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Graphical models

@ Applications
@ Representation
@ Inference

o message passing (LP relaxations)
e graph cuts

@ Learning
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Inference with graph cuts
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St-mincut and Energy Minimization

E(x) = iZGi () + iZjeu (xi»xj)

Forallij ©(0,1) +8;(1,0) >6,(0.0)+6;(1,1)

I Equivalent (transformable)

E(x) = Z € X+ Zcij x(1-x;)
i i,j

[Source: P. Kohli]
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How are they equivalent?

A=6,(00) B=6,0,1) €=6,(10) D=8, (1)

1 0 1 0 1
B
0 0 0 D-C 0 0 +C-
+ +
A-D
C-A 1| 0 |D-C 1
0 0

if x;=1 addC- if x, = 1 add

A D-C
- 8,0.0
+ (6,(1,0)-8;(0,0)) x; + (6,(1,0)-6;(0,0)) x;
+ (8;(1,0) + 6,(0,1) - 6;(0,0) - §;(1,1)) (1-x) x;

B+C-A-D = O is true from the submodularity of 6;

[Source: P. Kohli]
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Our energy minimization

Construct a graph such that
1 Any st-cut corresponds to an assignment of x

2 The cost of the cut is equal to the energy of x : E(x)

[Source: P. Kohli]
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Graph Construction

E(Gl,az) = 201 +53.+9 + 4&2 + zalaz +

Source (0)

st-mincut cost = 8

E(1.0)-= 8

[Source: P. Kohli]
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How does the code look like

| Graph *g;

For all pixels p

D Source (0)

/* Add a node to the graph */
nodelD(p) = g->add_node();

/* Set cost of terminal edges */
set_weights(nodelD(p), fgCost(p), bgCost(p));

end
for all adjacent pixels p,q

add_weights(nodelD(p), nodelD(q), cost(p,q));
end

g->compute_maxflow();

label_p = g->is_connected_to_source(nodelD(p));
// is the label of pixel p (0 or 1)

[Source: P. Kohli]
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How does the code look like

Graph *g;

For all pixels p
Source (0)
/* Add a node to the graph */

nodelD(p) = g->add_node();
bgCost(a;) bgCost(a;)

/* Set cost of terminal edges */
set_weights(nodelD(p), fgCost(p), bgCost(p));

[4] a
@ :

for all adjacent pixels p,q
add_weights(nodelD(p), nodelD(q), cost(p,q)); fgCOST(O.l) fgCOST(O.Z)
end

g->compute_maxflow(); I:‘ Sink (l)

label_p = g->is_connected_to_source(nodelD(p));
// is the label of pixel p (0 or 1)

[Source: P. Kohli]
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How does the code look like

Graph *g;

For all pixels p

Source (0)

/* Add a node to the graph */
nodelD(p) = g->add_node();

bgCost(a;) bgCost(a;)
/* Set cost of terminal edges */

set_weights(nodelD(p), fgCost(p), bgCost(p)); COST(p,q)
a;
end
—

for all adjacent pixels p,q
add_weights(nodelD(p), nodelD(q), cost(p,q)); fgCOST(O.l) fgCOST(O.Z)

end
g->compute_maxflow(); I:‘ Sink (l)

label_p = g->is_connected_to_source(nodelD(p));
// is the label of pixel p (0 or 1)

[Source: P. Kohli]
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How does the code look like

Graph *g;

For all pixels p

Source (0)

/* Add a node to the graph */
nodelD(p) = g->add_node();

/* Set cost of terminal edges */
set_weights(nodelD(p), fgCost(p), bgCost(p));

end

for all adjacent pixels p,q

add_weights(nodelD(p), nodelD(q), cost(p,q)); fgCosT(aI)
end

g->compute_maxflow(); D Sink (l)

label_p = g->is_connected_to_source(nodelD(p));
// is the label of pixel p (0 or 1) ‘ a; = bg a; = fg ‘

[Source: P. Kohli]
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Graph cuts for multi-label problems

@ Exact Transformation to QPBF [Roy and Cox 98] [Ishikawa 03] [Schlesinger
et al. 06] [Ramalingam et al. 08]

So what is the problem?

