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Combining information

@ We have a lot of different descriptors focusing on, e.g., shape, gradients,
texture.
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Combining information

@ We have a lot of different descriptors focusing on, e.g., shape, gradients,
texture.

We have multiple ways to computer similarity (distance) between images
(bounding boxes), e.g., histograms, intersection kernels, pyramids.

@ Which one should we use?

In general there is not a single one that it's always best.

Even if it was, maybe we can perform better by unifying forces ;)
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Combining information

Multiple ways to combine information

@ Stack the feature vectors
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Combining information

Multiple ways to combine information

Stack the feature vectors

Information fusion

Boosting inherently incorporates multiple features

Use NN with sum of distances or something more clever

Voting via generalized hough transform, with votes coming from different
feature types

Multiple kernel learning

Random forest

Let's look into some of this strategies.
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Combining information

Multiple ways to combine information
@ Stack the feature vectors
@ Information fusion
@ Boosting inherently incorporates multiple features
@ Use NN with sum of distances or something more clever

@ Voting via generalized hough transform, with votes coming from different
feature types

@ Multiple kernel learning
@ Random forest

@ etc

Let's look into some of this strategies.
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NN approaches

NN approaches perform worst than more complex classifiers but [Boiman et al.
08] argue that this is due to

@ Quantization of local image descriptors (used to generate bags-of-words,
codebooks).
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NN approaches

NN approaches perform worst than more complex classifiers but [Boiman et al.
08] argue that this is due to

@ Quantization of local image descriptors (used to generate bags-of-words,
codebooks).

@ Computation of Image-to-Image distance, instead of Image-to-Class
distance.

@ They proposed an effective NN-based classifier NBNN, (Naive-Bayes
Nearest-Neighbor), which employs NN distances in the space of the local
image descriptors (not images).

@ NBNN computes direct Image to- Class distances without descriptor
quantization.

@ No learning/training phase.

@ Similarities with ISM but now for classification.
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Algortithm of NBNN

@ Given a query image, compute all its local image descriptors dy, - - - , d,.

@ Search for the class C which minimizes

n

> lld; = NNc(d))|P”

i=1
with NN¢(d;) the NN descriptor of d; in class C.

@ Requires fast NN search.
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Why quantization is bad

@ When densely sampled image descriptors are divided into fine bins, the
bin-density follows a power-law.

@ There are almost no clusters in the descriptor space.

@ Therefore, any clustering to a small number of clusters (even thousands) will
inevitably incur a very high quantization error.

@ Informative descriptors have low database frequency, leading to high
quantization error.
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Image-to-Image vs. Image-to-Class distance

=

KL(p,|p)=17.54
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Results Caltech 101

Caltech-101 (Single Descriptor Type) Caltech-101 (Multiple Descriptor Types)
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Multiple descriptors by summing weighted distances.
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Effects of Quantization

Impact of introducing descriptor quantization or Image-to-Image distance into
NBNN (using SIFT descriptor on Caltech- 101, nlabel = 30).

No Quant. With Quant.
“Image-to-Class” 70.4% 50.4% (-28 4%)
“Image-to-Image” | 584% (-17%) | -
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Randomized Decision Forests

@ Very fast tools for classification, clustering and regression
@ Good generalization through randomized training
@ Inherently multi-class: automatic feature sharing

@ Simple training / testing algorithms
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Randomized Forests in Vision

OV W 770
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[Amit & Geman, 97]
digit recognition

[Lepetit et al., 06]

\keypoint recognition

[Moosmann et al., 06]
visual word clustering
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X
chair
boat
road
[Shotton et al., 08] [Rogez et al., 08]
object segmentation ) pose estimation

[Source: Shotton et al.]
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Is the grass wet?

world state

is it raining?

is the sprinkler on?
P(wet)
=0.95

P(wet) P(wet)
=0.1 =0.9

[Source: Shotton et al.]
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Binary Decision Trees

- feature vector v € RV O leaf
+ split functions f(v) : RN - R eaf nodes

« thresholds th €R \Y; O split nodes
* classifications P, (c)

category C

Source: Shotton et al.
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Decision Tree Pseudo-Code

double[] ClassifyDT(node, v)
if node.IsSplitNode then
if node.f(v) >= node.t then
return ClassifyDT(node.right, v)
else
return ClassifyDT(node.left, v)
end
else
return node.P
end

end

[Source: Shotton et al.]
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Toy Example

* Try several lines, N /

. s

chosen at random .. A
° ®eo %o \.’ ./.—/oo..

