensor products

Fjoint( (2, 9). (2, y') ) # k(z, 2" )k(y. y')) !

[Source: M. Blascko]
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Margin Rescaling

<w1(10($¢'ayi)> - <wa(;0($uy)> 2 A((/f U) - &'ia W:V’y = y \ Yi

V= {(wt,b,lr) | we{+1, -1}, (t.b,1,r)CRY)

Area(y; (Vy)

Al y) =1 - Tt
() =1 = Rrea(w U )

[Source: M. Blascko]
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Constraint Generation with Branch and Bound

@ As before, we must solve

max(w, o(z,. y)) + Ay y)

yey

where

Area(y; (N y)

Ay y)=1— Area(y; Jy)

@ Solution: use branch-and-bound over the space of all rectangles
in the image (Blaschko & Lampert, 2008)

[Source: M. Blascko]
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Sets of Rectangles

Branch-and-Bound works with subsets of the search space.

@ Instead of four numbers [/, ¢, r, b], store four intervals [L, T, R, B]:

L = [l ]
T = [to, thi
R = [r1a, 1]
B = [bi,, bi:]

[Source: M. Blascko]

L = [ba ]

R = [no;n]

T = [tota]

Largest possible rectangle [t bw,he.rm]

Smallest possible rectangle [t bio, b fi]

B = [binbe]
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Optimization

@ Train using constraint generation

» Train an SVM with margin rescaling
» ldentify the most violated constraint with branch and bound
and add it to the constraint set

Lampert et al., PAMI 2009
N

~

yrélf'\:’; ZZC“M 2 (@il mly) = kel wly)) + Ay y)
' J=1gey upper bound this term

@ iterate until convergence criterion is reached

[Source: M. Blascko]
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Results: PASCAL VOC2006

@ ~5,000 images: ~2,500 train/val, ~2,500 test
@ ~9,500 objects in 10 predefined classes:
» bicycle, bus, car, cat, cow, dog, horse, motorbike, person, sheep

@ Task: predict locations and confidence scores for each class

@ Evaluation: Precision-Recall curves

[H
el

oA

07

1
BrarEy franng
Qint kem3 Taning

THE
— Cembridge

£oolil
£ v
a4 by
Oy
-"uu"
03 1
kY *'\
03| = .
o an 1 b 5% 65 64 o3 08 o7 o8 o3 1

VOC 2006 detection, class cat: old and new training vs. VOC2006

[Source: M. Blascko]
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Results: PASCAL VOC2006 cats

Source: M. Blascko
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Problem

@ The restriction kernel is like having tunnel vision

[Source: M. Blascko]
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Problem

@ The restriction kernel is like having tunnel vision

[Source: M. Blascko]
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Global and Local Context Kernels

@ Augment restriction kernel with contextual cues
@ Global context kernel:

kglobal( (%, 1) (Ijayj) )= kf(fe':fj)

@ Local context kernel:

klocal( (Iz's ye‘)a (Tja yj); 9) = k[(re‘ |e(y1-)1 L |G)(y,-))

@ Putting it all together:
k( (xz‘:ye‘).- (Tjuj) ) = ﬁlkrestr( (T@',?Jz'), (ﬁjsyj) )
+ ﬁ2k|ocal( (me‘syé)a (Tjayj)’g)
ﬁ3kg|oba|( (i, 1) (‘Tj:yj) )

@ (3 can be learned using multiple kernel learning  siaschko & Lampert, 2008

+

[Source: M. Blascko]
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Local Context Kernel

@ Define local context as region between bounding box (I, t,r,b)
and

Oy)=(—08(r—1),t —0(b—1t),r +0(r —1),b+06(b—t))

@ The spatial extent of a local context kernel is indicated by the
shaded region

‘ocal contex
bounding box

v
@ Model the statistics of an object’s neighborhood
@ Don't model the statistics of the object itself

[Source: M. Blascko]
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Context is a very busy area of research in vision!

bicycle | bus car cat dog cow
learned 0410 | 0.253 | 0.268 | 0.415 | 0.332 | 0.286
fixed 0.429 | 0.177 | 0.263 | 0.251 | 0.178 | 0.194
no context | 0.396 | 0.100 | 0.145 | 0.259 | 0.170 | 0.118
VOC 2006 cat VOC 2006 dog

— Learned weights - 0.332

— Averaged weights - 0.178
— Rastriction kernel - 0.170
—Lampen et al., 2008 - 0.307

—Learmed weights - 0.415

— Averaged weights - 0.251

—Restriction kernal - 0.259 08
—Lampert et al., 2006 - 0.340 |

precision
precision

% 02 0.4 06 08 % 0.1 02 03 04 05
recall recall

[Source: M. Blascko]
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Example: 3D Indoor Scene Understanding

@ Task: Given an image, predict the 3D parametric cuboid that best
describes the layout.
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Variables are not independent of each other, i.e. structured prediction
@ x: Input image

@ y: Room layout

@(x,y): Multidimensional feature vector

w: Predictor

Estimate room layout by solving inference task

§ = argmaxw” §(x,y)
y

Learning w via structured SVMs or CRFs
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Single Variable Parameterization

Approaches of [Hedau et al. 09] and [Lee et al. 10].

One random variable y for the entire layout.

@ Every state denotes a different candidate layout.

Limits the amount of candidate layouts.

Not really a structured prediction task.

n states/3D layouts have to be evaluated exhaustively, e.g., 50%.
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Four Variable Parameterization

@ Approach of [Wang et al. 10].

@ 4 variables y; € Y, i € {1,...,4} corresponding to the four degrees of
freedom of the problem.