En(yiva. . Yo) = B, (X% ... Xp)
Multi-label Problem Binary label Problem

such that:
LetY and X be the set of feasible solutions, then

1. One-One encoding function T:X->Y

2. arg min E_(y) =T(arg min Ej,(x))

@ Very high computational cost

[Source: P. Kohli]
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Computing the Optimal Move

Current Solution

Search
Neighbourhood

-------- » Optimal Move

Key Property

Move Space

+«————— SolutionSpace =~ ——

Bigger move > Better solutions

Space * Finding the optimal move hard

ource: P_Koh
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Move Making Algorithms

Minimizing Pairwise Functions
[Boykov Veksler and Zabih, PAMI 2001]

+ Series of locally optimal moves
+ Each move reduces energy
« Optimal move by minimizing submodular function

® Current Solution

]
I:l Search Neighbourhood

Move Space (t) : 2"

1] Number of Variables
L Number of Labels

Space of Solutions (x) : L"

[Source: P. Kohli]
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Energy Minimization

@ Consider pairwise MRFs

E(F)= > Voglfaify) + D Dplfy)

{p,a}eN

with A defining the interactions between nodes, e.g., pixels
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Energy Minimization

@ Consider pairwise MRFs
E(f) = Z Vp,q(fpafq)"‘ZDp(fp)
{p,a}eN P

with A defining the interactions between nodes, e.g., pixels

@ D, non-negative, but arbitrary.
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Energy Minimization

@ Consider pairwise MRFs
E(f) = Z Vo.a(fp, fq) + Z Dp(f5)
{p,a}eN P
with A defining the interactions between nodes, e.g., pixels
@ D, non-negative, but arbitrary.

@ Same as before, where V, = -6, and D, = —0,.
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Energy Minimization

@ Consider pairwise MRFs

Z Vo.a(fo, fq) + Z Dy(15)

{p,a}eN

with A defining the interactions between nodes, e.g., pixels

D, non-negative, but arbitrary.

Same as before, where V), ; = —6, and D, = —6,.
@ This is the graph-cuts notation.

@ Important to notice it's the same thing.
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Metric vs Semimetric

Two general classes of pairwise interactions
@ Metric if it satisfies for any set of labels «, 3,
V(ie,) =0 + a=p

V(a,8) = V(B,«
V(ie,5) < V() + V(v,8)
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Metric vs Semimetric

Two general classes of pairwise interactions
@ Metric if it satisfies for any set of labels «, 3,
V(ia,) =0 <+ =4

V(a, ) = ( ya) >
V(e,8) < V(ay)+ (,ﬂ)

@ Semi-metric if it satisfies for any set of labels «, 3,7

V(ie,) =0 & a=p
V(Oé,ﬁ) = V(ﬁ,a) >0
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@ «a — 3 moves works for semi-metrics

@ « expansion works for V' being a metric

x= txt+(2-t)x2

~

New Current Second
solution Solution solution

E ()= E(tx* + (2- t) x?)

Minimize over move variables t

Figure: Figure from P. Kohli tutorial on graph-cuts

@ For certain x! and x?, the move energy is sub-modular QPBF
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Swap Move

* Variables labeled a, £ can swap their labels

Tree
Ground
Swap Sky, House —> [l House
—_— Sky

[Source: P. Kohli]
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Swap Move

* Variables labeled a, f can swap their labels

= Move energy is submodular if:
= Unary Potentials: Arbitrary
= Pairwise potentials: Semi-metric

8;(.lt) 20
©;(.lt) =0 «<——» a=b

Examples: Potts model, Truncated Convex

[Source: P. Kohli]
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Expansion Move

e Variables take label & or retain current label

— Tree
—p - Ground
L — - House
— Sky

[Source: P. Kohli]
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Expansion Move

e Variables take label & or retain current label

Semi metric
+

= Unary Potentials: Arbitrary Triangle
Inequality

= Move energy is submodular if:

= Pairwise potentials: Metric

6, (la.p) + 6, (1,.1.) > 6, (l..1.)
Examples: Potts model, Truncated linear

Cannot solve truncated quadratic

[Source: P. Kohli]
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More formally

@ Any labeling can be uniquely represented by a partition of image pixels
P = {P/|l € L}, where P; = {p € P|f, = I} is a subset of pixels assigned
label /.
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More formally

@ Any labeling can be uniquely represented by a partition of image pixels
P = {P/|l € L}, where P; = {p € P|f, = I} is a subset of pixels assigned
label /.