©e®0, .’“\a‘ 74 ., R

e Keep line that best -,—._/7,,_\ 20N
separates data . :/? BN

— information gain . . N
Ve \ o N
/ \
* Recurse "
« feature vectors are X, y coordinates: v =[x, y]"
* split functions are lines with parameters a, b: f,(v) = ax + by
* threshold determines intercepts: t,

» four classes: purple, blue, red, green

Source: Shotton et al.
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Randomized Learning

@ Recursively split examples at node n: set /, indexes labeled training
examples (v;, I;)

left split .
P L = {iel, | f(vi) <t}
- {
rightgﬁ L = I \ | quncﬁon O':threshold
example i’s

feature vector

@ At node n, P,(c) is histogram of example labels /;.

[Source: Shotton et al.]
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Randomized Learning

leftsplit Iy = {i€l,| f(vi) <t}
rightsplit Ir = 1, \ I

* Features f(v) chosen at random from
feature pool f2 F

¢ Thresholds t chosen in range t € (min; f(v;), max; f(v;))

* Choose f and t to maximize gain in information

4| ||
AE = — - B(n) - U E(L)
|17 |1y
[ Entropy E calculated from histogram of labels in | ]

[Source: Shotton et al.]
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How many features and thresholds to try?
@ just one = extremely randomized
@ few — fast training, may under-fit, maybe too deep
@ many — slower training, may over-fit
When to stop growing the tree?
@ maximum depth
@ minimum entropy gain
@ pruning

[Source: Shotton et al.]

Visual Recognition Feb 16, 2012
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Randomized Learning Pseudo Code

N\

p
TreeNode LearnDT(I)

repeat featureTests times
let f = RndFeature()
let r = EvaluateFeatureResponses(I, f)

repeat threshTests times
let t = RndThreshold(r)
let (I_1, I_r) = Split(I, r, t)
let gain = InfoGain(I_1l, I_r)
if gain is best then remember f, t, I.1, I r
end
end

if best gain is sufficient

return SplitNode(f, t, LearnDT(I_1), LearnDT(I_r))
else

return LeafNode(HistogramExamples(I))
end

end
\. S

Source: Shotton et al.
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A forests of trees
* Forest is ensemble of O leaf nodes
several decision trees (O split nodes

v v
tree t, tree t;
Pr(c)
Pi(e)
|||||| | category C
category C
1 T [Amit & Geman 97]
— classification is P(c|v) = T Z Py(clv) [Breiman 01]
t=1 [Lepetit et al. 06]

Source: Shotton et al.
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Forest Pseudo

N
double[] ClassifyDF(forest, v)
let P = double[forest.CountClasses]
for t = 1 to forest.CountTrees
let P’ = ClassifyDT(forest.Tree[t], V)
P=P+P
end
P = P / forest.CountTrees
end
. J

[Source: Shotton et al.]
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* Divide training examples into T subsets |, j |
— improves generalization
— reduces memory requirements & training time

e Train each decision tree t on subset |,

— same decision tree learning as before

e Multi-core friendly

* Subsets can be chosen at random or hand-picked
* Subsets can have overlap (and usually do)

* Can enforce subsets of images (not just examples)
* Could also divide the feature pool into subsets

[Source: Shotton et al.]
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Ve

N
Forest LearnDF(countTrees, I)
let forest = Forest(countTrees)
for t = 1 to countTrees

let I_t = RandomSplit(I)

forest[t] = LearnDT(I_t)
end

return forest

end
.