@ One state of y; denotes the angle of ray r;.

@ High order potentials, e.g., 50* for fourth-order.

L~ F1

> 1y

I
Vi
!

y3 \Z)/4

A%t

For both parameterizations is even worst when reasoning about objects.

Raquel Urtasun (TTI-C) Visual Recognition March 6, 2012 51/



Integral Geometry for Features

o We follow [Wang et al. 10] and parameterize with four random
variables.

@ We follow [Lee et al. 10] and employ orientation map [Lee09 et al.]
and geometric context [Hoiem et al. 07] as image cues.

orientation map geometric context
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Integral Geometry for Features

o Faces F = {left-wall, right-wall, ceiling, floor, front-wall}

o Faces are defined by four (front-wall) or three angles (otherwise)

w’- B(x,y) = Z W;r,a¢o,a(xa Ya) + Z Wgz—,a(bg,a(xa Yo)

aceF aceF

@ Features count frequencies of image cues

Orientation map and proposed left wall
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Integral Geometry for Features

@ Using inspiration from integral images, we decompose

¢~,o¢(ana) = ¢~,{i,j,k}(xayi7yj7yk):
H. iy (%, ¥is ¥i) — H. g1y (%, Y55 Yi)

@ Integral geometry

Hv,{j,k} (X, Yis }/k)
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Integral Geometry for Features

@ Decomposition:
H. iy (%, ¥is ¥i) = H. g1y (%, Y55 ¥i)

@ Corresponding factor graph:

{i,j} U, k}
@ The front-wall:

b front-wall = O(X) — @. lefr-wall — D right-wall — - ceiling — P-,floor

Raquel Urtasun (TTI-C) Visual Recognition March 6, 2012 55 / 64



Integral Geometry

@ Same concept as integral images, but in accordance with the vanishing
points.

Figure: Concept of integral geometry
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Learning and Inference

Learning

@ Family of structure prediction problems including CRF and structured-SVMs
as especial cases.

@ Primal-dual algorithm based on local updates.
@ Fast and works well with large number of parameters.
@ Code coming soon!

[T. Hazan and R. Urtasun, NIPS 2010]

Inference
@ Inference using parallel convex belief propagation
@ Convergence and other theoretical guarantees
@ Code available online: general potentials, cross-platform, Amazon EC2!

[A. Schwing, T. Hazan, M. Pollefeys and R. Urtasun, CVPR 2011]
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Learning very fast: State-of-the-art after less than a minute!

17 : 10"
===/ =100 Train/Test —100
16 ===/ =150 Train/Test
. - ==/ =200 Train/Test g
15 >
5 g
‘y‘ ol N Cee @
13 SdiEe
12 i i T “..‘ 10‘2 . i H
10' 107 10° 10* 0 T2 3
Time [s] Time [s] x 10*

Inference as little as 10ms per image!
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[A. Schwing, T. Hazan, M. Pollefeys and R. Urtasun, CVPR12]

Table: Pixel classification error in the layout dataset of [Hedau et al. 09].

| [OM [ GC [ OM + GC |

[Hoiem07] - 28.9 -
Hedau09] (a) - 26.5 -
Hedau09] (b) - 21.2 -
[Wang10] 22.2 - -
[CeelO] 247 | 227 186
Ours (SVMstruct) 19.5 | 18.2 16.8
Ours (struct-pred) || 18.6 | 15.4 13.6

Table: Pixel classification error in the bedroom data set [Hedau et al. 10].

[Lucall] | [Hoiem07] | [Hedau09](a) | Ours
w/o box 29.59 23.04 22.94 16.46
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Simple object reasoning

@ Compatibility of 3D object candidates and layout
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[A. Schwing, T. Hazan, M. Pollefeys and R. Urtasun, CVPR12]

Table: Pixel classification error in the layout dataset of [Hedau et al. 09].

l

[OM [ GC [ OM t GC |

[Hoiem07] - 28.9 -
Hedau09] (a) - 26.5 -
Hedau09] (b) [ 212 -
[Wang10] 22.2 - -
[Ceel] 247 | 22.7 186
Ours (SVMstruct) 19.5 | 18.2 16.8
Ours (struct-pred) || 18.6 | 15.4 13.6

Table: WITH object reasoning.

I

OM | GC [ OM ¥ GC |

[Wang10] 20.1 - -
[LeelO] 195 | 20.2 16.2
Ours (SYMST™<ty [ 18.5 | 17.7 164
Ours (struct-pred) || 17.1 | 14.2 12.8
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[A. Schwing, T. Hazan, M. Pollefeys and R. Urtasun, CVPR12]

Table: Pixel classification error in the layout dataset of [Hedau et al. 09] with
object reasoning.

[ [[OM [ GC | OM t GC |

[Wang10] 20.1 - -
[LeelO] 195 | 202 16.2
Ours (SYMST™<ty || 18.5 | 17.7 164
Ours (struct-pred) || 17.1 | 14.2 12.8

Table: Pixel classification error in the bedroom data set [Hedau et al. 10].

[Lucall] | [Hoiem07] | [Hedau09](a) | Ours
w/o box 29.59 23.04 22.94 16.46
w/ box 26.79 - 22.94 15.19
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Qualitative Results
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Conclusions and Future Work

Conclusion:

@ Efficient learning and inference tools for structure prediction based on
primal-dual methods.

@ Inference: No need for application specific moves.
@ Learning: can learn large number of parameters using local updates.

@ State-of-the-art results.

Future Work:
@ More features.
@ Better object reasoning.
@ Weakly label setting.

@ Better inference?
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