@ There is a one to one correspondence between labelings f and partitions P.
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More formally

@ Any labeling can be uniquely represented by a partition of image pixels
P = {P/|l € L}, where P; = {p € P|f, = I} is a subset of pixels assigned
label /.

@ There is a one to one correspondence between labelings f and partitions P.

@ Given a pair of labels «, 3, a move from a partition P (labeling f) to a new
partition P’ (labeling ') is called an o — 3 swap if P; = P’ for any label
I # a, S.
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More formally

@ Any labeling can be uniquely represented by a partition of image pixels
P = {P/|l € L}, where P; = {p € P|f, = I} is a subset of pixels assigned
label /.

@ There is a one to one correspondence between labelings f and partitions P.

@ Given a pair of labels «, 3, a move from a partition P (labeling f) to a new
partition P’ (labeling ') is called an o — 3 swap if P; = P’ for any label
I # a, S.

@ The only difference between P and P’ is that some pixels that were labeled
in P are now labeled in P’, and vice-versa.
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More formally

@ Any labeling can be uniquely represented by a partition of image pixels
P = {P/|l € L}, where P; = {p € P|f, = I} is a subset of pixels assigned
label /.

@ There is a one to one correspondence between labelings f and partitions P.

@ Given a pair of labels «, 3, a move from a partition P (labeling f) to a new
partition P’ (labeling ') is called an o — 3 swap if P; = P’ for any label
I # a, S.

@ The only difference between P and P’ is that some pixels that were labeled
in P are now labeled in P’, and vice-versa.

@ Given a label /, a move from a partition P (labeling f) to a new partition P’
(labeling ') is called an a-expansion if P, C P/, and P; C P;.
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More formally

@ Any labeling can be uniquely represented by a partition of image pixels
P = {P/|l € L}, where P; = {p € P|f, = I} is a subset of pixels assigned
label /.

@ There is a one to one correspondence between labelings f and partitions P.

@ Given a pair of labels «, 3, a move from a partition P (labeling f) to a new
partition P’ (labeling ') is called an o — 3 swap if P; = P’ for any label
I # a, S.

@ The only difference between P and P’ is that some pixels that were labeled
in P are now labeled in P’, and vice-versa.

@ Given a label /, a move from a partition P (labeling f) to a new partition P’
(labeling ') is called an a-expansion if P, C P/, and P; C P;.

@ An a-expansion move allows any set of image pixels to change their labels
to a.
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Example

Figure: (a) Current partition (b) local move (c) oo — S-swap (d) a-expansion.
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Algorithms

L. Start with an arbitrary labeling f
Set success := 0
3. For each pair of labels {a,f} C L
3.1. Find f=argminE(f') among f' within one a-j swap of f

3.2. If E(f}(E(f), set f := f and success := 1
4. TIf success = 1 goto 2

Return f

[

o

1. Start with an arbitrary labeling f
2. Set success := 0
3. For each label e L
3.1. Find f = argmin E(f') among f' within one a-expansion of f
3.2, If E(f) < E(f), set f := f and success :

=1
4, If success = 1 goto 2
5. Return [
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Finding optimal Swap move

@ Given an input labeling f (partition P) and a pair of labels «, 8 we want to
find a labeling f that minimizes E over all labelings within one o — B-swap
of f.
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Finding optimal Swap move

@ Given an input labeling f (partition P) and a pair of labels «, 8 we want to
find a labeling f that minimizes E over all labelings within one o — B-swap

of f.

@ This is going to be done by computing a labeling corresponding to a
minimum cut on a graph Gog = Vag, Eap)-

Raquel Urtasun (TTI-C) Visual Recognition March 1, 2012 20 / 46



Finding optimal Swap move

@ Given an input labeling f (partition P) and a pair of labels «, 8 we want to
find a labeling f that minimizes E over all labelings within one o — B-swap
of f.

@ This is going to be done by computing a labeling corresponding to a
minimum cut on a graph Gog = Vag, Eap)-

@ The structure of this graph is dynamically determined by the current
partition P and by the labels «, §.
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Graph Construction

@ The set of vertices includes the two terminals « and 3, as well as image
pixels p in the sets P, and Pj (i.e., f, € {a, 5}).

@ Each pixel p € P,g is connected to the terminals o and 3, called t-links.