[Source: Shotton et al.]
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Classification

¢ Trees can be trained for

— classification, regression, or clustering

¢ Change the object function
— information gain for classification: 1= H(s) - i

i=1

1Sil

s H(S;) measure of distribution purity

d
class O
..’ > @ o
° S
ol 20 o) 0 o)
‘ S S,
v © o 0O Q Q Q
OooOoOono 0o OO 00

class

data classification tree

Preay (¥(d) =)

Source: Shotton et al.
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data regression tree
- Real-valued Output y 2 |g measure of fit of model )
- Object function: maximize Err(S)— 3 “‘S,'[I:‘rr(h‘,) Err(S) =3 (vj - _v{r,))
i=1 I* jes

e.g. linear model y = ax+b,
Or just constant model

Source: Shotton et al.
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Clustering

d
. o
ol o o}
° S
o o O o
Sy S
o o O o (0] o
Ooooo 00O oo oo
clustering tree
efd}
- Output is cluster membership
- Option 1 — minimize imbalance: B = |log|S;| — log|S,| | [Moosmann et al. 06]

- Option 2 — maximize Gaussian likelihood:
2

T=Asl- 3

i=1

measure of cluster tightness
(maximizing a function of info gain
for Gaussian distributions)

|Si

—~As;|
S|

Source: Shotton et al.
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Clustering example [Moosmann et al. 06]

* Visual words good for e.g. matching, recognition [ [Sivic et al. 03] ]
but k-means clustering very slow [Csurka et al. 04]

¢ Randomized forests for clustering descriptors
— e.g. SIFT, texton filter-banks, etc.

¢ Leaf nodes in forest are clusters
— concatenate histograms from trees in forest

tree t, tree t;

Source: Shotton et al.
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Clustering example [Moosmann et al. 06]

tree t;

N /

tree t, tree t;

z
C
“bagof 3
words” £

node index

[Source: Shotton et al.]
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Applications: keypoint detection [LePetit 06]

Wide-baseline matching
as classification problem

Extract prominent key-points in training images

.
* Forest classifies ‘ :’
— patches -> keypoints o)<k - )
° m o = o
Features Y .

— pixel comparisons

Augmented training set
— gives robustness to patch scaling, translation, rotation

[Source: Shotton et al.]

Raquel Urtasun (TTI-C) Visual Recognition Feb 16, 2012



Fast Keypoint Recognition

Itipls View
"‘&“eo’?&\ etry

\_‘.. tﬂm;h YYEY WE

[Source: Shotton et al.]
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http://cvlab.epfl.ch/research/augm/detect.php 

Classification

T T T T T T T T
—&— Randam Trees - RO
| —#— Random Fems - ROI
il [5]
== [13]
| —& — Random Trees - ROI
=& = Randarm Ferns - ROI
—&-[
[26]

= =[5 i
—+—[11]

* [18]

Performance (%)
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Classification
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Object Recognition Pipeline

extract features clustering » assignment
SIFT, filter bank k-means nearest neighbour
hand-crafted unsupervised ‘
classification algorithm
supervised

SVM, decision forest, boosting

[Source: Shotton et al.]
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Object Recognition Pipeline

Semantic Texton Forest (STF)
* decision forest for
clustering & classification

* tree nodes have learned
object category associations
~
clustéring into
’sema;r!ﬁc tgxtons’

classification algorithm

SVM, decision forest, boosting

[Source: Shotton et al.]
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Example Semantic Texton Forest

r

Input mage Alg] - B[b 8 Ground Truth

|Alb] - B[g]| >37

i ELgii i

R o EEeEH H
Alr] +B[r] >363 Jll Alb]+B[b]>284 Alg] - B[b] > 13

el 1 N |

e
i

Example
Patches

[Source: Shotton et al.]
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MSRC Dataset Results

building grass tree cow sheep sky, airplane ~ water,
bicycle flower: sign bird book chair; road

[Source: Shotton et al.]
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Microsoft Kinect

-
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e o w»'
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T
P(ell,x) = %ZE(CH,X). (93]
t=1

Training. Each tree is trained on a different set of randomly
synthesized images. A random subset of 2000 example pix-
els from each image is chosen to ensure a roughly even dis-
tribution across body parts. Each tree is trained using the
following algorithm [20]:
1. Randomly propose a set of splitting candidates ¢ =
(@, 7) (feature parameters # and thresholds 7).

2. Partition the set of examples Q@ = {(I,x)} into left

and right subsets by each ¢:
Q) = {Ux)|hlx)<t}
(@) = Q\ () “@
3. Compute the ¢ giving the largest gain in information:
o = argmax G(d) 5)
0 -y e " 190N g g, (8)) 6)
se{lr}

where Shannon entropy H((}) is computed on the nor-
malized histogram of body part labels I;(x) for all

(I,x)eQ.
4. If the largest gain G/(¢*) is sufficient, and the depth in
the tree is below a maximum, then recurse for left and

right subsets Q1(¢*) and Qr(¢*).
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Microsoft Kinect

Synthetic Test Set

;
?