@ Each set of pixels p, g € P,z which are neighbors is connected by an edge
€p.q

edge weight for
ty | Dp(e) + T aewy Ve, fy) | P € Pag
9€Pag
ti Dy(8) +% usy V(B8,1y) | p € Pas
€ Pag
Eipa} Ve, B) oy

P:q€Pag
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Computing the Cut

@ Any cut must have a single t-link not cut.

@ This defines a labeling

a if £ €C for p € Puy
fe g if tffEC for p € Pus
fp for peP, pé& Pus.

There is a one-to-one correspondences between a cut and a labeling.

The energy of the cut is the energy of the labeling.

See Boykov et al, " fast approximate energy minimization via graph cuts’
PAMI 2001.
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@ For any cut, then

(a) If t5,ty €C then egq ¢C.
(b) If t)eC then epqy &C.
(c) If 42 eC then epqy €C.
(d) If 5.t7eC then epq €C.
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Finding the optimal a: expansion

@ Given an input labeling f (partition P) and a label a we want to find a
labeling f that minimizes E over all labelings within one a-expansion of f.
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Finding the optimal a: expansion

@ Given an input labeling f (partition P) and a label a we want to find a
labeling f that minimizes E over all labelings within one a-expansion of f.

@ This is going to be done by computing a labeling corresponding to a
minimum cut on a graph G, = (Va, a)-
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Finding the optimal a: expansion

@ Given an input labeling f (partition P) and a label a we want to find a
labeling f that minimizes E over all labelings within one a-expansion of f.

@ This is going to be done by computing a labeling corresponding to a
minimum cut on a graph G, = (Va, a)-

@ The structure of this graph is dynamically determined by the current
partition P and by the label a.
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Finding the optimal a: expansion

@ Given an input labeling f (partition P) and a label a we want to find a
labeling f that minimizes E over all labelings within one a-expansion of f.

@ This is going to be done by computing a labeling corresponding to a
minimum cut on a graph G, = (Va, a)-

@ The structure of this graph is dynamically determined by the current
partition P and by the label a.

@ Different graph than the o — 3 swap.
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Graph Construction

@ The set of vertices includes the two terminals o and &, as well as all image
pixels p € P.
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Graph Construction

@ The set of vertices includes the two terminals o and &, as well as all image
pixels p € P.

@ Additionally, for each pair of neighboring pixels p, g such that f, # f; we
create an auxiliary node a, 4.
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Graph Construction

@ The set of vertices includes the two terminals o and &, as well as all image
pixels p € P.

@ Additionally, for each pair of neighboring pixels p, g such that f, # f; we
create an auxiliary node a, 4.

@ Each pixel p is connected to the terminals o and @, called t-links.
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Graph Construction

@ The set of vertices includes the two terminals o and &, as well as all image
pixels p € P.

@ Additionally, for each pair of neighboring pixels p, g such that f, # f; we
create an auxiliary node a, 4.

@ Each pixel p is connected to the terminals o and @, called t-links.

@ Each set of pixels p, g which are neighbors and f, = f;, we connect with and
n-link.
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Graph Construction

@ The set of vertices includes the two terminals o and &, as well as all image
pixels p € P.

@ Additionally, for each pair of neighboring pixels p, g such that f, # f; we
create an auxiliary node a, 4.

@ Each pixel p is connected to the terminals o and @, called t-links.

@ Each set of pixels p, g which are neighbors and f, = f;, we connect with and
n-link.

@ For each pair of neighboring pixels such that f, # f;, we create a triplet
{ep.a: €2, t5 -

o= { U Ut U com |

P {pateN {pateN
" In#fy T=lq
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Graph Construction

@ The set of vertices includes the two terminals o and &, as well as all image
pixels p € P.

@ Additionally, for each pair of neighboring pixels p, g such that f, # f; we
create an auxiliary node a, 4.

@ Each pixel p is connected to the terminals o and @, called t-links.

@ Each set of pixels p, g which are neighbors and f, = f;, we connect with and
n-link.

@ For each pair of neighboring pixels such that f, # f;, we create a triplet
{ep.a: €2, t5 -

@ The set of edges is then

o= { U Ut U com |

P {pateN {pateN
" In#fy T=lq
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Graph Construction

edge | weight for
ty oo pE€ Py
tf Dp (fﬂ) P é Pa
| Dol peEP

epa} | V)
eg | Viefo) | {n, @} N, f# 1y

te | Vi fo)
epa | Vfpa) [{Dd} €N, fr=1,
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@ There is a one-to-one correspondences between a cut and a labeling.

a if tHeC
fg: VpeP

f it hec

@ The energy of the cut is the energy of the labeling.

@ See Boykov et al, " fast approximate energy minimization via graph cuts’
PAMI 2001.

Property 5.2. If {p,q} € N and f, # f,, then a minimum cut C
on G, satisfies:

(@) If t2,t3eC then CNEpy =0

(b) If tp,t7€C then CNé&pg =1t

(e) If t;’,t; €C then CNE&pg = efpa)-

(d) If f.7€C then CNEgy = ey
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Learning in graphical models
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Parameter learning

@ The MAP problem was defined as

max Z@ Vi +Z€ Ya)

Y1 sYn

@ Learn parameters w for more accurate prediction

max Zwl¢l Yi +Zwa¢a(}/a

YissYn
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Loss functions

@ Regularized loss minimization: Given input pairs (x,y) € S, minimize

(x.y)ES
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Loss functions

@ Regularized loss minimization: Given input pairs (x,y) € S, minimize

(x.y)ES

e Different learning frameworks depending on the surrogate loss /(w, x, y)

o Hinge for Structural SVMs [Tsochantaridis et al. 05, Taskar et al. 04]
o log-loss for Conditional Random Fields [Lafferty et al. 01]

@ Unified by [Hazan and Urtasun, 10]
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Recall SVM

@ In SVMs we minimize the following program
.1 2
min §||W|| + Zfi
subject to yi(b+w'x;)—1+& >0, Vi=1,...,N.

with y; € {—1,1} binary.

@ We need to extend this to reason about more complex structures, not just
binary variables.
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Structural SVM [Tsochantaridis et al., 05]

@ We want to construct a function
f(x,y) = argmaxw’ ¢(x, y)
yey

which is parameterized in terms of w, the parameters to learn.
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Structural SVM [Tsochantaridis et al., 05]

@ We want to construct a function
f(x,y) = argmaxw’ ¢(x, y)
yey

which is parameterized in terms of w, the parameters to learn.

@ We will like to minimize the empirical risk

R(Fow) = 3 Al fx. w)
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Structural SVM [Tsochantaridis et al., 05]

@ We want to construct a function
f(x,y) = argmaxw’ ¢(x, y)
yey

which is parameterized in terms of w, the parameters to learn.

@ We will like to minimize the empirical risk

R(Fow) = 3 Al fx. w)

@ This is the expected loss under the empirical distribution induced
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Structural SVM [Tsochantaridis et al., 05]

@ We want to construct a function
f(x,y) = argmaxw’ ¢(x, y)
yey

which is parameterized in terms of w, the parameters to learn.

@ We will like to minimize the empirical risk

R(Fow) = 3 Al fx. w)

@ This is the expected loss under the empirical distribution induced
® A(y;, f(x;, w)) is the "task loss” which depends on the application

e segmentation: per pixel segmentation error
o detection: intersection over the union
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Structural SVM [Tsochantaridis et al., 05]

@ We want to construct a function
f(x,y) = argmaxw’ ¢(x, y)
yey

which is parameterized in terms of w, the parameters to learn.

@ We will like to minimize the empirical risk

R(Fow) = 3 Al fx. w)

@ This is the expected loss under the empirical distribution induced
® A(y;, f(x;, w)) is the "task loss” which depends on the application

e segmentation: per pixel segmentation error
o detection: intersection over the union

o Typically, A(y,y')=0ify =y’
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Separable case

@ We will like to minimize the empirical risk

R(fw)= 1 > A0 o w)
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Separable case

@ We will like to minimize the empirical risk

R(fw)= 1 > A0 o w)

@ We will have 0 train error if we satisfy

max {w’ @(x:,y)} < w'é(x:, )
yEV\yi

since A(y;,y;) =0 and A(y;,y) > 0,Vy € Y\ yi.
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@ We will have 0 train error if we satisfy

max {w’ @(x:,y)} < w'é(x:, )
yEV\yi

since A(y;,y;) =0 and A(y;,y) > 0,Vy € Y\ yi.