Real Test Set

g

g

3
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i o=
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. .
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~—#— 15k training images
T T 1

30%
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Learning Representations
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Learning Representations

@ Sparse coding
@ Deep architectures

@ Topic models
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Image Classification using BoW

Dictionary Learning Image Classification

[ Dense/Sparse SIFT ]
<
[ Dense/Sparse SIFT ] [ VQ Coding ]
Y4 1Y
[ K-means ] [ Spatial Pyramid ]
@ Pooling
Dictionary <

[ Nonlinear SVM ]

[Source: K. Yu]
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BoW+4-SPM: the architecture

@ Nonlinear SVM is not scalable
@ VQ coding may be too coarse
@ Average pooling is not optimal

@ Why not learn the whole thing?

R B\
|

Input Image X

LS

Local Gradients Pooling VQ Coding  Average Pooling  Nonlinear
(obtain histogram) SVM
e.g, SIFT, HOG

[Source: K. Yu]
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Sparse Architecture

@ Nonlinear SVM is not scalable — Scalable linear classifier
@ VQ coding may be too coarse — Better coding methods
@ Average pooling is not optimal — Better pooling methods

@ Why not learn the whole — Deep learning

Input Image X Output Labels
[ Ser ol
* e B\
| | i ’
Local Gradients Pooling  Better Coding Better Pooling ~ Scalable
Linear
Classifier
e.g, SIFT, HOG

[Source: A. Ng]
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Feature learning problem

@ Given a 14 x 14 image patch X, can represent it using 196 real numbers.

@ Problem: Can we find a learn a better representation for this?

@ Given a set of images, learn a better way to represent image than pixels.

[Source: A. Ng]
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Learning an image representation

@ Sparse coding [Olshausen & Field,1996]
@ Input: Images x(), x() ... x(M (each in R"*")

@ Learn: Dictionary of bases ¢4, -, ¢k (also R"*"), so that each input x can
be approximately decomposed as:

k
X = E ajd)j

j=1
such that the a;'s are mostly zero, i.e., sparse

[Source: A. Ng]
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Sparse Coding lllustration

Natural Images Learned bases (¢, ¢g,): “Edges”

Test exampIeJ’

=08% ¢, +03% ¢p FO5*
[0,0,..0,0.8,0,.,00.3,0,..,00.5,..]

Compact & easil
=[a,, ..., ag] (feature representation) P y

interpretable

[Source: A. Ng]
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More examples

@ Method hypothesizes that edge-like patches are the most basic elements of a
scene, and represents an image in terms of the edges that appear in it.

@ Use to obtain a more compact, higher-level representation of the scene than

pixels.

Represent as: [0,0, .., 0,0.6,0, .. ,008 0,.,00.4,.]

~13*H+0.9*E+03*

Represent as: [0, 0,.,0,1.3,0,..,0, 0.9, 0,.,00.3,.]

057

H

[Source: A. Ng]
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Sparse Coding details

Input: Images x(), x() ... x(M (each in R"*")

Obtain dictionary elements and weights by

m k k
min - |10 = 3" 013 +2 3 14l
=1 j=1 j=1
N—_——
sparsity

Alternating minimization with respect to ¢;'s and a's.

The second is harder, the first one is closed form.
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Fast algorithms

@ Solving for a is expensive.

@ Simple algorithm that works well
o Repeatedly guess sign (+, - or 0) of each of the a;'s.
e Solve for a;'s in closed form. Refine guess for signs.

@ Other algorithms such as projective gradient descent, stochastic subgradient
descent, etc

[Source: A. Ng]
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Recap of sparse coding for feature learning

Training:
@ Input: Images x(1), x() ... x(m) (each in R"*")
@ Learn: Dictionary of bases ¢1,- -, ¢« (also R"*"),
m ‘ koo kKoo
min > [ — Z 2,17 + AZ ja|
Test time:
@ Input: novel XV, x@ ... x(M and learned ¢y, - - - , dx.
@ Solve for the representation as, - - - , ax for each example
m k k
min SoLIx=D 3P+ 2D |4l
i=1 j=1 j=1
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Sparse coding recap

@ Much better than pixel representation, but still not competitive with SIFT,
etc.