@ This can be replaced by || — 1 inequalities

Vi€ {1’ 7n}7v.y € y\yl . WT¢(Xi7yi) _WT¢(XI'ay) Z 0
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Separable case

@ We will like to minimize the empirical risk

R(fw)= 1 > A0 o w)

@ We will have 0 train error if we satisfy

max {w’ @(x:,y)} < w'é(x:, )
yEV\yi

since A(y;,yi) =0 and A(y;,y) > 0,Yy € Y\ yi.
@ This can be replaced by || — 1 inequalities

Vi€ {1’ 7n}7v.y € y\yl . WT¢(Xi7yi) _WT¢(XI'ay) Z 0

@ What's the problem of this?
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Separable case

@ Satisfying the inequalities might have more than one solution.
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Separable case

@ Satisfying the inequalities might have more than one solution.
@ Select the w with the maximum margin.

@ We can thus form the following optimization problem
1 5
min =||lw
in 5wl

subject to w'o(xi,yi) —~w p(x,y) =1 Vie{l - n},Vy e V\y
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Separable case

Satisfying the inequalities might have more than one solution.

Select the w with the maximum margin.

We can thus form the following optimization problem
1 5
min =||lw
in 5wl

subject to w'o(xi,yi) —~w p(x,y) =1 Vie{l - n},Vy e V\y

@ This is a quadratic program, so it's convex

But it involves exponentially many constraints!
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Non-separable case

Multiple formulations
@ Multi-class classification [Crammer & Singer, 03]
@ Slack re-scaling [Tsochantaridis et al. 05]
@ Margin re-scaling [Taskar et al. 04]

Let’s look at them in more details
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Multi-class classification [Crammer & Singer, 03]

@ Enforce a large margin and do a batch convex optimization

@ The minimization program is then

1, C
min §||w|| +;;fi
st wio(x, ) —wd(xi,y) >1—¢& Vie{l,---,n},Vy #y

@ Can also be written in terms of kernels

Raquel Urtasun (TTI-C) Visual Recognition March 1, 2012 36 /



Structured Output SVMs

@ Frame structured prediction as a multiclass problem to predict a single
element of Y and pay a penalty for mistakes
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Structured Output SVMs

@ Frame structured prediction as a multiclass problem to predict a single
element of Y and pay a penalty for mistakes

@ Not all errors are created equally, e.g. in an HMM making only one mistake
in a sequence should be penalized less than making 50 mistakes

[Source: M. Blaschko]
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Structured Output SVMs

@ Frame structured prediction as a multiclass problem to predict a single
element of Y and pay a penalty for mistakes

@ Not all errors are created equally, e.g. in an HMM making only one mistake
in a sequence should be penalized less than making 50 mistakes

@ Pay a loss proportional to the difference between true and predicted error
(task dependent)

A(yi7y)

[Source: M. Blaschko]
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Example: Data imbalanced

@ Suppose that we have highly imbalanced training data: ny > n_
@ We still have a two class problem

@ We can use structured output formulation to pay a higher price for
misclassification of positives than misclassification of negative, e.g.,

0 ify ==y
Alyi,y) = i ify, =1Ay=-1

L oify=—1ny=1

[Source: M. Blaschko]
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Slack re-scaling

@ Re-scale the slack variables according to the loss incurred in each of the
linear constraints
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Slack re-scaling

@ Re-scale the slack variables according to the loss incurred in each of the
linear constraints

@ Violating a margin constraint involving a y # y; with high loss A(y;, y)
should be penalized more than a violation involving an output value with
smaller loss
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Slack re-scaling

@ Re-scale the slack variables according to the loss incurred in each of the
linear constraints

@ Violating a margin constraint involving a y # y; with high loss A(y;, y)
should be penalized more than a violation involving an output value with
smaller loss

@ The minimization program is then

1, . CL
min > lw] +;i;§;

§i

S vie L, ,n Yy eV \y
Alyiy) { )y \y

st. wio(x,y) —w! ¢(x,y) >1—
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Slack re-scaling

Re-scale the slack variables according to the loss incurred in each of the
linear constraints

Violating a margin constraint involving a y # y; with high loss A(y;, y)
should be penalized more than a violation involving an output value with
smaller loss

The minimization program is then

1, . CL
min > lw] +;i;§;

§i

S vie L, ,n Yy eV \y
Alyiy) { )y \y

st. wio(x,y) —w! ¢(x,y) >1—

The justification is that %27:1 &; is an upper-bound on the empirical risk.

Easy to proof
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Margin re-scaling

@ In this case the minimization problem is formulated as
.1 s C ‘
min §||WH + ;;&
st w o(xi,yi) —w d(xi,y) > Alyi,y) =& Vie{l,--- n},VyeV\y

@ The justification is that %Z?Zl & is an upper-bound on the empirical risk.

@ Also easy to proof.
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Margin vs Slack re-scaling

Ay, y) =13

(A(yi.y)

T T T
— 01 loss

margin rescaling
slack rescaling

i N\
N

1 1 1
-5 -4 -3 -2 1 0 1 2 3 4 5

(w, (i, 1)) — (w. (i, y)
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Algorithm

@ Problem is the exponential number of constraints

@ Derive a cutting plane algorithm, where the most violated constraints are
added as we go
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Algorithm 1 Algorithm for solving SVMp and the loss re-scaling formulations SVM] and SVM3 .
1: Input: (X1,¥1)s- ... (%n,¥n).C. €
2 Sje—0Oforalli=1,...,n
3: repeat
4: fori=1,....,ndo

5: /* prepare cost function for optimization */
set up cost function
1—{8¥i(y),w) (SVMp)
(1— (@3¥i(y). W) A(¥i.¥) SVM;*)
H(y) = { Alyiy) — B¥i(y),w) VML)

(I—S‘Pr(‘)\w‘)\//\(va.v) SVM")
VALY — (8%i(y (SVM;™)

where w = Z;Zres’ GWJS‘PJU‘).
6: /* find cutting plane */
compute ¥ = argmazyco-H(y)

VE * determine value of current slack variable */
compute & = max{0, maxyes, H(y)}
8: if H(¥) = &; 4 ¢ then
9: /* add constraint to the working set */
S5i— SU{¥}
10a: * Vaariant (a): perform full op!‘imi:ﬂtion */
5 +— optimize the dual of SVMp , SV or 5V Eover 5,.8=1;5.
10b: * Variant (b): perform subspace ascent */
s, +— optimize the dual of SVMp , SVM] or SVMJ over S§;
12: end if
13:  end for

14: until no S; has changed during iteration
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Constraint Generation

@ To find the most violated constraint, we need to maximize w.r.t. y for
margin rescaling

w’o(xi,y) + A(yi,y)

and for slack rescaling

{wTo(xi,y) +1—wo(x,yi)}Ayi,y)
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@ For arbitrary output spaces, we would need to iterate over all elements in Y
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Constraint Generation

@ To find the most violated constraint, we need to maximize w.r.t. y for
margin rescaling
w'o(x;, y) + Alyi,y)

and for slack rescaling

{wTo(xi,y) +1—wo(x,yi)}Ayi,y)

@ For arbitrary output spaces, we would need to iterate over all elements in Y
@ Use Graph-cuts or message passing

@ When the MAP cannot be computed exactly, but only approximately, this
algorithm does not behave well [Fidley et al., 08]
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One Slack Formulation

@ Margin rescaling
.1 , C
min 5wl + ¢

s.t. WT¢(Xiayl') _WT¢(Xi7}/) Z A(Yn}/) _5 Vi e {la 7”}7Vy S y\y:
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One Slack Formulation

@ Margin rescaling

1, ., C
min Slw+ S
s.t. WT¢(Xiayl') _WT¢(Xi7}/) > A(Yn}/) _5 Vi e {la 7”}7Vy € y\)’:

@ Slack rescaling

min §||W|| +;§

st wTo(x, i) — wTd(xi,y) > 1 A(f,.,y) Vie (L n}YyeY\y
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One Slack Formulation

@ Margin rescaling

1, ., C
min Slw+ S
s.t. WT¢(Xiayl') _WT¢(Xi7}/) > A(Yn}/) _5 Vi e {la 7”}7Vy € y\)’:

@ Slack rescaling

min §||W|| +;§

st wTo(x, i) — wTd(xi,y) > 1 A(f,.,y) Vie (L n}YyeY\y

@ Same optima as previous formulation [Joachims et al, 09]
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Example: Handwritten Recognition

@ Predict text from image of handwritten characters
arg maxy w f(fM.y) = “brace”

@ Equivalently:

w f([WA, “brace”) > w f([fHM, “azaaa”
WTf(,-“brace") > WTf(lm,“aaaab")

w  f([JPR. “brace”) > w ' f([YIR, “zzzzz”

@ lterate

e Estimate model parameters w using active constraint set
o Generate the next constraint

[Source: B. Taskar]
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