@ Three ways to make it competitive:

o Combine this with SIFT.
o Advanced versions of sparse coding, e.g., LCC.
o Deep learning.

[Source: A. Ng]
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Sparse Classification

> Feature NS | carning
representation algorithm

Suppose you've already learned bases ¢,, ¢, ..., . Here’s how
you represent an image.

5 Learning
algorithm

E.g., 73-75% on Caltech 101 (Yang et
al., 2009, Boreau et al., 2009)

x( x@ ) .

a a@ 2@ ... .

[Source: A. Ng]
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K-means vs sparse coding

K-means
¢ Centroid 1

p

X Centroid 2

X
Centroid 3

Sparse coding

Basis ¢]

T

X/i;asisdb
f llllul 6o
X

Basis {3

Represent as:

[Source: A. Ng]
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Why sparse coding helps classification?

@ The coding is a nonlinear feature mapping
@ Represent data in a higher dimensional space

@ Sparsity makes prominent patterns more distinctive

e
° e

®
feature

°
map

° ]
° ®
complex in low dimensions simple in higher dimensions

[Source: K. Yu]
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A topic model view to sparse coding

@ Each basis is a direction or a topic.
@ Sparsity: each datum is a linear combination of only a few bases.

@ Applicable to image denoising, inpainting, and super-resolution.

Basis 1

Basis 2

Both figures adapted from CVPR10 tutorial by F.
Bach, J. Mairal, J. Ponce and G. Sapiro

[Source: K. Yu]
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A geometric view to sparse coding

@ Each basis is somewhat like a pseudo data point anchor point
@ Sparsity: each datum is a sparse combination of neighbor anchors.

@ The coding scheme explores the manifold structure of data

Data manifold

[Source: K. Yu]
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Influence of Sparsity

@ When SC achieves the best classification accuracy, the learned bases are like

digits — each basis has a clear local class association.

DEENEEEENEN
AdEENREEE R

EEEEEEEOEEN
SERFEEEREER
EEEEDEEEEE
ONNEENEEERA
HEEENEEEEN
EEENEEREER
BEEEDEENEER

Error: 4.54%

98,

o7 + + + 1

4 + + ¥ + |
+ + + +

H BEEONEHEHEE
FENEEEE Em
AEEENNEEER
DEEDENn
AEEBNPEENE
HEEDEEE ERE
‘HAEDEDEEEE
BADEEESEEnn
ElENNERSEm
AEEETENERRn
Error: 3.75%

Classification accuracy

AunENEREEN N
[ #]2] 5] Bopaa
NEESEREEZE N
HOoEEEnEaEa
SEREEEBEE@BR
HPdCoDaEESEa
BENDOEEnBEA
AEEEPNEHEAENE
[ 170elJol~Ibh /) 4]
21202171 /| clel /140 S
Error: 2.64%
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The image classification setting for analysis

@ Learning an image classifier is a matter of learning nonlinear functions on

patches
flx) =wlx= a; WT(;S(i) = a; f ¢(i)
(x) ; ( ) ; ()
f.images f.patches

where x = Y7 a;¢()

Dense local feature
Sparse Coding

Linear Pooling

Linear SVM

[Source: K. Yu]
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Nonlinear learning via local coding

k
® We assume x; ~ ) ;_; ajj¢; and thus

k
f(xi) = Z a;if ()
j=1

O data points
® Dbases

[Source: K. Yu]
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How to learn the non-linear function

@ Learning the dictionary ¢1,--- , ¢x from unlabeled data

@ Use the dictionary to encode data x; — aj1,- -, aik

© Estimate the parameters
f(z1) arn are... ark| [f(er)
fl@2)| g |az1 ag2. .. az.k|x|f(d2)

f(l'm) Am,1 Am2 -+ Am k f(¢k)

Nonlinear local learning via learning a global linear function
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Local Coordinate Coding (LCC):

o If f(x) is (alpha, beta)-Lipschitz smooth

Zaz,Jf ¢J <allr; — Zam(z)] +ﬁ2|a17]|”x1 ¢]H2

J=1 J=1
\ J \ ) \ ]
I
Function Coding error Locality term
approximation
error

A good coding scheme should [Yu et al. 09]
@ have a small coding error,

@ and also be sufficiently local

[Source: K. Yu]
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@ The larger dictionary, the higher accuracy, but also the higher comp. cost

Table 2: Error rates (%) of MNIST classification with different |C|.

|C| 512 1024 2048 4096

Linear SVM with sparse coding 296 264 216 2.02

Linear SVM with local coordinate coding 2.64 244 2.08 1.90
(Yu et al. 09)

Table 5. The effects of codebook size on ScSPM and LSPM re-
spectively on Caltech 101 dataset.

Codebook size 256 512 1024

30 train  ScSPM 68.26 71.20 73.20
LSPM 57.42 58.81 58.56
15 train ~ ScSPM 6197 63.23 69.70
LSPM 51.84 53.23 51.74

(Yang et al. 09)
@ The same observation for Caltech256, PASCAL, ImageNet
[Source: K. Yu]
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Locality-constrained linear coding

@ A fast implementation of LCC [Wang et al. 10]
@ Dictionary learning using k-means and code for x based on

Step 1 ensure locality: find the K nearest bases [¢;]jc(x)
Step 2 ensure low coding error:

main||xf Z aijol|?, st Z ajj=1
JEI(X) jeJ(x)

[Source: K. Yu]
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Table 1. Image classification results on Caltech-101 dataset

training images| 5 100 15 20 25 30

Zhang [25] 46.6 558 59.1 620 - 66.20
Lazebnik [15] - - 5640 - - 64.60
Griffin [11] |44.2 545 59.0 633 658 67.60
Boiman [2] - - 6500 - - 70.40
Jain [12] - - 61.00 - - 69.10
Gemert [8] - - - - - 64.16
Yang [22] - - 67.00 - - 73.20
Ours 51.15 59.77 65.43 67.74 70.16 73.44

Table 2. Image classification results using Caltech-256 dataset
training images | 15 30 45 60

Griffin [11] 28.30 34.10 - -

Gemert [8] - 27.17 - -
Yang [22] 27.73 34.02 37.46 40.14
Ours 3436 41.19 4531 47.68

[Source: K. Yu]
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Interpretation of BoW + linear classifier

Piece-wise local constant (zero-order)

J

»
>

O data points
® cluster centers

[Source: K. Yu]
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Support vector coding [Zhou et al, 10]

J

»
>

O data points
® cluster centers

[Source: K. Yu]
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o Let [a;,1,---,a k] be the VQ coding of x;

f(o1)
Vi(¢1)

f(.’l?z) ~ |a;, (in —¢ ),...ai’ (l,wi —¢ ) X :
& e J F(60)
' "IV ()

Super-vec;tor codes
of data

Global linear
weights to be
learned

@ No.1 position in PASCAL VOC 2009

[Source: K. Yu]
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Summary of coding algorithms

@ All lead to higher-dimensional, sparse, and localized coding
@ All explore geometric structure of data
@ New coding methods are suitable for linear classifiers.

@ Their implementations are quite straightforward.

Vector Quantization ~ (Fast) Local Coordinate Coding  Super-vector Coding

(BoW) R
/"

X flX])

[Source: K. Yu]
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PASCAL VOC 2009

@ No.1 for 18 of 20 categories
@ PASCAL: 20 categories, 10,000 images
@ They use only HOG feature on gray images

Best of

Classes Ours Difference

Other Teams
Aeroplane 88.1 86.6 15
Bicycle 68.6 63.9 4.7
Bird 68.1 66.7 14
Boat 72.9 67.3 5.6
Bottle 44.2 437 0.5
Bus 79.5 741 5.4
Car 725 64.7 7.8
Cat 70.8 64.2 6.6
Chair 59.5 57.4 2.1
Cow 53.6 46.2 7.4
Diningtable 57.5 54.7 2.8
Dog 59.3 53.5 5.8
Horse 731 68.1 5.0
Motorbike 723 70.6 1.7
Person 853 852 0.1
Pottedplant 36.6 391 25
Sheep 56.9 482 8.7
Sofa 57.9 50.0 7.9
Train 86.0 83.4 26
Tvmonitor 68.0 68.6 -0.6
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ImageNet Large-scale Visual Recognition Challenge 2010
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ImageNet Large-scale Visual Recognition Challenge 2010

@ 150 teams registered worldwide, resulting 37 submissions from 11 teams

@ SC achieved 52% for 1000 class classification.

Top 5 Hit Rate

Our team: NEC-UIUC 72.8%
Xerox European Lab, France 66.4%
Univ. of Tokyo 55.4%
Univ. of California, Irvine 53.4%
MIT 45.6%
NTU, Singapore 41.7%
LIG, France 39.3%
IBM T. J. Waston Research Center 30.0%
National Institute of Informatics, Tokyo 25.8%
SRI (Stanford Research Institute) 24.9%

[Source: K. Yu]
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Learning Codebooks for Image Classification

Filtering l l l

| SIFT at keypoints | | dense gradients | | dense SIFT |
Coding l l l
| vector quantization | | vector quantization | | sparse coding |
Pooling l l l

whole image, mean | | coarse grid, mean | |spatia|pyramid, max |

]

Replacing Vector Quantization by Learned Dictionaries
@ unsupervised: [Yang et al., 2009]
@ supervised: [Boureau et al., 2010, Yang et al., 2010]

[Source: Mairal]
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Discriminative Training

“Discriminative” training

[Mairal, Bach, Ponce, Sapiro, and Zisserman, 2008a]
: (R*(x. _ R*(x-
DT,.&ZC(/\Z, (R*(x;,D_) —R (x,,D+))),

where z; € {—1,+1} is the label of x;.

N

Logistic regression function

Source: Mairal
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Discriminative Dictionaries

Figure: Top: reconstructive, Bottom: discriminative, Left: Bicycle, Right:
Background

[Source: Mairal]
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Application:Edge detection

[Source: Mairal]
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Application:Edge detection

1 T T T T T T T T T
o gPb, F=0.70
o3 —a&— UCM, F=0.67
—— BEL, F=0.66
08 —=— Ours, F=0.66
—=&— Pb, F=0.65
0.7
06 1
<
5
2 05 1
g
'
0.4 -
03
0.2 7
01f 4
] 01 02 03 04 05 06 0.7 o8 09 1

Recall

[Source: Mairal]
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Authentic Fake

‘; - 3 Fake

[Source: Mairal]
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Predictive Sparse Decomposition (PSD)

@ Feed-forward predictor function for feature extraction

m

k k
min 37 Ik =37 a6l + 23 13"+ lla— C(X. K3
=1 Jj=1 j=1

with e.g., C(X, K) = g - tanh(x * k)
Learning is done by
1) Fix K and a, minimize to get optimal ¢
2) Update a and K using optimal ¢
3) Scale elements of ¢ to be unit norm.

[Source: Y. LeCun]
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Predictive Sparse Decomposition (PSD)

@ 12 x12 natural image patches with 256 dictionary elements

nn=
I!Ill'llllll!llﬂllﬁl:l:
Figure: (Left) Encoder, (Right) Decoder

[Source: Y. LeCun]
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Training Deep Networks with PSD

@ Train layer wise [Hinton, 06]

o C(X,KY)
o C(f(K'),K?)

° DRI
@ Each layer is trained on the output f(x) produced from previous layer.

@ f is a series of non-linearity and pooling operations
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Object Recognition - Caltech 101

B P2 B NPa B NPm [ RabsPa M RabsNPa [

Conv Rabs-N-Pa

R u R+ U+ RR UU  R#R+  U+U+
R RR U uu
Unsupervised X X Y 4
Random v v X X
Supervised R+ R+ R* U+ U U
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Convolutional Nets

@ Sparse coding produces filters that are shifted version of each other
@ It ignores that it's going to be used in a convolutional fashion

@ Inference in all overlapping patches independently

Problems with sparse coding

1) the representations are redundant, as the training and inference are done at
the patch level

2) inference for the whole image is computationally expensive
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Problems

1) the representations are redundant, as the training and inference are done at
the patch level

2) inference for the whole image is computationally expensive
Solutions

1) Apply sparse coding to the entire image at once, with the dictionary as a
convolutional filter bank

K
1
Ux,z,D) = EHX— ZDk * zi||3 + |21
k=1

2) Use feed-forward, non-linear encoders to produce a fast approx. to the
sparse code

Ux,z,D, W) *||X—ZDk*Zk||2+Z||Zk_f “e )5+ I2a
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